NAG Library Routine Document F08XAF (DGGES)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08XAF (DGGES) computes the generalized eigenvalues, the generalized real Schur form (S, T) and, optionally, the left and/or right generalized Schur vectors for a pair of n by n real nonsymmetric matrices (A, B). F08XAF (DGGES) is marked as deprecated by LAPACK; the replacement routine is F08XCF (DGGES3) which makes better use of level 3 BLAS.

2 Specification

```
SUBROUTINE FO8XAF (JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
    SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, &
    WORK, LWORK, BWORK, INFO)
INTEGER N, LDA, LDB, SDIM, LDVSL, LDVSR, LWORK, INFO
REAL (KIND=nag_wp) A (LDA,*), B(LDB,*), ALPHAR(N), ALPHAI (N), BETA(N), &
CHARACTER(1) JOBVSL, JOBVSR, SORT
EXTERNAL SELCTG
```

The routine may be called by its LAPACK name dgges.

3 Description

The generalized Schur factorization for a pair of real matrices (A, B) is given by

$$
A=Q S Z^{\mathrm{T}}, \quad B=Q T Z^{\mathrm{T}}
$$

where Q and Z are orthogonal, T is upper triangular and S is upper quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks. The generalized eigenvalues, λ, of (A, B) are computed from the diagonals of S and T and satisfy

$$
A z=\lambda B z
$$

where z is the corresponding generalized eigenvector. λ is actually returned as the pair (α, β) such that

$$
\lambda=\alpha / \beta
$$

since β, or even both α and β can be zero. The columns of Q and Z are the left and right generalized Schur vectors of (A, B).
Optionally, F08XAF (DGGES) can order the generalized eigenvalues on the diagonals of (S, T) so that selected eigenvalues are at the top left. The leading columns of Q and Z then form an orthonormal basis for the corresponding eigenspaces, the deflating subspaces.
F08XAF (DGGES) computes T to have non-negative diagonal elements, and the 2 by 2 blocks of S correspond to complex conjugate pairs of generalized eigenvalues. The generalized Schur factorization, before reordering, is computed by the $Q Z$ algorithm.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: JOBVSL - CHARACTER(1)
Input
On entry: if JOBVSL $=$ ' N ', do not compute the left Schur vectors.
If JOBVSL $=$ ' V ', compute the left Schur vectors.
Constraint: JOBVSL $=$ ' N ' or ' V '.

2: JOBVSR - CHARACTER(1)
Input
On entry: if JOBVSR $=$ ' N ', do not compute the right Schur vectors.
If JOBVSR $=$ ' V ', compute the right Schur vectors.
Constraint: JOBVSR $=$ ' N ' or ' V '.

3: SORT - CHARACTER(1)
Input
On entry: specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form.
SORT $=$ ' N^{\prime}
Eigenvalues are not ordered.
SORT = 'S'
Eigenvalues are ordered (see SELCTG).
Constraint: SORT $=$ ' N ' or 'S'.

4: SELCTG - LOGICAL FUNCTION, supplied by the user.
External Procedure
If SORT $=$ 'S', SELCTG is used to select generalized eigenvalues to be moved to the top left of the generalized Schur form.

If SORT $=$ ' N ', SELCTG is not referenced by F08XAF (DGGES), and may be called with the dummy function F08XAZ.

```
The specification of SELCTG is:
FUNCTION SELCTG (AR, AI, B)
LOGICAL SELCTG
REAL (KIND=nag_wp) AR, AI, B
    AR - REAL (KIND=nag_wp) Input
    AI - REAL (KIND=nag_wp) Input
    B - REAL (KIND=nag_wp) Input
    On entry: an eigenvalue (AR}(j)+\sqrt{}{-1}\times\operatorname{AI}(j))/\textrm{B}(j)\mathrm{ is selected if
    SELCTG}(\operatorname{AR}(j),\operatorname{AI}(j),\textrm{B}(j))=.TRUE.. If either one of a complex conjugate pair is
    selected, then both complex generalized eigenvalues are selected.
    Note that in the ill-conditioned case, a selected complex generalized eigenvalue may no
    longer satisfy SELCTG}(\operatorname{AR}(j),\operatorname{AI}(j),\textrm{B}(j))=.TRUE. after ordering. INFO = N +2 in
    this case.
```

SELCTG must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub) program from which F08XAF (DGGES) is called. Arguments denoted as Input must not be changed by this procedure.

5: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrices A and B.
Constraint: $\mathrm{N} \geq 0$.
6: $\mathrm{A}(\mathrm{LDA}, *)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the first of the pair of matrices, A.
On exit: A has been overwritten by its generalized Schur form S.

