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Standard Symmetric Eigenvalue Problems

nag sym eig provides procedures for solving standard eigenvalue problems

Az = λz

where the matrix A is real symmetric or complex Hermitian. It also provides procedures
for performing various computational sub-tasks involved in solving such problems.
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Introduction

1 Notation

The symmetric eigenvalue problem is to find the eigenvalues, λi, and the corresponding eigenvectors, zi,
of a real symmetric matrix A such that

Azi = λizi for i = 1, . . . , n,

where n is the order of A. The Hermitian eigenvalue problem is defined likewise for complex Hermitian
matrices. For both problems the eigenvalues λi are real.

We can also write:

A = ZΛZT with Z orthogonal, if A is real;

A = ZΛZH with Z unitary, if A is complex,

where Λ is a real diagonal matrix whose diagonal elements are the eigenvalues, and the columns of Z
are the eigenvectors. This is called the spectral factorization of A.

2 Choice of Procedures

The procedures nag sym eig all and nag sym eig sel have been designed to meet most requirements.
They solve the most frequent types of problems in a single call, namely:

All eigenvalues of A (nag sym eig all)

All eigenvalues and eigenvectors of A (nag sym eig all with optional argument)

Selected eigenvalues of A (nag sym eig sel)

Selected eigenvalues and the corresponding eigenvectors of A (nag sym eig sel with optional
argument)

The procedures nag sym eig all and nag sym eig sel call a number of lower-level procedures, each
to perform a distinct computational step. You can accomplish a wider variety of tasks by calling the
lower-level procedures directly, either individually or in various combinations.

The lower-level procedures are the following.

nag sym tridiag reduc reduces the matrix A to a real symmetric tridiagonal matrix T by an
orthogonal similarity transformation so that A is factorized as A = QTQT , where Q is orthogonal
(or A = QTQH with Q unitary, if A is complex).

nag sym tridiag orth (using information returned by nag sym tridiag reduc) either forms the
matrix Q or computes the product of Q and a given matrix C; this is useful in particular when C
is a matrix of eigenvectors of T computed by nag sym tridiag eig vec and QC is the matrix of
the corresponding eigenvectors of A.

nag sym tridiag eig all computes all the eigenvalues, and optionally the eigenvectors, of the
real symmetric tridiagonal matrix T ; or, in other words, computes the spectral factorization of
T as T = SΛST , where S is orthogonal. The eigenvalues of T are the eigenvalues of A, and the
eigenvectors of A are given by Z = QS.

nag sym tridiag eig val computes selected eigenvalues of T by bisection.

nag sym tridiag eig vec computes selected eigenvectors of T , corresponding to given eigenvalues,
by inverse iteration.

The lower-level procedures are intended for use by more experienced users.
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3 Storage of Matrices

The procedures in this module allow a choice of storage schemes for the symmetric or Hermitian matrix
A: conventional storage or packed storage. The choice is determined by the rank of the corresponding
argument a.

3.1 Conventional Storage

a is a rank-2 array, of shape (n,n). Matrix element aij is stored in a(i, j). Only the elements of either the
upper or the lower triangle need be stored, as specified by the argument uplo; the remaining elements
of a need not be set.

This storage scheme is more straightforward and carries less risk of user error than packed storage; on
some machines it may result in more efficient execution. But it requires almost twice as much memory,
although the other triangle of a can sometimes be used to store other data, and if the matrix Z of
eigenvectors is required, it can also be stored in a, overwriting the matrix A.

3.2 Packed Storage

a is a rank-1 array of shape (n(n + 1)/2). The elements of either the upper or the lower triangle of A,
as specified by uplo, are packed by columns into contiguous elements of a.

Packed storage is more economical in use of memory than conventional storage, but if all eigenvectors
are required, a separate rank-2 array z must be supplied to store them. Packed storage may also result
in less efficient execution on some machines.

The details of packed storage are as follows:

• if uplo = 'u' or 'U', aij is stored in a(i+ j(j − 1)/2), for i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i+ (2n− j)(j − 1)/2), for i ≥ j.

