
Matrix and Vector Operations Module Contents

Module 4.2: nag mat inv

Matrix Inversion

nag mat inv provides procedures for matrix inversion.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3

Procedures

nag gen mat inv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.5

Computes the inverse of a general real or complex matrix

nag gen mat inv fac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.7

Computes the inverse of a general real or complex matrix, with the matrix previously
factorized using nag gen lin fac

nag sym mat inv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.9

Computes the inverse of a real or complex, symmetric or Hermitian matrix

nag sym mat inv fac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.13

Computes the inverse of a real or complex, symmetric or Hermitian matrix, with the
matrix previously factorized using nag sym lin fac

nag tri mat inv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.17

Computes the inverse of a real or complex triangular matrix

Examples

Example 1: Calculation of the Inverse of a General Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.21

Example 2: Calculation of the Inverse of a General Matrix Previously Factorized . . . . . . . . . 4.2.23

Example 3: Calculation of the Inverse of a Symmetric Positive Definite Matrix . . . . . . . . . . . 4.2.25

Example 4: Calculation of the Inverse of a Hermitian Indefinite Matrix Previously Factorized 4.2.27

Example 5: Calculation of the Inverse of a Triangular Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.29

Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.31

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.33

[NP3506/4] Module 4.2: nag mat inv 4.2.1



Module Contents Matrix and Vector Operations

4.2.2 Module 4.2: nag mat inv [NP3506/4]



Matrix and Vector Operations Module Introduction

Introduction

This module provides procedures to compute the inverse of a matrix.

It is seldom necessary to compute the explicit inverse of a matrix. In particular, do not attempt to
solve Ax = b by first computing A−1 and then forming the matrix vector product x = A−1b. The
procedures provided by nag gen lin sys, nag sym lin sys and nag tri lin sys are more efficient and
more accurate.

1 Choice of procedures

The following procedures are provided:

nag gen mat inv computes the inverse of a general real or complex matrix;

nag gen mat inv fac computes the inverse of a general real or complex matrix, with the matrix
previously factorized using nag gen lin fac;

nag sym mat inv computes the inverse of a real or complex, symmetric or Hermitian matrix;

nag sym mat inv fac computes the inverse of a real or complex, symmetric or Hermitian matrix,
with the matrix previously factorized using nag sym lin fac;

nag tri mat inv computes the inverse of a real or complex triangular matrix.
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Procedure: nag gen mat inv

1 Description

nag gen mat inv is a generic procedure which computes the inverse of a general real or complex matrix
A.

The matrix is assumed to be a general matrix, without any known special properties such as symmetry.

The procedure also has an option to return an estimate of the condition number , κ∞(A).

2 Usage

USE nag mat inv

CALL nag gen mat inv(a [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the order of the matrix A

3.1 Mandatory Argument

a(n, n) — real(kind=wp)/complex(kind=wp), intent(inout)

Input: the general matrix A.

Output: a is overwritten by the inverse A−1.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

rcond — real(kind=wp), intent(out), optional

Output: an estimate of the reciprocal of the condition number of A, κ∞(A). rcond is set to zero
if exact singularity is detected or the estimate underflows. If rcond is less than EPSILON(1.0 wp),
then A is singular to working precision.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Singular matrix.

The matrix A has been factorized, but the factor U has a zero diagonal element, and
so is exactly singular. No inverse is computed.

Warnings (error%level = 1):

error%code Description

101 Approximately singular matrix.

The reciprocal condition number (returned in rcond if present) is less than or equal
to EPSILON(1.0 wp). The matrix is singular to working precision, and it is likely
that the computed inverse has no accuracy at all.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag gen lin fac (see the module nag gen lin sys), which computes the LU
factorization of A as A = PLU . The inverse of A, X, is computed by a call to nag gen mat inv fac,
which first forms U−1 then solves XPL = U−1 for X.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed inverse, X, satisfies

|XA− I| ≤ c(n) ε |X| P |L| |U |,

where c(n) is a modest linear function of n, and ε = EPSILON(1.0 wp).

Note that a similar bound for |AX− I| cannot be guaranteed, although it is almost always satisfied. See
Du Croz and Higham [2].

