NAG Library Routine Document
 G08ACF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G08ACF performs the Median test on two independent samples of possibly unequal size.

2 Specification

```
SUBROUTINE GO8ACF (X, N, N1, W, I1, I2, P, IFAIL)
INTEGER N, N1, I1, I2, IFAIL
REAL (KIND=nag_wp) X(N), W(N), P
```


3 Description

The Median test investigates the difference between the medians of two independent samples of sizes n_{1} and n_{2}, denoted by:

$$
x_{1}, x_{2}, \ldots, x_{n_{1}}
$$

and

$$
x_{n_{1}+1}, x_{n_{1}+2}, \ldots, x_{n}
$$

where $n=n_{1}+n_{2}$.
The hypothesis under test, H_{0}, often called the null hypothesis, is that the medians are the same, and this is to be tested against the alternative hypothesis H_{1} that they are different.

The test proceeds by forming a 2×2 frequency table, giving the number of scores in each sample above and below the median of the pooled sample:

Sample 1 Sample 2 Total

Scores $<$ pooled median	i_{1}	i_{2}	$i_{1}+i_{2}$
Scores \geq pooled median	$n_{1}-i_{1}$	$n_{2}-i_{2}$	$n-\left(i_{1}+i_{2}\right)$
Total	n_{1}	n_{2}	n

Under the null hypothesis, H_{0}, we would expect about half of each group's scores to be above the pooled median and about half below, that is, we would expect i_{1}, to be about $n_{1} / 2$ and i_{2} to be about $n_{2} / 2$.
G08ACF returns:
(a) the frequencies i_{1} and i_{2};
(b) the probability, p, of observing a table at least as 'extreme' as that actually observed, given that H_{0} is true. If $n<40, p$ is computed directly ('Fisher's exact test'); otherwise a χ_{1}^{2} approximation is used (see G01AFF).
H_{0} is rejected by a test of chosen size α if $p<\alpha$.

4 References

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill

5 Arguments

1: $\quad \mathrm{X}(\mathrm{N})-$ REAL (KIND=nag_wp) array
Input
On entry: the first n_{1} elements of X must be set to the data values in the first sample, and the next $n_{2}\left(=\mathrm{N}-n_{1}\right)$ elements to the data values in the second sample.

2: N - INTEGER Input
On entry: the total of the two sample sizes, $n\left(=n_{1}+n_{2}\right)$.
Constraint: $\mathrm{N} \geq 2$.
3: N1 - INTEGER Input
On entry: the size of the first sample n_{1}.
Constraint: $1 \leq \mathrm{N} 1<\mathrm{N}$.
4: $\mathrm{W}(\mathrm{N})$ - REAL (KIND=nag_wp) array Workspace
5: I1 - INTEGER
Output
On exit: the number of scores in the first sample which lie below the pooled median, i_{1}.

6: I2 - INTEGER
Output
On exit: the number of scores in the second sample which lie below the pooled median, i_{2}.
7: $\quad \mathrm{P}-$ REAL (KIND=$=$ nag_wp)
Output
On exit: the tail probability p corresponding to the observed dichotomy of the two samples.

8: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N}<2$.
IFAIL $=2$
On entry, N1<1,
or $\quad \mathrm{N} 1 \geq \mathrm{N}$.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The probability returned should be accurate enough for practical use.

8 Parallelism and Performance

G08ACF is not threaded in any implementation.

9 Further Comments

The time taken by G08ACF is small, and increases with n.

10 Example

This example is taken from page 112 of Siegel (1956). The data relate to scores of 'oral socialisation anxiety' in 39 societies, which can be separated into groups of size 16 and 23 on the basis of their attitudes to illness.

10.1 Program Text

```
    Program g08acfe
    GO8ACF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: g08acf, nag_wp
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Real (Kind=nag_wp) :: p
    Integer :: i1, i2, ifail, n, n1
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: w(:), x(:)
! .. Executable Statements ..
    Write (nout,*) 'GO8ACF Example Program Results'
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
! Read in problem size
    Read (nin,*) n, n1
```

```
    Allocate (x(n),w(n))
! Read in data
    Read (nin,*) x(1:n)
    Display title
    Write (nout,*) 'Median test'
    Write (nout,*)
    Output data
    Write (nout,*) 'Data values'
    Write (nout,*)
    Write (nout,99999) ' Group 1 ', x(1:n1)
    Write (nout,*)
    Write (nout,99999) , Group 2 ', x((n1+1):n)
! Perform median test
    ifail = O
    Call g08acf(x,n,n1,w,i1,i2,p,ifail)
! Display results
    Write (nout,*)
    Write (nout,99998) i1, ' scores below median in group 1'
    Write (nout,99998) i2, ' scores below median in group 2'
    Write (nout,*)
    Write (nout,99997) ' Significance ', p
99999 Format (1X,A,8F4.0,/,(14X,8F4.0))
99998 Format (1X,I6,A)
99997 Format (1X,A,F8.5)
    End Program g08acfe
```


10.2 Program Data

G08ACF Example Program Data

10.3 Program Results

```
G08ACF Example Program Results
Median test
Data values
Group 1 13. 6. 12. 7. 12. 7. 10. 7.
    10. 7. 10. 7. 10. 8. 9. 8.
Group 2 17. 6. 16. 8. 15. 8. 15. 10.
        15. 10. 14. 10. 14. 11. 14. 11.
        13. 12. 13. 12. 13. 12. 12.
    1 3 \text { scores below median in group 1}
    6 \text { scores below median in group 2}
    Significance 0.00088
```

