NAG Library Routine Document
 F08YGF (DTGSEN)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08YGF (DTGSEN) reorders the generalized Schur factorization of a matrix pair in real generalized Schur form, so that a selected cluster of eigenvalues appears in the leading elements, or blocks on the diagonal of the generalized Schur form. The routine also, optionally, computes the reciprocal condition numbers of the cluster of eigenvalues and/or corresponding deflating subspaces.

2 Specification

```
SUBROUTINE FO8YGF (IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
    ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, &
    WORK, LWORK, IWORK, LIWORK, INFO)
INTEGER IJOB, N, LDA, LDB, LDQ, LDZ, M, LWORK, IWORK(*), &
REAL (KIND=nag_wp) A(LDA,*), B(LDB,*), ALPHAR(N), ALPHAI (N), BETA(N), &
    Q(LDQ,*), Z(LDZ,*), PL, PR, DIF(*), &
    WORK(max (1,LWORK))
LOGICAL WANTQ, WANTZ, SELECT(N)
```

The routine may be called by its LAPACK name dtgsen.

3 Description

F08YGF (DTGSEN) factorizes the generalized real n by n matrix pair (S, T) in real generalized Schur form, using an orthogonal equivalence transformation as

$$
S=\hat{Q} \hat{S} \hat{Z}^{\mathrm{T}}, \quad T=\hat{Q} \hat{T} \hat{Z}^{\mathrm{T}}
$$

where (\hat{S}, \hat{T}) are also in real generalized Schur form and have the selected eigenvalues as the leading diagonal elements, or diagonal blocks. The leading columns of Q and Z are the generalized Schur vectors corresponding to the selected eigenvalues and form orthonormal subspaces for the left and right eigenspaces (deflating subspaces) of the pair (S, T).

The pair (S, T) are in real generalized Schur form if S is block upper triangular with 1 by 1 and 2 by 2 diagonal blocks and T is upper triangular as returned, for example, by F08XAF (DGGES), or F08XEF (DHGEQZ) with $\mathrm{JOB}=$ ' S '. The diagonal elements, or blocks, define the generalized eigenvalues $\left(\alpha_{i}, \beta_{i}\right)$, for $i=1,2, \ldots, n$, of the pair (S, T). The eigenvalues are given by

$$
\lambda_{i}=\alpha_{i} / \beta_{i}
$$

but are returned as the pair $\left(\alpha_{i}, \beta_{i}\right)$ in order to avoid possible overflow in computing λ_{i}. Optionally, the routine returns reciprocals of condition number estimates for the selected eigenvalue cluster, p and q, the right and left projection norms, and of deflating subspaces, Dif_{u} and Dif_{l}. For more information see Sections 2.4.8 and 4.11 of Anderson et al. (1999).
If S and T are the result of a generalized Schur factorization of a matrix pair (A, B)

$$
A=Q S Z^{\mathrm{T}}, \quad B=Q T Z^{\mathrm{T}}
$$

then, optionally, the matrices Q and Z can be updated as $Q \hat{Q}$ and $Z \hat{Z}$. Note that the condition numbers of the pair (S, T) are the same as those of the pair (A, B).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

5 Arguments

1: IJOB - INTEGER
Input
On entry: specifies whether condition numbers are required for the cluster of eigenvalues (p and q) or the deflating subspaces (Dif_{u} and Dif_{l}).
$\mathrm{IJOB}=0$
Only reorder with respect to SELECT. No extras.
$\mathrm{IJOB}=1$
Reciprocal of norms of 'projections' onto left and right eigenspaces with respect to the selected cluster (p and q).
$\mathrm{IJOB}=2$
The upper bounds on Dif_{u} and $\operatorname{Dif}_{l} . F$-norm-based estimate (DIF(1:2)).
$\mathrm{IJOB}=3$
Estimate of Dif_{u} and Dif_{l}. 1-norm-based estimate (DIF(1:2)). About five times as expensive as $\mathrm{IJOB}=2$.
$\mathrm{IJOB}=4$
Compute PL, PR and DIF as in $\mathrm{IJOB}=0,1$ and 2. Economic version to get it all.
$\mathrm{IJOB}=5$
Compute PL, PR and DIF as in $\mathrm{IJOB}=0,1$ and 3 .
Constraint: $0 \leq \mathrm{IJOB} \leq 5$.

2: WANTQ - LOGICAL
Input
On entry: if WANTQ $=$. TRUE., update the left transformation matrix Q.
If WANTQ $=$. FALSE., do not update Q.