6.3 Timing

The time taken is roughly proportional to n3. The time taken for complex data is about 4 times as long
as that for real data.
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Procedure: nag gen mat inv fac

1 Description

nag gen mat inv fac is a generic procedure which computes the inverse of a general real or complex
matrix A, assuming that the coefficient matrix has already been factorized by nag gen lin fac (see the
module nag gen lin sys).

The matrix is assumed to be a general matrix, without any known special properties such as symmetry.

2 Usage

USE nag mat inv

CALL nag gen mat inv fac(a, pivot [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the order of the matrix A

3.1 Mandatory Arguments

a(n, n) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the LU factorization of A, as returned by nag gen lin fac.

Output: a is overwritten by the inverse A−1.

pivot(n) — integer, intent(in)

Input: the pivot indices, as returned by nag gen lin fac.

Constraints: i ≤ pivot(i) ≤ n, for i = 1, 2, . . . n.

3.2 Optional Argument

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.
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Failures (error%level = 2):

error%code Description

201 Singular matrix.

In the factorization supplied in a, the factor U has a zero diagonal element, and so is
exactly singular. No inverse is computed.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

To use nag gen mat inv fac to compute the inverse of a matrix X, the user must first call
nag gen lin fac (see the module nag gen lin sys), to compute the LU factorization of A as A = PLU .
nag gen mat inv fac computes the inverse of A, X, by first forming U−1 and then solving XPL = U−1

for X.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed inverse, X, satisfies

|XA− I| ≤ c(n) ε |X| P |L| |U |,

where c(n) is a modest linear function of n, and ε = EPSILON(1.0 wp).
Note that a similar bound for |AX− I| cannot be guaranteed, although it is almost always satisfied. See
Du Croz and Higham [2].

6.3 Timing

The number of real floating-point operations required to compute the inverse is roughly (4/3)n3 if A is
real, and (16/3)n3 if A is complex.
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Procedure: nag sym mat inv

1 Description

nag sym mat inv is a generic procedure which computes the inverse of a matrix A, where the matrix
may be:

real symmetric indefinite,

complex Hermitian indefinite,

complex symmetric,

real symmetric positive definite, or

complex Hermitian positive definite.

Here the term indefinite refers to a matrix that is not known to be positive definite, although it may in
fact be so.

The procedure allows conventional or packed storage for A.

The procedure also has an option to return an estimate of the condition number , κ∞(A).

2 Usage

USE nag mat inv

CALL nag sym mat inv(nag key, uplo, a [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the 12 combinations of the following cases:

Symmetric indefinite / Hermitian indefinite / positive definite matrix

Symmetric indefinite: nag key = nag key sym.

Hermitian indefinite: nag key = nag key herm;
for real matrices this is equivalent to nag key sym.

Positive definite: nag key = nag key pos.

Real / complex data
Real data: a is of type real(kind=wp).

Complex data: a is of type complex(kind=wp).

Conventional / packed storage (see the Chapter Introduction)

Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the order of the matrix A
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3.1 Mandatory Arguments

nag key — a “key” argument, intent(in)

Input: must have one of the following values (which are named constants, each of a different derived
type, defined by the Library, and accessible from this module).

nag key sym: if A is real symmetric indefinite or complex symmetric;

nag key herm: if A is real or complex Hermitian indefinite;

nag key pos: if A is real symmetric positive definite or complex Hermitian positive definite.

For further explanation of “key” arguments, see the Essential Introduction.

Note: for real matrices, nag key herm is equivalent to nag key sym.

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A is supplied.

If uplo = 'u' or 'U', the upper triangle is supplied, and is overwritten by the upper triangular
of A−1;

if uplo = 'l' or 'L', the lower triangle is supplied, and is overwritten by the lower triangular
of A−1.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the matrix A.

Conventional storage (a has shape (n, n))

If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;

if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))

If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;

if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n− j)(j − 1)/2) for i ≥ j.

Output: the supplied triangle of A is overwritten by details of the corresponding triangle of the
inverse A−1; the other elements of a are unchanged.

Constraints: if A is complex Hermitian, its diagonal elements must have zero imaginary parts.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

rcond — real(kind=wp), intent(out), optional

Output: an estimate of the reciprocal of the condition number of A, κ∞(A) (= κ1(A) if A symmetric
or Hermitian). rcond is set to zero if exact singularity is detected or the estimate underflows. If
rcond is less than EPSILON(1.0 wp), then A is singular to working precision.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Singular matrix.

