NAG Library Routine Document
 G08AJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G08AJF calculates the exact tail probability for the Mann-Whitney rank sum test statistic for the case where there are no ties in the two samples pooled together.

2 Specification

```
SUBROUTINE G08AJF (N1, N2, TAIL, U, P, WRK, LWRK, IFAIL)
INTEGER N1, N2, LWRK, IFAIL
REAL (KIND=nag_wp) U, P, WRK(LWRK)
CHARACTER(1) TAIL
```


3 Description

G08AJF computes the exact tail probability for the Mann-Whitney U test statistic (calculated by G08AHF and returned through the argument U) using a method based on an algorithm developed by Harding (1983), and presented by Neumann (1988), for the case where there are no ties in the pooled sample.
The Mann-Whitney U test investigates the difference between two populations defined by the distribution functions $F(x)$ and $G(y)$ respectively. The data consist of two independent samples of size n_{1} and n_{2}, denoted by $x_{1}, x_{2}, \ldots, x_{n_{1}}$ and $y_{1}, y_{2}, \ldots, y_{n_{2}}$, taken from the two populations.

The hypothesis under test, H_{0}, often called the null hypothesis, is that the two distributions are the same, that is $F(x)=G(x)$, and this is to be tested against an alternative hypothesis H_{1} which is

$$
\begin{aligned}
& H_{1}: F(x) \neq G(y) \text {; or } \\
& H_{1}: F(x)<G(y) \text {, i.e., the } x^{\prime} \text { 's tend to be greater than the } y \text { 's; or } \\
& H_{1}: F(x)>G(y), \text { i.e., the } x \text { 's tend to be less than the } y \text { 's, }
\end{aligned}
$$

using a two tailed, upper tailed or lower tailed probability respectively. You select the alternative hypothesis by choosing the appropriate tail probability to be computed (see the description of argument TAIL in Section 5).

Note that when using this test to test for differences in the distributions one is primarily detecting differences in the location of the two distributions. That is to say, if we reject the null hypothesis H_{0} in favour of the alternative hypothesis $H_{1}: F(x)>G(y)$ we have evidence to suggest that the location, of the distribution defined by $F(x)$, is less than the location, of the distribution defined by $G(y)$.

G08AJF returns the exact tail probability, p, corresponding to U, depending on the choice of alternative hypothesis, H_{1}.

The value of p can be used to perform a significance test on the null hypothesis H_{0} against the alternative hypothesis H_{1}. Let α be the size of the significance test (that is, α is the probability of rejecting H_{0} when H_{0} is true). If $p<\alpha$ then the null hypothesis is rejected. Typically α might be 0.05 or 0.01.

4 References

Conover W J (1980) Practical Nonparametric Statistics Wiley
Harding E F (1983) An efficient minimal-storage procedure for calculating the Mann-Whitney U, generalised U and similar distributions Appl. Statist. 33 1-6

Neumann N (1988) Some procedures for calculating the distributions of elementary nonparametric teststatistics Statistical Software Newsletter 14(3) 120-126

Siegel S (1956) Non-parametric Statistics for the Behavioral Sciences McGraw-Hill

5 Arguments

1: N1 - INTEGER
Input
On entry: the number of non-tied pairs, n_{1}.
Constraint: $\mathrm{N} 1 \geq 1$.

2: N2 - INTEGER
Input
On entry: the size of the second sample, n_{2}.
Constraint: $\mathrm{N} 2 \geq 1$.
3: TAIL - CHARACTER(1)
Input
On entry: indicates the choice of tail probability, and hence the alternative hypothesis.
TAIL $=$ ' T^{\prime}
A two tailed probability is calculated and the alternative hypothesis is $H_{1}: F(x) \neq G(y)$.
TAIL = 'U'
An upper tailed probability is calculated and the alternative hypothesis $H_{1}: F(x)<G(y)$, i.e., the x 's tend to be greater than the y 's.

TAIL $=$ 'L'
A lower tailed probability is calculated and the alternative hypothesis $H_{1}: F(x)>G(y)$, i.
e., the x 's tend to be less than the y 's.

Constraint: TAIL = 'T', 'U' or 'L'.

4: $\quad \mathrm{U}$ - REAL (KIND=nag_wp)
Input
On entry: U, the value of the Mann-Whitney rank sum test statistic. This is the statistic returned through the argument U by G08AHF.

Constraint: $\mathrm{U} \geq 0.0$.

5: $\quad \mathrm{P}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp)
Output
On exit: the exact tail probability, p, as specified by the argument TAIL.
6: WRK(LWRK) - REAL (KIND=nag_wp) array Workspace
7: LWRK - INTEGER Input
On entry: the dimension of the array WRK as declared in the (sub)program from which G08AJF is called.
Constraint: LWRK $\geq(\mathrm{N} 1 \times \mathrm{N} 2) / 2+1$.
8: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N} 1<1$,
or $\quad \mathrm{N} 2<1$.
IFAIL $=2$
On entry, TAIL \neq ' T^{\prime}, 'U' or 'L'.
IFAIL $=3$
On entry, $\mathrm{U}<0.0$.
IFAIL $=4$
On entry, LWRK $<(\mathrm{N} 1 \times \mathrm{N} 2) / 2+1$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The exact tail probability, p, is computed to an accuracy of at least 4 significant figures.