For example

uplo Hermitian Matrix Packed storage in array a

'u' or 'U'




a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44


 a11 a12 a22︸ ︷︷ ︸ a13 a23 a33︸ ︷︷ ︸ a14 a24 a34 a44︸ ︷︷ ︸

'l' or 'L'




a11 a21 a31 a41

a21 a22 a32 a42

a31 a32 a33 a43

a41 a42 a43 a44


 a11 a21 a31 a41︸ ︷︷ ︸ a22 a32 a42︸ ︷︷ ︸ a33 a43︸ ︷︷ ︸ a44

Note that for symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. For Hermitian matrices, packing the upper triangle by columns is equivalent to packing the
conjugate of the lower triangle by rows; packing the lower triangle by columns is equivalent to packing
the conjugate of the upper triangle by rows.
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Procedure: nag sym eig all

1 Description

nag sym eig all is a generic procedure which computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric or complex Hermitian matrix A of order n. It allows either conventional
or packed storage for A (see the Module Introduction).

By default, only eigenvalues are computed. If the optional argument z on a is present and set to .true.,
the eigenvectors are computed and overwritten on the original matrix A (this option is only available
if conventional storage is used); otherwise if the optional argument z is present, the eigenvectors are
computed and stored in z.

We write:

Azi = λizi for i = 1, . . . , n,

where λi is an eigenvalue of A, and zi is the corresponding eigenvector. We also write

A = ZΛZT with Z orthogonal, if A is real;

A = ZΛZH with Z unitary, if A is complex;

where Λ is a real diagonal matrix whose diagonal elements are the eigenvalues, and the columns of Z
are the eigenvectors.

Each eigenvector zi is normalized so that ‖zi‖2 = 1, and its component of largest absolute value is (real
and) positive.

2 Usage

USE nag sym eig

CALL nag sym eig all(uplo, a, lambda [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases.

Real / complex data

Real data: a and the optional argument z are of type real(kind=wp).
Complex data: a and the optional argument z are of type complex(kind=wp).

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A
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3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether the upper or lower triangle of A is supplied.

If uplo = 'u' or 'U', the upper triangle is supplied;
if uplo = 'l' or 'L', the lower triangle is supplied.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;
if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))
If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n− j)(j − 1)/2) for i ≥ j.

Output: if z on a is present and set to .true.(conventional storage only), a is overwritten by the
matrix Z of eigenvectors; otherwise (by default), a is overwritten by intermediate results.

lambda(n) — real(kind=wp), intent(out)
Output: the eigenvalues in ascending order.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

z on a — logical, intent(in), optional
Input: specifies whether the matrix Z of eigenvectors is to be overwritten on a.

If z on a = .false., Z is not computed unless z is present;
if z on a = .true., Z is overwritten on a.

Default: z on a = .false..
Constraints: z on a must not be present if packed storage is used (a has rank 1).

z(n, n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the matrix Z of eigenvectors. The ith column z(:, i) holds the eigenvector corresponding
to the eigenvalue lambda(i).
Note: if z on a is present and set to .true., and z is also present, then z is not used and a warning
is raised.
Constraints: z must be of the same type as a.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

(This error is not likely to occur.) The QR algorithm failed to compute all the
eigenvalues in the permitted number of iterations.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

z is present when z on a is .true.; the eigenvectors are returned in a, and z is not
used.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

That example uses the following call statement to compute all the eigenvalues and eigenvectors of A,
storing the eigenvectors in an array z:

CALL nag_sym_eig_all(uplo,a,lambda,z=z)

To overwrite the eigenvectors on a (only possible if conventional storage is used for A), the call statement
should be changed to:

CALL nag_sym_eig_all(uplo,a,lambda,z_on_a=.true.)

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag sym tridiag reduc to reduce A to real symmetric tridiagonal form T ,
forming the transformation matrix Q if eigenvectors are required. It then calls nag sym tridiag eig all
to compute the eigenvalues of T and, if required, the eigenvectors, using the QR algorithm. See the
documents of those procedures for more details, and Chapter 8 of Golub and Van Loan [3] or Parlett [4]
for background.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix A+ E, where

‖E‖2 = O(ε)‖A‖2,

and ε = EPSILON(1.0 wp).
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If λi is an exact eigenvalue, and λ̃i is the corresponding computed value, then

|λ̃i − λi| ≤ c(n)ε‖A‖2,

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector and z̃i the computed eigenvector, then the angle θ(z̃i, zi)
between them is bounded as follows:

θ(z̃i, zi) ≤
c(n)ε‖A‖2

mini�=j |λi − λj |
.