This error can only occur if nag key = nag key sym or nag key herm. The Bunch–
Kaufman factorization has been completed, but the factor D has a zero diagonal block
of order 1, and so is exactly singular. No inverse is computed.

202 Matrix not positive definite.

This error can only occur if nag key = nag key pos. The Cholesky factorization
cannot be completed. Either A is close to singularity, or it has at least one negative
eigenvalue. No inverse is computed.

Warnings (error%level = 1):

error%code Description

101 Approximately singular matrix.

The reciprocal condition number (returned in rcond if present) is less than or equal
to EPSILON(1.0 wp). The matrix is singular to working precision, and it is likely
that the computed inverse has no accuracy at all.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag sym lin fac (see the module nag sym lin sys) to factorize A, and to
estimate the condition number if required. It then calls nag sym mat inv fac to compute the inverse.

If nag key = nag key pos (A is positive definite), then

if uplo = 'u', nag sym lin fac computes the upper triangular factor U , where A = UHU , then
A−1 is computed by first inverting U and then forming (U−1)(U−1)H ;

if uplo = 'l', nag sym lin fac computes the lower triangular factor L, where A = LLH , then
A−1 is computed by first inverting L and then forming (L−1)H(L−1).

Otherwise,

if uplo = 'u', nag sym lin fac computes a permutation matrix P and the upper triangular factor
U , where A = PUDUTPT (or PUDUHPT if A is Hermitian), and A−1 is computed by solving
UTPTXPU = D−1 (or UHPTXPU = D−1 if A is Hermitian);
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if uplo = 'l', nag sym lin fac computes a permutation matrix P and the lower triangular factor
L, where A = PLDLTPT (or PLDLHPT if A is Hermitian), and A−1 is computed by solving
LTPTXPL = D−1 (or LHPTXPL = D−1 if A is Hermitian).

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

If nag key = nag key pos (A is positive definite), then the computed inverse X satisfies

‖XA− I‖2 ≤ c(n) ε κ2(A) and ‖AX − I‖2 ≤ c(n) ε κ2(A),

where c(n) is a modest linear function of n, ε = EPSILON(1.0 wp)and κ2(A)is the condition number of
A defined by

κ2(A) = ‖A‖2 ‖A
−1‖2.

Otherwise, if uplo = 'u', then the computed inverse X satisfies a bound of the form

|DUTPTXPU − I| ≤ c(n) ε (|D| |UT | PT |X| P |U |+ |D| |D−1|)

(or |DUHPTXPU − I| ≤ c(n) ε (|D| |UH | PT |X| P |U |+ |D| |D−1|) if A is Hermitian); where c(n) is
a modest linear function of n, ε = EPSILON(1.0 wp). If uplo = 'l', similar forms hold for the factors
L and D. See Du Croz and Higham [2].

6.3 Timing

The time taken is roughly proportional to n3, and, is roughly half that taken by the procedure
nag gen mat inv which does not take advantage of symmetry. The time taken for complex data is
about 4 times as long as that for real data.

The procedure is somewhat faster, especially on high-performance computers, when nag key is set to
nag key pos (assuming that A is indeed positive definite).
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Procedure: nag sym mat inv fac

1 Description

nag sym mat inv fac is a generic procedure which computes the inverse of a real or complex, symmetric
or Hermitian matrix A, assuming that the matrix has already been factorized by nag sym lin fac (see
the module nag sym lin sys).

The matrix may be:

real symmetric indefinite,

complex Hermitian indefinite,

complex symmetric,

real symmetric positive definite, or

complex Hermitian positive definite.

Here the term indefinite refers to a matrix that is not known to be positive definite, although it may in
fact be so.

The procedure allows conventional or packed storage for A.

2 Usage

USE nag mat inv

CALL nag sym mat inv fac(nag key, uplo, a, pivot [, optional arguments])

or for positive definite matrices only:

CALL nag sym mat inv fac(nag key, uplo, a [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the 16 combinations of the following cases:

Symmetric indefinite / Hermitian indefinite / positive definite matrix

For positive definite matrices, two forms of the interface are provided: the first includes pivot as a
mandatory argument for compatibility with the interface for indefinite matrices; the second omits
pivot since it is not needed for Cholesky factorization.