8 Parallelism and Performance

G08AJF is not threaded in any implementation.

9 Further Comments

The time taken by G08AJF increases with n_{1} and n_{2} and the product $n_{1} n_{2}$.

10 Example

This example finds the Mann-Whitney test statistic, using G08AHF for two independent samples of size 16 and 23 respectively. This is used to test the null hypothesis that the distributions of the two populations from which the samples were taken are the same against the alternative hypothesis that the distributions are different. The test statistic, the approximate normal statistic and the approximate two
tail probability are printed. G08AJF is then called to obtain the exact two tailed probability. The exact probability is also printed.

10.1 Program Text

```
            Program g08ajfe
    G08AJF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: g08ahf, g08ajf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars .. :: p, pexact, u, unor
    Integer :: ifail, lwrk, lwrk1, lwrk2, n1, n2, &
    Logical :: ties
    Character (1) :: tail
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: ranks(:), wrk(:), x(:), y(:)
    .. Intrinsic Procedures ..
    Intrinsic :: int, max
    .. Executable Statements ..
    Write (nout,*) 'G08AJF Example Program Results'
    Write (nout,*)
! Skip heading in data file
    Read (nin,*)
    Read in problem size
    Read (nin,*) n1, n2, tail
Calculate sizes of various workspaces
    nsum = n1 + n2
    Workspace for G08AHF
    lwrk1 = nsum
! Workspace for G08AJF
    lwrk2 = int(n1*n2/2) + 1
    lwrk = max(lwrk1,lwrk2)
    Allocate (x(n1),y(n2),ranks(nsum),wrk(lwrk))
    Read in data
    Read (nin,*) x(1:n1)
    Read (nin,*) y(1:n2)
    Display title
    Write (nout,*) 'Mann-Whitney U test'
    Write (nout,*)
! Display input data
    Write (nout,99999) 'Sample size of group 1 = ', n1
    Write (nout,99999) 'Sample size of group 2 = ', n2
    Write (nout,*)
    Write (nout,*) 'Data values'
    Write (nout,*)
    Write (nout,99998) ' Group 1 ', x(1:n1)
    Write (nout,*)
    Write (nout,99998) ' Group 2 ', y(1:n2)
    Perform test
    ifail = 0
    Call g08ahf(n1,x,n2,y,tail,u,unor,p,ties,ranks,wrk,ifail)
```

```
! Calculate exact probabilities
    If (.Not. ties) Then
        ifail = 0
        Call g08ajf(n1,n2,tail,u,pexact,wrk,lwrk,ifail)
    End If
! Display results
    Write (nout,*)
    Write (nout,99997) 'Test statistic = ', u
    Write (nout,99997) 'Normal statistic = ', unor
    Write (nout,99997) 'Tail probability = ', p
    Write (nout,*)
    If (.Not. ties) Then
    Write (nout,99997) 'Exact tail probability = ', pexact
Else
    Write (nout,*)
        'There are ties in the pooled sample so GO8AJF was not called.'
    End If
99999 Format (1X,A,I5)
99998 Format (1X,A,8F5.1,2(/,14X,8F5.1))
99997 Format (1X,A,F10.4)
    End Program g08ajfe
```


10.2 Program Data

```
G08AJF Example Program Data
16 'L' :: N1,N2,TAIL
13.0 5.8 11.7 6.5 12.3 6.7 9.2 6.9
10.0 7.3 16.0 7.0 10.5 8.5 9.0 7.5 :: End of X
17.0 6.2 10.1 8.0 15.3 8.2 15.0 9.6
14.9 10.4 14.2 9.8 13.8 11.0 14.0 11.1
12.9 11.6 12.8 12.0 13.1 12.4 11.9 :: End of Y
```


10.3 Program Results

```
G08AJF Example Program Results
Mann-Whitney U test
Sample size of group 1 = 16
Sample size of group 2 = 23
Data values
    Group 1 13.0 5.8 11.7 6.5 12.3 6.7 9.2 6.9
            10.0 7.3 16.0 7.0 10.5 8.5 9.0.0
    Group 2 17.0 6.2 10.1 8.0 15.3 8.2 15.0 9.6
        14.9 10.4 14.2 9.8 13.8 11.0 14.0 11.1
        12.9 11.6 12.8 12.0 13.1 12.4 11.9
Test statistic = 86.0000
Normal statistic = -2.7838
Tail probability = 0.0027
Exact tail probability = 0.0022
```