7: LDA - INTEGER
On entry: the first dimension of the array A as declared in the (sub)program from which F08XAF (DGGES) is called.

Constraint: $\mathrm{LDA} \geq \max (1, \mathrm{~N})$.

8: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array B must be at least $\max (1, \mathrm{~N})$.
On entry: the second of the pair of matrices, B.
On exit: B has been overwritten by its generalized Schur form T.
9: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08XAF (DGGES) is called.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
10: SDIM - INTEGER
Output
On exit: if SORT $=$ ' N ', $\mathrm{SDIM}=0$.
If SORT = 'S', SDIM = number of eigenvalues (after sorting) for which SELCTG is .TRUE..
(Complex conjugate pairs for which SELCTG is .TRUE. for either eigenvalue count as 2.)
11: $\operatorname{ALPHAR}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: see the description of BETA.
12: $\quad \operatorname{ALPHAI}(\mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: see the description of BETA.
13: \quad BETA(N) - REAL (KIND=nag_wp) array
Output
On exit: $(\operatorname{ALPHAR}(j)+\operatorname{ALPHAI}(j) \times i) / \operatorname{BETA}(j)$, for $j=1,2, \ldots, \mathrm{~N}$, will be the generalized eigenvalues. $\operatorname{ALPHAR}(j)+\operatorname{ALPHAI}(j) \times i$, and $\operatorname{BETA}(j)$, for $j=1,2, \ldots, \mathrm{~N}$, are the diagonals of the complex Schur form (S, T) that would result if the 2 by 2 diagonal blocks of the real Schur form of (A, B) were further reduced to triangular form using 2 by 2 complex unitary transformations.

If $\operatorname{ALPHAI}(j)$ is zero, then the j th eigenvalue is real; if positive, then the j th and $(j+1)$ st eigenvalues are a complex conjugate pair, with $\operatorname{ALPHAI}(j+1)$ negative.

Note: the quotients $\operatorname{ALPHAR}(j) / \operatorname{BETA}(j)$ and $\operatorname{ALPHAI}(j) / \operatorname{BETA}(j)$ may easily overflow or underflow, and $\operatorname{BETA}(j)$ may even be zero. Thus, you should avoid naively computing the ratio α / β. However, ALPHAR and ALPHAI will always be less than and usually comparable with $\|A\|_{2}$ in magnitude, and BETA will always be less than and usually comparable with $\|B\|_{2}$.

14: $\operatorname{VSL}(\operatorname{LDVSL}, *)-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
Note: the second dimension of the array VSL must be at least $\max (1, \mathrm{~N})$ if JOBVSL $=$ ' V^{\prime}, and at least 1 otherwise.

On exit: if JOBVSL $=$ ' V^{\prime}, VSL will contain the left Schur vectors, Q.
If JOBVSL $=$ ' N ', VSL is not referenced.
15: LDVSL - INTEGER
Input
On entry: the first dimension of the array VSL as declared in the (sub)program from which F08XAF (DGGES) is called.
Constraints:
if JOBVSL $=$ ' $\mathrm{V}^{\prime}, \operatorname{LDVSL} \geq \max (1, \mathrm{~N})$;
otherwise $\mathrm{LDVSL} \geq 1$.

16: $\quad \operatorname{VSR}(\mathrm{LDVSR}, *)$ - REAL (KIND=nag_wp) array
Output
Note: the second dimension of the array VSR must be at least $\max (1, \mathrm{~N})$ if $\operatorname{JOBVSR}=$ ' V^{\prime}, and at least 1 otherwise.

On exit: if JOBVSR $=$ ' ${ }^{\prime}$ ', VSR will contain the right Schur vectors, Z.
If JOBVSR $=$ ' N ', VSR is not referenced.

17: LDVSR - INTEGER
Input
On entry: the first dimension of the array VSR as declared in the (sub)program from which F08XAF (DGGES) is called.

Constraints:
if $\operatorname{JOBVSR}=' \mathrm{~V}$ ', $\operatorname{LDVSR} \geq \max (1, \mathrm{~N})$;
otherwise $\operatorname{LDVSR} \geq 1$.
18: $\operatorname{WORK}(\max (1, \operatorname{LWORK}))-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Workspace
On exit: if $\operatorname{INFO}=0$, WORK (1) contains the minimum value of LWORK required for optimal performance.

19: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08XAF (DGGES) is called.

If LWORK $=-1$, a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

Suggested value: for optimal performance, LWORK must generally be larger than the mimimum; add, say $n b \times \mathrm{N}$, where $n b$ is the optimal block size.

Constraints:
if $\mathrm{N}=0$, LWORK ≥ 1;
otherwise LWORK $\geq \max (8 \times \mathrm{N}, 6 \times \mathrm{N}+16)$.