Symmetric indefinite: nag key = nag key sym.

Hermitian indefinite: nag key = nag key herm; for real matrices this is equivalent to
nag key sym.

positive definite (1): nag key = nag key pos, with pivot as a mandatory argument.

positive definite (2): nag key = nag key pos, with pivot not in the argument list.

Real / complex data
Real data: a is of type real(kind=wp).

Complex data: a is of type complex(kind=wp).

Conventional / packed storage (see the Chapter Introduction)

Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.
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3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the order of the matrix A

3.1 Mandatory Arguments

nag key — a “key” argument, intent(in)

Input: must have one of the following values (which are named constants, each of a different derived
type, defined by the Library, and accessible from this module).

nag key sym: if the matrix A is real symmetric indefinite or complex symmetric;

nag key herm: if the matrix A is real or complex Hermitian indefinite;

nag key pos: if the matrix A is real symmetric positive definite or complex Hermitian positive
definite.

For further explanation of “key” arguments, see the Essential Introduction.

Note: for real matrices, nag key herm is equivalent to nag key sym.

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A was supplied to nag sym lin fac, and
whether the factorization involves an upper triangular matrix U or a lower triangular matrix
L.

If uplo = 'u' or 'U', the upper triangle was supplied, and was overwritten by an upper
triangular factor U ;

if uplo = 'l' or 'L', the lower triangle was supplied, and was overwritten by a lower triangular
factor L.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

Note: the value of uplo must be the same as in the preceding call to nag sym lin fac that returns
values used for the next two arguments a and pivot.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the factorization of A, as returned by nag sym lin fac.

Output: the supplied triangle of a as defined by uplo is overwritten by details of the corresponding
triangle of the inverse A−1; the other elements of a are unchanged.

pivot(n) — integer, intent(in)

Input: the pivot indices, as returned by nag sym lin fac.

Note: if nag key = nag key pos, pivot need not be included in the argument list.

3.2 Optional Argument

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Singular matrix.

This error can only occur if nag key = nag key sym or nag key herm. In the Bunch–
Kaufman factorization supplied in a, the factor D has a zero diagonal block of order
1, and so is exactly singular. No inverse is computed.

202 Matrix not positive definite.

This error can only occur if nag key = nag key pos. The supplied array a does not
contain a valid Cholesky factorization, indicating that the original matrix A was not
positive definite. No inverse is computed.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

If nag key = nag key pos (A is positive definite), then

if uplo = 'u', the upper triangular factor U is supplied, where A = UHU , and A−1 is computed
by first inverting U and then forming (U−1)(U−1)H ;

if uplo = 'l', the lower triangular factor L is supplied, where A = LLH , and A−1 is computed by
first inverting L and then forming (L−1)H(L−1).

Otherwise,

if uplo = 'u', a permutation matrix P and the upper triangular factor U are supplied,
where A = PUDUTPT (or PUDUHPT if A is Hermitian), and A−1 is computed by solving
UTPTXPU = D−1 (or UHPTXPU = D−1 if A is Hermitian);

if uplo = 'l', a permutation matrix P and the lower triangular factor L are supplied, where A =
PLDLTPT (or PLDLHPT if A is Hermitian), and A−1 is computed by solving LTPTXPL = D−1

(or LHPTXPL = D−1 if A is Hermitian).

The algorithms are derived from LAPACK (see Anderson et al. [1]).
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6.2 Accuracy

If nag key = nag key pos (A is positive definite), then the computed inverse X satisfies

‖XA− I‖2 ≤ c(n) ε κ2(A) and ‖AX − I‖2 ≤ c(n) ε κ2(A),

where c(n) is a modest linear function of n, ε = EPSILON(1.0 wp)and κ2(A)is the condition number of
A defined by

κ2(A) = ‖A‖2 ‖A
−1‖2.

Otherwise If uplo = 'u', then the computed inverse X satisfies a bound of the form

|DUTPTXPU − I| ≤ c(n) ε (|D| |UT | PT |X| P |U |+ |D| |D−1|);

(or |DUHPTXPU − I| ≤ c(n) ε (|D| |UH | PT |X| P |U |+ |D| |D−1|) if A is Hermitian); where c(n) is
a modest linear function of n, ε = EPSILON(1.0 wp). If uplo = 'l', similar forms hold for the factors
L and D. See Du Croz and Higham [2].