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all the
other eigenvalues.

6.3 Timing

The time taken by the procedure is approximately proportional to n3. Computing both eigenvectors and
eigenvalues is likely to take about 5 times as long as computing eigenvalues alone.
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Procedure: nag sym eig sel

1 Description

nag sym eig sel is a generic procedure which computes selected eigenvalues, and optionally the
corresponding eigenvectors, of a real symmetric or complex Hermitian matrix A of order n. It allows
either conventional or packed storage for A (see the Module Introduction).

We write:

Azi = λizi for i = 1, . . . , n,

where λi is an eigenvalue of A, and zi is the corresponding eigenvector. The eigenvalues are indexed in
ascending order:

λ1 ≤ λ2 ≤ . . . ≤ λn.

Eigenvalues may be selected either by index or by value (but not by a combination of the two). If either
or both of the optional arguments il and iu are present, the procedure computes those eigenvalues λi

whose indices i satisfy

il ≤ i ≤ iu.

If either or both of the optional arguments vl and vu are present, it computes those eigenvalues λ which
satisfy

vl < λ ≤ vu.

By default, only eigenvalues are computed. The eigenvectors corresponding to the selected eigenvalues
are computed only if the optional argument z is present.

The number of selected eigenvalues is denoted by m. The argument lambda and the optional arguments
z and fail are pointer arrays, because, if eigenvalues are selected by value, the number of them in the
specified range may not be known in advance. If eigenvalues are selected by index, m = iu − il +
1. The procedure allocates the required amount of memory to lambda, z and fail; on exit from the
procedure, m = SIZE(lambda).

Each eigenvector zi is normalized so that ‖zi‖2 = 1, and its component of largest absolute value is (real
and) positive.

2 Usage

USE nag sym eig

CALL nag sym eig sel(uplo, a, lambda [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases.

Real / complex data

Real data: a and the optional argument z are of type real(kind=wp).

Complex data: a and the optional argument z are of type complex(kind=wp).

[NP3245/3/pdf] Module 6.1: nag sym eig 6.1.9



nag sym eig sel Eigenvalue and Least-squares Problems

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.
Packed: a is a rank-1 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether the upper or lower triangle of A is supplied.

If uplo = 'u' or 'U', the upper triangle is supplied;
if uplo = 'l' or 'L', the lower triangle is supplied.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;
if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))
If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n− j)(j − 1)/2) for i ≥ j.

Output: a is overwritten by intermediate results.

lambda(:) — real(kind=wp), pointer
Output: the m selected eigenvalues in ascending order.
Note: the procedure creates a target array of shape (m). If there are no eigenvalues in the selected
interval, then m = 0.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

il — integer, intent(in), optional
iu — integer, intent(in), optional

Input: the first and last indices, respectively, of the selected eigenvalues, where the eigenvalues are
indexed in ascending order. An eigenvalue λi is selected if il ≤ i ≤ iu.
Default: il = 1, iu = n.
Constraints: Min(n, 1) ≤ il ≤ iu ≤ n; il and iu must not be present if either vl or vu is present.
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vl — real(kind=wp), intent(in), optional
vu — real(kind=wp), intent(in), optional

Input: the lower and upper bounds, respectively, on the selected eigenvalues. An eigenvalue λ is
selected if vl < λ ≤ vu.
Default: vl = −∞, vu = +∞.
Constraints: vl ≤ vu; vl and vu must not be present if either il or iu is present.

abs tol — real(kind=wp), intent(in), optional
Input: the absolute tolerance for the eigenvalues. An eigenvalue (or cluster) is accepted if it has
been determined to lie in an interval whose width is less than or equal to abs tol. If abs tol ≤ 0,
then the default value is used.
Default: abs tol = ε‖A‖1, where ε = EPSILON(1.0 wp).

z(:, :) — real(kind=wp) / complex(kind=wp), pointer, optional
Output: the m selected eigenvectors. The ith column z(:, i) holds the eigenvector corresponding
to the eigenvalue lambda(i). See also fail.
Note: the procedure creates a target array of shape (n,m). If there are no eigenvalues in the
selected interval, then m = 0.
Constraints: z must be of the same type as a.

fail(:) — integer, pointer, optional
Output: on successful exit, all elements of fail are set to 0. If error code 202 is returned, the leading
elements of fail hold the column indices (in z) of those eigenvectors which failed to converge, and
the remaining elements are set to 0. For example, if fail(1) = 2, the eigenvector in column 2 of
z failed to converge.
Note: the procedure creates a target array of shape (m).

