NAG Library Routine Document

 G01EPF

 G01EPF}

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G01EPF calculates upper and lower bounds for the significance of a Durbin-Watson statistic.

2 Specification

```
SUBROUTINE GO1EPF (N, IP, D, PDL, PDU, WORK, IFAIL)
INTEGER N, IP, IFAIL
REAL (KIND=nag_wp) D, PDL, PDU, WORK(N)
```


3 Description

Let $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)^{\mathrm{T}}$ be the residuals from a linear regression of y on p independent variables, including the mean, where the y values $y_{1}, y_{2}, \ldots, y_{n}$ can be considered as a time series. The DurbinWatson test (see Durbin and Watson (1950), Durbin and Watson (1951) and Durbin and Watson (1971)) can be used to test for serial correlation in the error term in the regression.
The Durbin-Watson test statistic is:

$$
d=\frac{\sum_{i=1}^{n-1}\left(r_{i+1}-r_{i}\right)^{2}}{\sum_{i=1}^{n} r_{i}^{2}}
$$

which can be written as

$$
d=\frac{r^{\mathrm{T}} A r}{r^{\mathrm{T}} r}
$$

where the n by n matrix A is given by

$$
A=\left[\begin{array}{rrrlr}
1 & -1 & 0 & \ldots & : \\
-1 & 2 & -1 & \ldots & : \\
0 & -1 & 2 & \ldots & : \\
: & 0 & -1 & \ldots & : \\
: & : & : & \ldots & : \\
: & : & : & \ldots & -1 \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

with the nonzero eigenvalues of the matrix A being $\lambda_{j}=(1-\cos (\pi j / n))$, for $j=1,2, \ldots, n-1$.
Durbin and Watson show that the exact distribution of d depends on the eigenvalues of a matrix $H A$, where H is the hat matrix of independent variables, i.e., the matrix such that the vector of fitted values, \hat{y}, can be written as $\hat{y}=H y$. However, bounds on the distribution can be obtained, the lower bound being

$$
d_{l}=\frac{\sum_{i=1}^{n-p} \lambda_{i} u_{i}^{2}}{\sum_{i=1}^{n-p} u_{i}^{2}}
$$

and the upper bound being

$$
d_{u}=\frac{\sum_{i=1}^{n-p} \lambda_{i-1+p} u_{i}^{2}}{\sum_{i=1}^{n-p} u_{i}^{2}}
$$

where u_{i} are independent standard Normal variables.
Two algorithms are used to compute the lower tail (significance level) probabilities, p_{l} and p_{u}, associated with d_{l} and d_{u}. If $n \leq 60$ the procedure due to Pan (1964) is used, see Farebrother (1980), otherwise Imhof's method (see Imhof (1961)) is used.

The bounds are for the usual test of positive correlation; if a test of negative correlation is required the value of d should be replaced by $4-d$.

4 References

Durbin J and Watson G S (1950) Testing for serial correlation in least squares regression. I Biometrika 37 409-428

Durbin J and Watson G S (1951) Testing for serial correlation in least squares regression. II Biometrika 38 159-178

Durbin J and Watson G S (1971) Testing for serial correlation in least squares regression. III Biometrika 58 1-19

Farebrother R W (1980) Algorithm AS 153. Pan's procedure for the tail probabilities of the DurbinWatson statistic Appl. Statist. 29 224-227
Imhof J P (1961) Computing the distribution of quadratic forms in Normal variables Biometrika 48 419-426

Newbold P (1988) Statistics for Business and Economics Prentice-Hall
Pan Jie-Jian (1964) Distributions of the noncircular serial correlation coefficients Shuxue Jinzhan 7 328-337

5 Arguments

1: N - INTEGER
Input
On entry: n, the number of observations used in calculating the Durbin-Watson statistic.
Constraint: N > IP.

2: IP - INTEGER
Input
On entry: p, the number of independent variables in the regression model, including the mean.
Constraint: IP ≥ 1.
3: $\quad \mathrm{D}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: d, the Durbin-Watson statistic.
Constraint: $\mathrm{D} \geq 0.0$.
4: \quad PDL - REAL (KIND=nag_wp)
Output
On exit: lower bound for the significance of the Durbin-Watson statistic, p_{l}.
5: \quad PDU - REAL (KIND=nag_wp)
Output
On exit: upper bound for the significance of the Durbin-Watson statistic, p_{u}.

6: $\quad \operatorname{WORK}(\mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Workspace
7: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N} \leq \mathrm{IP}$,
or $\quad \mathrm{IP}<1$.

IFAIL $=2$
On entry, $\mathrm{D}<0.0$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit at least 4 decimal places of accuracy are achieved.

8 Parallelism and Performance

G01EPF is not threaded in any implementation.

9 Further Comments

If the exact probabilities are required, then the first $n-p$ eigenvalues of $H A$ can be computed and G01JDF used to compute the required probabilities with C set to 0.0 and D to the Durbin-Watson statistic.

10 Example

The values of n, p and the Durbin-Watson statistic d are input and the bounds for the significance level calculated and printed.

10.1 Program Text

```
    Program g01epfe
GO1EPF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
    Use nag_library, Only: g0lepf, nag_wp
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Real (Kind=nag_wp) :: d, pdl, pdu
    Integer :: ifail, ip, n
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: work(:)
! .. Executable Statements ..
    Write (nout,*) 'GO1EPF Example Program Results '
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
! Read in the problem size
    Read (nin,*) n, ip, d
    Allocate (work(n))
! Calculate the probability
    ifail = 0
    Call g01epf(n,ip,d,pdl,pdu,work,ifail)
! Display results
    Write (nout,99999) ' Durbin-Watson statistic ', d
    Write (nout,*)
    Write (nout,99998) ' Probability for the lower bound = ', pdl
    Write (nout,99998) ' Probability for the upper bound = ', pdu
99999 Format (1X,A,F10.4)
99998 Format (1X,A,F10.4)
    End Program g0lepfe
```


10.2 Program Data

```
G01EPF Example Program Data
    1020.9238
```


10.3 Program Results

```
G01EPF Example Program Results
    Durbin-Watson statistic 0.9238
    Probability for the lower bound = 0.0610
    Probability for the upper bound = 0.0060
```