6.3 Timing

The number of real floating-point operations required to compute the inverse is roughly (2/3)n3 if A is
real, and (8/3)n3 if A is complex.
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Procedure: nag tri mat inv

1 Description

nag tri mat inv is a generic procedure which computes the inverse of a real or complex triangular
matrix A.

The procedure allows conventional or packed storage for A.

The procedure also has an option to return an estimate of the condition number , κ∞(A).

2 Usage

USE nag mat inv

CALL nag tri mat inv(uplo, a [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data

Real data: a is of type real(kind=wp).

Complex data: a is of type complex(kind=wp).

Conventional / packed storage (see the Chapter Introduction)
Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the order of the matrix A

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)

Input: specifies whether A is upper or lower triangular.

If uplo = 'u' or 'U', A is upper triangular;

if uplo = 'l' or 'L', A is lower triangular.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the triangular matrix A.

Conventional storage (a has shape (n, n))

If uplo = 'u', A is upper triangular, and elements below the diagonal need not be set;

if uplo = 'l', A is lower triangular, and elements above the diagonal need not be set.
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Packed storage (a has shape (n(n+ 1)/2))

If uplo = 'u', A is upper triangular, and its upper triangle must be stored, packed by
columns, with aij in a(i+ j(j − 1)/2) for i ≤ j;

if uplo = 'l', A is lower triangular, and its lower triangle must be stored, packed by
columns, with aij in a(i+ (2n− j)(j − 1)/2) for i ≥ j.

If the optional argument unit diag = .true., the diagonal elements of A are assumed to be 1;
they need not be stored, and are not referenced by the procedure.

Output: a is overwritten by the inverse A−1, using the same storage format described above; the
other elements of a are unchanged.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

unit diag — logical, intent(in), optional

Input: specifies whether A has unit diagonal elements.

If unit diag = .false., the diagonal elements of A must be explicitly stored;

if unit diag = .true., A has unit diagonal elements: they need not be stored and are assumed
to be 1.

Default: unit diag = .false..

rcond — real(kind=wp), intent(out), optional

Output: κ∞(A), an estimate of the reciprocal of the condition number of A. rcond is set to zero
if exact singularity is detected or the estimate underflows. If rcond is less than EPSILON(1.0 wp),
then A is singular to working precision.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

Failures (error%level = 2):

error%code Description

201 Singular matrix.

A has a zero diagonal element, and so is exactly singular. No inverse is computed.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 5 of this module document.
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6 Further Comments

6.1 Algorithmic Detail

The algorithm is derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed inverse, X, satisfies

|XA− I| ≤ c(n) ε |X| |A|,

where c(n) is a modest linear function of n, and ε = EPSILON(1.0 wp).
Note that a similar bound for |AX − I| cannot be guaranteed, although it is almost always satisfied.
The computed inverse satisfies the forward error bound

|X −A−1| ≤ c(n) ε |A−1| |A| |X|.

See Du Croz and Higham [2].

6.3 Timing

The number of real floating-point operations required to compute the inverse is roughly (1/3)n3 if A is
real, and (4/3)n3 if A is complex.
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Example 1: Calculation of the Inverse

of a General Matrix

This example program shows how nag gen mat inv is used to calculate the inverse of a general real
matrix. It also shows how nag gen mat inv is used to estimate the condition number by using the
optional argument rcond.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_mat_inv_ex01

! Example Program Text for nag_mat_inv

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_mat_inv, ONLY : nag_gen_mat_inv

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

REAL (wp) :: rcond

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_mat_inv_ex01’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (a(n,n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,n)

CALL nag_gen_mat_inv(a,rcond=rcond)

CALL nag_write_gen_mat(a,format=’F10.4’,title=’Inverse matrix’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,1PE10.2)’) ’Estimated condition number = ’, &

1.0_wp/rcond

DEALLOCATE (a) ! Deallocate storage

END PROGRAM nag_mat_inv_ex01
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2 Program Data