3: WANTZ - LOGICAL
Input
On entry: if WANTZ $=$.TRUE., update the right transformation matrix Z.
If $\mathrm{WANTZ}=$. FALSE., do not update Z.
4: $\quad \operatorname{SELECT}(\mathrm{N})$ - LOGICAL array
Input
On entry: specifies the eigenvalues in the selected cluster. To select a real eigenvalue λ_{j}, $\operatorname{SELECT}(j)$ must be set to .TRUE..
To select a complex conjugate pair of eigenvalues λ_{j} and λ_{j+1}, corresponding to a 2 by 2 diagonal block, either $\operatorname{SELECT}(j)$ or $\operatorname{SELECT}(j+1)$ or both must be set to .TRUE.; a complex conjugate pair of eigenvalues must be either both included in the cluster or both excluded.

5: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrices S and T.
Constraint: $\mathrm{N} \geq 0$.
6: $\quad \mathrm{A}(\mathrm{LDA}, *)-$ REAL (KIND=$=$ nag_wp $)$ array
Note: the second dimension of the array A must be at least $\max (1, \mathrm{~N})$.
On entry: the matrix S in the pair (S, T).

On exit: the updated matrix \hat{S}.
7: LDA - INTEGER
Input
On entry: the first dimension of the array A as declared in the (sub)program from which F08YGF (DTGSEN) is called.
Constraint: $\operatorname{LDA} \geq \max (1, \mathrm{~N})$.
8: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
Note: the second dimension of the array B must be at least max $(1, \mathrm{~N})$.
On entry: the matrix T, in the pair (S, T).
On exit: the updated matrix \hat{T}
9: LDB - INTEGER Input
On entry: the first dimension of the array B as declared in the (sub)program from which F08YGF (DTGSEN) is called.

Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
10: $\quad \operatorname{ALPHAR}(\mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: see the description of BETA.
11: $\quad \operatorname{ALPHAI}(\mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: see the description of BETA.
12: $\operatorname{BETA}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: $\operatorname{ALPHAR}(j) / \operatorname{BETA}(j)$ and $\operatorname{ALPHAI}(j) / \operatorname{BETA}(j)$ are the real and imaginary parts respectively of the j th eigenvalue, for $j=1,2, \ldots, \mathrm{~N}$.
If $\operatorname{ALPHAI}(j)$ is zero, then the j th eigenvalue is real; if positive then $\operatorname{ALPHAI}(j+1)$ is negative, and the j th and $(j+1)$ st eigenvalues are a complex conjugate pair.
Conjugate pairs of eigenvalues correspond to the 2 by 2 diagonal blocks of \hat{S}. These 2 by 2 blocks can be reduced by applying complex unitary transformations to (\hat{S}, \hat{T}) to obtain the complex Schur form (\tilde{S}, \tilde{T}), where \tilde{S} is triangular (and complex). In this form ALPHAR $+i$ ALPHAI and BETA are the diagonals of \tilde{S} and \tilde{T} respectively.

13: $\mathrm{Q}(\mathrm{LDQ}, *)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array Q must be at least $\max (1, \mathrm{~N})$ if WANTQ $=$.TRUE., and at least 1 otherwise.
On entry: if WANTQ $=$.TRUE., the n by n matrix Q.
On exit: if WANTQ $=$. TRUE., the updated matrix $Q \hat{Q}$.
If $\mathrm{WANTQ}=$. FALSE., Q is not referenced.
14: LDQ - INTEGER
Input
On entry: the first dimension of the array Q as declared in the (sub)program from which F08YGF (DTGSEN) is called.
Constraints:
if $\mathrm{WANTQ}=$. TRUE., LDQ $\geq \max (1, \mathrm{~N})$;
otherwise $\mathrm{LDQ} \geq 1$.
$\mathrm{Z}(\mathrm{LDZ}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Note: the second dimension of the array Z must be at least $\max (1, N)$ if $W A N T Z=. T R U E$. , and at least 1 otherwise.
On entry: if WANTZ $=$.TRUE., the n by n matrix Z.
On exit: if WANTZ $=$.TRUE., the updated matrix $Z \hat{Z}$.
If $\mathrm{WANTZ}=. \mathrm{FALSE} ., \mathrm{Z}$ is not referenced.

16: LDZ - INTEGER
Input
On entry: the first dimension of the array Z as declared in the (sub)program from which F08YGF (DTGSEN) is called.

Constraints:

```
        if WANTZ = .TRUE., LDZ \geq max (1,N);
```

 otherwise \(\mathrm{LDZ} \geq 1\).
 17: M - INTEGER
Output
On exit: the dimension of the specified pair of left and right eigenspaces (deflating subspaces).
18: $\mathrm{PL}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) Output
19: $\quad \mathrm{PR}$ - REAL (KIND=nag_wp) Output
On exit: if $\mathrm{IJOB}=1,4$ or $5, \mathrm{PL}$ and PR are lower bounds on the reciprocal of the norm of 'projections' p and q onto left and right eigenspaces with respect to the selected cluster. $0<\mathrm{PL}$, $P R \leq 1$
If $\mathrm{M}=0$ or $\mathrm{M}=\mathrm{N}, \mathrm{PL}=\mathrm{PR}=1$.
If $\mathrm{IJOB}=0,2$ or $3, \mathrm{PL}$ and PR are not referenced.