Note: the dimension of the array BWORK must be at least 1 if SORT $=$ ' N ', and at least $\max (1, \mathrm{~N})$ otherwise.
If $\operatorname{SORT}=$ ' N ', BWORK is not referenced.
21: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

$\mathrm{INFO}<0$
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
$\mathrm{INFO}=1$ to N
The $Q Z$ iteration failed. (A, B) are not in Schur form, but $\operatorname{ALPHAR}(j), \operatorname{ALPHAI}(j)$, and $\operatorname{BETA}(j)$ should be correct for $j=\mathrm{INFO}+1, \ldots, \mathrm{~N}$.
$\mathrm{INFO}=\mathrm{N}+1$
Unexpected error returned from F08XEF (DHGEQZ).
$\mathrm{INFO}=\mathrm{N}+2$
After reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the generalized Schur form no longer satisfy SELCTG $=$.TRUE.. This could also be caused by underflow due to scaling.
$\mathrm{INFO}=\mathrm{N}+3$
The eigenvalues could not be reordered because some eigenvalues were too close to separate (the problem is very ill-conditioned).

7 Accuracy

The computed generalized Schur factorization satisfies

$$
A+E=Q S Z^{\mathrm{T}}, \quad B+F=Q T Z^{\mathrm{T}}
$$

where

$$
\|(E, F)\|_{F}=O(\epsilon)\|(A, B)\|_{F}
$$

and ϵ is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details.

8 Parallelism and Performance

F08XAF (DGGES) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08XAF (DGGES) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is proportional to n^{3}.
The complex analogue of this routine is F08XNF (ZGGES).

10 Example

This example finds the generalized Schur factorization of the matrix pair (A, B), where

$$
A=\left(\begin{array}{rrrr}
3.9 & 12.5 & -34.5 & -0.5 \\
4.3 & 21.5 & -47.5 & 7.5 \\
4.3 & 21.5 & -43.5 & 3.5 \\
4.4 & 26.0 & -46.0 & 6.0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrrr}
1.0 & 2.0 & -3.0 & 1.0 \\
1.0 & 3.0 & -5.0 & 4.0 \\
1.0 & 3.0 & -4.0 & 3.0 \\
1.0 & 3.0 & -4.0 & 4.0
\end{array}\right)
$$

such that the real positive eigenvalues of (A, B) correspond to the top left diagonal elements of the generalized Schur form, (S, T).

Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

10.1 Program Text

```
F08XAF Example Program Text
Mark 26 Release. NAG Copyright 2016.
Module f08xafe_mod
    F08XAF Example Program Module:
                    Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Accessibility Statements ..
    Private
    Public :: selctg
    .. Parameters .
    Integer, Parameter, Public : : nb = 64, nin = 5, nout = 6
```