Example Program Data for nag_mat_inv_ex01

4 :Value of n

1.80 2.88 2.05 -0.89

5.25 -2.95 -0.95 -3.80

1.58 -2.69 -2.90 -1.04

-1.11 -0.66 -0.59 0.80 :End of matrix A

3 Program Results

Example Program Results for nag_mat_inv_ex01

Inverse matrix

1.7720 0.5757 0.0843 4.8155

-0.1175 -0.4456 0.4114 -1.7126

0.1799 0.4527 -0.6676 1.4824

2.4944 0.7650 -0.0360 7.6119

Estimated condition number = 1.41E+02

4.2.22 Module 4.2: nag mat inv [NP3506/4]



Matrix and Vector Operations Example 2

Example 2: Calculation of the Inverse of a General Matrix

Previously Factorized

This example program shows how nag gen mat inv fac is used to calculate the inverse of a general
complex matrix, with the matrix previously factorized using nag gen lin fac.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_mat_inv_ex02

! Example Program Text for nag_mat_inv

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_mat_inv, ONLY : nag_gen_mat_inv_fac

USE nag_gen_lin_sys, ONLY : nag_gen_lin_fac

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: pivot(:)

COMPLEX (wp), ALLOCATABLE :: a(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_mat_inv_ex02’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (a(n,n),pivot(n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,n)

CALL nag_gen_lin_fac(a,pivot)

CALL nag_write_gen_mat(a,format=’F7.4’,title=’Factorized matrix’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Pivotal sequence (pivot)’

WRITE (nag_std_out,’(2X,10I4:)’) pivot

WRITE (nag_std_out,*)

CALL nag_gen_mat_inv_fac(a,pivot)

CALL nag_write_gen_mat(a,format=’F7.4’,title= &

’The inverse - using the factorized matrix’)

DEALLOCATE (a,pivot) ! Deallocate storage

END PROGRAM nag_mat_inv_ex02
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2 Program Data

Example Program Data for nag_mat_inv_ex02

4 :Value of n

(-1.34, 2.55) ( 0.28, 3.17) (-6.39,-2.20) ( 0.72,-0.92)

(-0.17,-1.41) ( 3.31,-0.15) (-0.15, 1.34) ( 1.29, 1.38)

(-3.29,-2.39) (-1.91, 4.42) (-0.14,-1.35) ( 1.72, 1.35)

( 2.41, 0.39) (-0.56, 1.47) (-0.83,-0.69) (-1.96, 0.67) :End of matrix A

3 Program Results

Example Program Results for nag_mat_inv_ex02

Factorized matrix

(-3.2900,-2.3900) (-1.9100, 4.4200) (-0.1400,-1.3500) ( 1.7200, 1.3500)

( 0.2376, 0.2560) ( 4.8952,-0.7114) (-0.4623, 1.6966) ( 1.2269, 0.6190)

(-0.1020,-0.7010) (-0.6691, 0.3689) (-5.1414,-1.1300) ( 0.9983, 0.3850)

(-0.5359, 0.2707) (-0.2040, 0.8601) ( 0.0082, 0.1211) ( 0.1482,-0.1252)

Pivotal sequence (pivot)

3 2 3 4

The inverse - using the factorized matrix

( 0.0757,-0.4324) ( 1.6512,-3.1342) ( 1.2663, 0.0418) ( 3.8181, 1.1195)

(-0.1942, 0.0798) (-1.1900,-0.1426) (-0.2401,-0.5889) (-0.0101,-1.4969)

(-0.0957,-0.0491) ( 0.7371,-0.4290) ( 0.3224, 0.0776) ( 0.6887, 0.7891)

( 0.3702,-0.5040) ( 3.7253,-3.1813) ( 1.7014, 0.7267) ( 3.9367, 3.3255)
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Example 3: Calculation of the Inverse of a

Symmetric Positive Definite Matrix

This example program shows how nag sym mat inv is used to calculate the inverse of a real symmetric
positive definite matrix. It also shows how nag sym mat inv is used to estimate the condition number
by using the optional argument rcond.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_mat_inv_ex03

! Example Program Text for nag_mat_inv

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_mat_inv, ONLY : nag_key_pos, nag_sym_mat_inv

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

USE nag_write_mat, ONLY : nag_write_tri_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