20: $\operatorname{DIF}(*)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
Note: the dimension of the array DIF must be at least 2 .
On exit: if $\mathrm{IJOB} \geq 2, \operatorname{DIF}(1: 2)$ store the estimates of Dif_{u} and Dif_{l}.
If $\operatorname{IJOB}=2$ or $4, \operatorname{DIF}(1: 2)$ are F-norm-based upper bounds on Dif_{u} and Dif_{l}.
If $\operatorname{IJOB}=3$ or $5, \operatorname{DIF}(1: 2)$ are 1 -norm-based estimates of Dif_{u} and Dif_{l}.
If $\mathrm{M}=0$ or $n, \operatorname{DIF}(1: 2)=\|(A, B)\|_{F}$.
If $\mathrm{IJOB}=0$ or 1, DIF is not referenced.

21: $\operatorname{WORK}(\max (1, \operatorname{LWORK}))$ - REAL (KIND=nag_wp) array Workspace
On exit: if $\mathrm{INFO}=0$, WORK (1) returns the minimum LWORK.
If $\mathrm{IJOB}=0$, WORK is not referenced.

22: LWORK - INTEGER
Input
On entry: the dimension of the array WORK as declared in the (sub)program from which F08YGF (DTGSEN) is called.
If LWORK $=-1$, a workspace query is assumed; the routine only calculates the minimum sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued.
Constraints: if LWORK $\neq-1$,
if $\mathrm{N}=0$, LWORK ≥ 1;
if $\mathrm{IJOB}=1,2$ or $4, \mathrm{LWORK} \geq \max (4 \times \mathrm{N}+16,2 \times \mathrm{M} \times(\mathrm{N}-\mathrm{M}))$;
if $\operatorname{IJOB}=3$ or 5 , $\operatorname{LWORK} \geq \max (4 \times N+16,4 \times M \times(N-M))$; otherwise LWORK $\geq 4 \times N+16$.

23: $\operatorname{IWORK}(*)$ - INTEGER array
Workspace
Note: the dimension of the array IWORK must be at least max(1, LIWORK).
On exit: if $\operatorname{INFO}=0$, $\operatorname{IWORK}(1)$ returns the minimum LIWORK.
If $\mathrm{IJOB}=0$, IWORK is not referenced.

24: LIWORK - INTEGER
Input
On entry: the dimension of the array IWORK as declared in the (sub)program from which F08YGF (DTGSEN) is called.
If LIWORK $=-1$, a workspace query is assumed; the routine only calculates the minimum sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued.
Constraints: if LIWORK $\neq-1$,

$$
\begin{aligned}
& \text { if IJOB }=1,2 \text { or } 4 \text {, LIWORK } \geq \mathrm{N}+6 \text {; } \\
& \text { if IJOB }=3 \text { or } 5, \operatorname{LIWORK~} \geq \max (2 \times \mathrm{M} \times(\mathrm{N}-\mathrm{M}), \mathrm{N}+6) \text {; } \\
& \text { otherwise } \operatorname{LIWORK~} \geq 1
\end{aligned}
$$

25: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
$\mathrm{INFO}=1$
Reordering of (S, T) failed because the transformed matrix pair (\hat{S}, \hat{T}) would be too far from generalized Schur form; the problem is very ill-conditioned. (S, T) may have been partially reordered. If requested, 0 is returned in $\operatorname{DIF}(1: 2)$, PL and PR .

7 Accuracy

The computed generalized Schur form is nearly the exact generalized Schur form for nearby matrices $(S+E)$ and $(T+F)$, where

$$
\|E\|_{2}=O \epsilon\|S\|_{2} \quad \text { and } \quad\|F\|_{2}=O \epsilon\|T\|_{2}
$$

and ϵ is the machine precision. See Section 4.11 of Anderson et al. (1999) for further details of error bounds for the generalized nonsymmetric eigenproblem, and for information on the condition numbers returned.

8 Parallelism and Performance

F08YGF (DTGSEN) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The complex analogue of this routine is F08YUF (ZTGSEN).