Contains
Function selctg(ar,ai,b)
Logical function selctg for use with DGGES (FO8XAF)
Returns the value. TRUE. if the eigenvalue is real and positive
.. Function Return Value ..
Logical :: selctg
.. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) : : ai, ar, b
! .. Executable Statements ..
selctg $=$ (ar>0._nag_wp .And. ai==0._nag_wp .And. b/=0._nag_wp)
Return
End Function selctg
End Module f08xafe_mod
Program f08xafe
! F08XAF Example Main Program
! .. Use Statements ..
Use nag_library, Only: dgemm, dgges, dlange $=>$ f06raf, nag_wp, x02ajf, \&
x04caf
Use f08xafe_mod, Only: nb, nin, nout, selctg
. Implicit None Statement ..
Implicit None
.. Local Scalars ..
Real (Kind=nag_wp) : : alph, bet, normd, norme
Integer : : i, ifail, info, lda, ldb, ldc, ldd, \&

```
    Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:), &
                                    b(:,:), beta(:), c(:,:), d(:,:), &
    e(:,:), vsl(:,:), vsr(:,:), work(:)
    Real (Kind=nag_wp) :: dummy(1)
    Logical, Allocatable :: bwork(:)
    .. Intrinsic Procedures ..
    Intrinsic :: max, nint
    .. Executable Statements ..
    Write (nout,*) 'F08XAF Example Program Results'
    Write (nout,*)
    Flush (nout)
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    lda = n
    ldb = n
    ldc = n
    ldd = n
    lde = n
    ldvsl = n
    ldvsr = n
    Allocate (a(lda,n),alphai(n),alphar(n),b(ldb,n),beta(n),vsl(ldvsl,n),
        vsr(ldvsr,n),bwork(n),c(ldc,n),d(ldd,n),e(lde,n))
    Use routine workspace query to get optimal workspace.
    lwork = -1
! The NAG name equivalent of dgges is f08xaf
Call dgges('Vectors (left)','Vectors (right)','Sort',selctg,n,a,lda,b, &
    ldb,sdim,alphar,alphai,beta,vsl,ldvsl,vsr,ldvsr,dummy,lwork,bwork, &
    info)
Make sure that there is enough workspace for block size nb.
lwork = max(8*n+16+n*nb,nint(dummy(1)))
Allocate (work(lwork))
Read in the matrices A and B
Read (nin,*)(a(i,1:n),i=1,n)
Read (nin,*)(b(i,1:n),i=1,n)
Copy A and B into D and E respectively
d(1:n,1:n) = a(1:n,1:n)
e(1:n,1:n) = b(1:n,1:n)
Print matrices A and B
ifail: behaviour on error exit
    =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04caf('General',' ',n,n,a,lda,'Matrix A',ifail)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf('General',' ',n,n,b,ldb,'Matrix B',ifail)
Write (nout,*)
Flush (nout)
Find the generalized Schur form
The NAG name equivalent of dgges is f08xaf
Call dgges('Vectors (left)','Vectors (right)','Sort',selctg,n,a,lda,b, &
    ldb,sdim,alphar,alphai,beta,vsl,ldvsl,vsr,ldvsr,work,lwork,bwork,info)
If (info==0 .Or. info==(n+2)) Then
    Compute A - Q*S*Z^T from the factorization of (A,B) and store in
    matrix D
    The NAG name equivalent of dgemm is f06yaf
    alph = 1.0_nag_wp
    bet = 0.0_nag_wp
    Call dgemm('N','N',n,n,n,alph,vsl,ldvsl,a,lda,bet,c,ldc)
```

```
alph = -1.0_nag_wp
bet = 1.0_nag_wp
Call dgemm('N','T',n,n,n,alph,c,ldc,vsr,ldvsr,bet,d,ldd)
Compute B - Q*T*Z^T from the factorization of (A,B) and store in
matrix E
alph = 1.0_nag_wp
bet = 0.0_nag_wp
Call dgemm('N','N',n,n,n,alph,vsl,ldvsl,b,ldb,bet,c,ldc)
alph = -1.0_nag_wp
bet = 1.0_nag_wp
Call dgemm('N','T',n,n,n,alph,c,ldc,vsr,ldvsr,bet,e,lde)
Find norms of matrices D and E and warn if either is too large
fO6raf is the NAG name equivalent of the LAPACK auxiliary dlange
normd = dlange('O',ldd,n,d,ldd,work)
norme = dlange('o',lde,n,e,lde,work)
If (normd>x02ajf()**0.8_nag_wp .Or. norme>x02ajf()**0.8_nag_wp) Then
    Write (nout,*)
            'Norm of A-(Q*S*Z^T) or norm of B-(Q*T*Z^T) is much greater than 0.'
        Write (nout,*) 'Schur factorization has failed.'
Else
    Print solution
    Write (nout,99999)
            'Number of eigenvalues for which SELCTG is true = ', sdim,
    Write (nout,*)
    Print generalized eigenvalues
    Write (nout,*) 'Selected generalized eigenvalues'
    Do i = 1, sdim
            If (beta(i)/=0.0_nag_wp) Then
                Write (nout,99997) i, '(', alphar(i)/beta(i), ',',
                    alphai(i)/beta(i), ')'
            Else
                Write (nout,99996) i
            End If
    End Do
    Write (nout,*)
        If (info==(n+2)) Then
            Write (nout,99995) '***Note that rounding errors mean ', &
                'that leading eigenvalues in the generalized',
                'Schur form no longer satisfy SELCTG = .TRUE.'
            Write (nout,*)
        End If
    End If
    Else
    Write (nout,99998) 'Failure in DGGES. INFO =', info
End If
99999 Format (1X,A,I4,/,1X,A)
99998 Format (1X,A,I4)
99997 Format (1X,I4,5X,A,F7.3,A,F7.3,A)
99996 Format (1X,I4,'Eigenvalue is infinite')
99995 Format (1X,2A,/,1X,A)
End Program f08xafe
```


10.2 Program Data

$\begin{gathered} \text { F08XAF } \\ 4 \end{gathered}$	Example Pro	am Da	ta :Value of N
3.9	12.5-34.5	-0.5	
4.3	$21.5-47.5$	7.5	
4.3	$21.5-43.5$	3.5	
4.4	26.0-46.0	6.0	: End of matrix A
1.0	$2.0-3.0$	1.0	
1.0	$3.0-5.0$	4.0	
1.0	$3.0-4.0$	3.0	
1.0	$3.0-4.0$	4.0	: End of matrix B

10.3 Program Results