REAL (wp) :: rcond

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_mat_inv_ex03’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

READ (nag_std_in,*) uplo

ALLOCATE (a(n,n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) a(i,:i)

END DO

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) a(i,i:)

END DO

END SELECT

CALL nag_sym_mat_inv(nag_key_pos,uplo,a,rcond=rcond)

CALL nag_write_tri_mat(uplo,a,format=’F10.4’,title=’Inverse matrix’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,1PE10.2)’) ’Estimated condition number = ’, &

1.0_wp/rcond
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DEALLOCATE (a) ! Deallocate storage

END PROGRAM nag_mat_inv_ex03

2 Program Data

Example Program Data for nag_mat_inv_ex03

4 : Value of n

’L’ : Value of uplo

4.16

-3.12 5.03

0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 : End of Matrix A

3 Program Results

Example Program Results for nag_mat_inv_ex03

Inverse matrix

0.6995

0.7769 1.4239

0.7508 1.8255 4.0688

-0.9340 -1.8841 -2.9342 3.4978

Estimated condition number = 9.73E+01
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Example 4: Calculation of the Inverse of a Hermitian

Indefinite Matrix Previously Factorized

This example program shows how nag sym mat inv fac is used to calculate the inverse of a complex
Hermitian indefinite matrix, using packed storage, with the matrix previously factorized using
nag sym lin fac.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_mat_inv_ex04

! Example Program Text for nag_mat_inv

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_mat_inv, ONLY : nag_sym_mat_inv_fac

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

USE nag_write_mat, ONLY : nag_write_tri_mat

USE nag_sym_lin_sys, ONLY : nag_key_herm, nag_sym_lin_fac

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, n

CHARACTER (1) :: uplo

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: pivot(:)

COMPLEX (wp), ALLOCATABLE :: a(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_mat_inv_ex04’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

READ (nag_std_in,*) uplo

ALLOCATE (a((n*(n+1))/2),pivot(n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) (a(i+((2*n-j)*(j-1))/2),j=1,i)

END DO

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) (a(i+(j*(j-1))/2),j=i,n)

END DO

END SELECT

CALL nag_sym_lin_fac(nag_key_herm,uplo,a,pivot)

CALL nag_write_tri_mat(uplo,a,format=’F7.4’,title=’Factorized matrix’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Pivotal sequence (pivot)’

WRITE (nag_std_out,’(2X,10I4:)’) pivot
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WRITE (nag_std_out,*)

CALL nag_sym_mat_inv_fac(nag_key_herm,uplo,a,pivot)

CALL nag_write_tri_mat(uplo,a,format=’F7.4’,title= &

’The inverse - using the factorized matrix’)

DEALLOCATE (a,pivot) ! Deallocate storage

END PROGRAM nag_mat_inv_ex04

2 Program Data

Example Program Data for nag_mat_inv_ex04

4 : Value of n

’L’ : Value of uplo

(-1.36, 0.00)

( 1.58,-0.90) (-8.87, 0.00)

( 2.21, 0.21) (-1.84, 0.03) (-4.63, 0.00)

( 3.91,-1.50) (-1.78,-1.18) ( 0.11,-0.11) (-1.84, 0.00) : End of Matrix A

3 Program Results

Example Program Results for nag_mat_inv_ex04

Factorized matrix

(-1.3600, 0.0000)

( 3.9100,-1.5000) (-1.8400, 0.0000)

( 0.3100, 0.0433) ( 0.5637, 0.2850) (-5.4176, 0.0000)

(-0.1518, 0.3743) ( 0.3397, 0.0303) ( 0.2997, 0.1578) (-7.1028, 0.0000)

Pivotal sequence (pivot)

-4 -4 3 4

The inverse - using the factorized matrix

( 0.0826, 0.0000)

(-0.0335, 0.0440) (-0.1408, 0.0000)

( 0.0603,-0.0105) ( 0.0422,-0.0222) (-0.2007, 0.0000)

( 0.2391,-0.0926) ( 0.0304, 0.0203) ( 0.0982,-0.0635) ( 0.0073,-0.0000)
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Example 5: Calculation of the Inverse of a

Triangular Matrix

This example program shows how nag tri mat inv is used to calculate the inverse of a complex triangular
matrix. It also shows how nag tri mat inv is used to estimate the condition number by using the
optional argument rcond.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_mat_inv_ex05

! Example Program Text for nag_mat_inv

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_mat_inv, ONLY : nag_tri_mat_inv

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

USE nag_write_mat, ONLY : nag_write_tri_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, n

REAL (wp) :: rcond

CHARACTER (1) :: uplo

! .. Local Arrays ..