10 Example

This example reorders the generalized Schur factors S and T and update the matrices Q and Z given by

$$
\begin{gathered}
S=\left(\begin{array}{llll}
4.0 & 1.0 & 1.0 & 2.0 \\
0 & 3.0 & 4.0 & 1.0 \\
0 & 1.0 & 3.0 & 1.0 \\
0 & 0 & 0 & 6.0
\end{array}\right), \quad T=\left(\begin{array}{llll}
2.0 & 1.0 & 1.0 & 3.0 \\
0 & 1.0 & 2.0 & 1.0 \\
0 & 0 & 1.0 & 1.0 \\
0 & 0 & 0 & 2.0
\end{array}\right), \\
Q=\left(\begin{array}{llll}
1.0 & 0 & 0 & 0 \\
0 & 1.0 & 0 & 0 \\
0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 1.0
\end{array}\right) \quad \text { and } Z=\left(\begin{array}{llll}
1.0 & 0 & 0 & 0 \\
0 & 1.0 & 0 & 0 \\
0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 1.0
\end{array}\right),
\end{gathered}
$$

selecting the first and fourth generalized eigenvalues to be moved to the leading positions. Bases for the left and right deflating subspaces, and estimates of the condition numbers for the eigenvalues and Frobenius norm based bounds on the condition numbers for the deflating subspaces are also output.

10.1 Program Text

```
    Program f08ygfe
    FO8YGF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: dtgsen, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Real (Kind=nag_wp) :: pl, pr
    Integer :: i, ijob, info, lda, ldb, ldc, ldq, &
    Logical :: wantq, wantz
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: a(:,:), alphai(:), alphar(:),
                                    b(:,:), beta(:), c(:,:), q(:,:),
                                    work(:), z(:,:)
    Real (Kind=nag_wp) :: dif(2)
    Integer, Allocatable :: iwork(:)
    Logical, Allocatable :: select(:)
! .. Executable Statements ..
    Write (nout,*) 'FO8YGF Example Program Results'
    Write (nout,*)
    Flush (nout)
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    lda = n
    ldb = n
    ldc = n
    ldq = n
    ldz = n
    liwork = (n*n)/2 + 6
    lwork = n*(n+4) + 16
    Allocate (a(lda,n),alphai(n), alphar(n),b(ldb,n),beta(n),c(ldc,n),
        q(ldq,n),work(lwork),z(ldz,n),iwork(liwork),select(n))
! Read A, B, 2, Z and the logical array SELECT from data file
```

```
    Read (nin,*)(a(i,1:n),i=1,n)
    Read (nin,*)(b(i,1:n),i=1,n)
    Read (nin,*)(q(i,1:n),i=1,n)
    Read (nin,*)(z(i,1:n),i=1,n)
    Read (nin,*) select(1:n)
! Set ijob, wantq and wantz
    ijob = 4
    wantq = .True.
    wantz = .True.
    Reorder the Schur factors A and B and update the matrices
    Q and Z
    The NAG name equivalent of dtgsen is f08ygf
    Call dtgsen(ijob,wantq,wantz,select,n,a,lda,b,ldb,alphar,alphai,beta,q, &
        ldq,z,ldz,m,pl,pr,dif,work,lwork,iwork,liwork,info)
    If (info>0) Then
        Write (nout,99999) info
        Write (nout,*)
        Flush (nout)
    End If
! Print Results
    Write (nout,99996) 'Number of selected eigenvalues = ', m
    Write (nout,*)
    Write (nout,*) 'Selected Generalized Eigenvalues'
    Write (nout,*)
    Write (nout,99997)(i,alphar(i)/beta(i),alphai(i)/beta(i),i=1,m)
    Write (nout,*)
    Write (nout,99998) 'Norm estimate of projection onto',
    ' left eigenspace for selected cluster', l.0_nag_wp/pl
Write (nout,*)
Write (nout,99998) 'Norm estimate of projection onto',
    ' right eigenspace for selected cluster', 1.O_nag_wp/pr
Write (nout,*)
Write (nout,99998) 'F-norm based upper bound on', ' Difu', dif(1)
Write (nout,*)
Write (nout,99998) 'F-norm based upper bound on', ' Difl', dif(2)
99999 Format (' Reordering could not be completed. INFO = ',I3)
99998 Format (1X,2A,/,1X,1P,E10.2)
99997 Format (1X,I2,1X,'(',1P,E11.4,',',E11.4,')')
9 9 9 9 6 ~ F o r m a t ~ ( 1 X , A , I 4 )
End Program f08ygfe
```


10.2 Program Data

10.3 Program Results

```
F08YGF Example Program Results
Number of selected eigenvalues = 2
Selected Generalized Eigenvalues
    1 (2.0000E+00, 0.0000E +00)
    2 ( 3.0000E+00, 0.0000E+00)
Norm estimate of projection onto left eigenspace for selected cluster
    2.69E+00
Norm estimate of projection onto right eigenspace for selected cluster
        1.50E+00
F-norm based upper bound on Difu
    2.52E-01
F-norm based upper bound on Difl
    2.45E-01
```