COMPLEX (wp), ALLOCATABLE :: a(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_mat_inv_ex05’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

READ (nag_std_in,*) uplo

ALLOCATE (a(n,n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) (a(i,j),j=1,i)

END DO

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) (a(i,j),j=i,n)

END DO

END SELECT

CALL nag_tri_mat_inv(uplo,a,rcond=rcond)

CALL nag_write_tri_mat(uplo,a,format=’F7.4’,title= &

’Inverse matrix (triangular)’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,1PE10.2)’) ’Estimated condition number = ’, &

1.0_wp/rcond
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DEALLOCATE (a) ! Deallocate storage

END PROGRAM nag_mat_inv_ex05

2 Program Data

Example Program Data for nag_mat_inv_ex05

4 : Value of n

’L’ : Value of uplo

( 4.78, 4.56)

( 2.00,-0.30) (-4.11, 1.25)

( 2.89,-1.34) ( 2.36,-4.25) ( 4.15, 0.80)

(-1.89, 1.15) ( 0.04,-3.69) (-0.02, 0.46) ( 0.33,-0.26) : End of matrix A

3 Program Results

Example Program Results for nag_mat_inv_ex05

Inverse matrix (triangular)

( 0.1095,-0.1045)

( 0.0582,-0.0411) (-0.2227,-0.0677)

( 0.0032, 0.1905) ( 0.1538,-0.2192) ( 0.2323,-0.0448)

( 0.7602, 0.2814) ( 1.6184,-1.4346) ( 0.1289,-0.2250) ( 1.8697, 1.4731)

Estimated condition number = 3.74E+01
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Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag mat inv ex06

Computes the inverse of a complex general matrix.

nag mat inv ex07

Computes the inverse of a real general matrix, previously factorized.

nag mat inv ex08

Computes the inverse of a complex Hermitian positive definite matrix.

nag mat inv ex09

Computes the inverse of a real symmetric positive matrix, using packed storage.

nag mat inv ex10

Computes the inverse of a complex Hermitian positive definite matrix, using packed storage.

nag mat inv ex11

Computes the inverse of a real symmetric indefinite matrix.

nag mat inv ex12

Computes the inverse of a complex Hermitian indefinite matrix.

nag mat inv ex13

Computes the inverse of a complex symmetric indefinite matrix.

nag mat inv ex14

Computes the inverse of a real symmetric indefinite matrix, using packed storage.

nag mat inv ex15

Computes the inverse of a complex Hermitian indefinite matrix, using packed storage.

nag mat inv ex16

Computes the inverse of a complex symmetric indefinite matrix, using packed storage.

nag mat inv ex17

Computes the inverse of a real symmetric positive definite matrix, previously factorized.

nag mat inv ex18

Computes the inverse of a complex Hermitian positive definite matrix, previously factorized.

nag mat inv ex19

Computes the inverse of a real symmetric positive definite matrix, previously factorized, using
packed storage.

nag mat inv ex20

Computes the inverse of a complex Hermitian positive definite matrix, previously factorized, using
packed storage.

nag mat inv ex21

Computes the inverse of a real symmetric indefinite matrix, previously factorized.

nag mat inv ex22

Computes the inverse of a complex Hermitian indefinite matrix, previously factorized.

nag mat inv ex23

Computes the inverse of a complex symmetric indefinite matrix, previously factorized.
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nag mat inv ex24

Computes the inverse of a real symmetric indefinite matrix, previously factorized, using packed
storage.

nag mat inv ex25

Computes the inverse of a complex symmetric indefinite matrix, previously factorized, using packed
storage.

nag mat inv ex26

Computes the inverse of a real triangular matrix.

nag mat inv ex27

Computes the inverse of a real triangular matrix, using packed storage.

nag mat inv ex28

Computes the inverse of a complex triangular matrix, using packed storage.
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