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

The bisection algorithm failed to find all the specified eigenvalues.

202 Failure to converge.

The inverse iteration algorithm failed to converge to one or more eigenvectors in 5
iterations; the most recent iterate is stored in the corresponding column of z. If k
eigenvectors failed to converge, their indices are returned in fail(1 : k) (if present).
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5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

That example uses the following call statement to select eigenvalues by index, with indices from il to
iu:

CALL nag_sym_eig_sel(uplo,a,lambda,il=il,iu=iu,z=z)

To select eigenvalues in the range −1.0 to +1.0, the call statement should be changed to:

CALL nag_sym_eig_sel(uplo,a,lambda,vl=-1.0_wp,vu=+1.0_wp,z=z)

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag sym tridiag reduc to reduce A to real symmetric tridiagonal form T .
It then calls nag sym tridiag eig val to compute the specified eigenvalues of T . If eigenvectors
are required, it calls nag sym tridiag eig vec to compute the corresponding eigenvectors of T , and
then calls nag sym tridiag orth to transform them to eigenvectors of A. See the documents of those
procedures for more details, and Chapter 8 of Golub and Van Loan [3] or Parlett [4] for background.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

If λi is an exact eigenvalue, and λ̃i is the corresponding computed value, then

|λ̃i − λi| ≤ c(n)ε‖A‖2,

where c(n) is a modestly increasing function of n.

Each computed eigenvector zi is the exact eigenvector of a nearby matrix A + Ei, such that ‖Ei‖2 =
O(ε)‖A‖, where ε = EPSILON(1.0 wp). Hence the residual is small:

‖Azi − λizi‖2 = O(ε)‖A‖2.

However, a set of eigenvectors computed by this procedure may not be orthogonal to so high a degree
of accuracy as those computed by nag sym eig all.
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Procedure: nag sym tridiag reduc

1 Description

nag sym tridiag reduc is a generic procedure which reduces a real symmetric or complex Hermitian
matrix A of order n to a real symmetric tridiagonal matrix T by an orthogonal or unitary similarity
transformation. It allows either conventional or packed storage for A (see the Module Introduction).

The transformation is written

A = QTQT with Q orthogonal, if A is real;

A = QTQH with Q unitary, if A is complex.

By default, the transformation matrix Q is represented as the product of n − 1 elementary reflectors
(see the Module Introduction for details); this representation can be passed to the procedure
nag sym tridiag orth to perform further operations with Q.

Optionally the matrix Q can be formed explicitly (this may be required for a subsequent call to
nag sym tridiag eig all). If the optional argument q on a is present and set to .true., Q is
overwritten on the original matrix A (this option is only available if conventional storage is used);
otherwise if the optional argument q is present, Q is stored in q.

2 Usage

USE nag sym eig

CALL nag sym tridiag reduc(uplo, a, d, e [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases.

Real / complex data
Real data: a and the optional arguments q and tau are of type real(kind=wp).
Complex data: a and the optional arguments q and tau are of type complex(kind=wp).

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.
Packed: a is a rank-1 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether the upper or lower triangle of A is supplied.

If uplo = 'u' or 'U', the upper triangle is supplied;
if uplo = 'l' or 'L', the lower triangle is supplied.

Constraints: uplo = 'u', 'U', 'l' or 'L'.
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a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', the upper triangle of A must be stored, and elements below the diagonal
need not be set;
if uplo = 'l', the lower triangle of A must be stored, and elements above the diagonal
need not be set.

Packed storage (a has shape (n(n+ 1)/2))
If uplo = 'u', the upper triangle of A must be stored, packed by columns, with aij in
a(i+ j(j − 1)/2) for i ≤ j;
if uplo = 'l', the lower triangle of A must be stored, packed by columns, with aij in
a(i+ (2n− j)(j − 1)/2) for i ≥ j.

Output: if q on a is present and set to .true.(conventional storage only), a is overwritten by the
transformation matrix Q; otherwise (by default), a is overwritten by details of Q, represented
as a product of elementary reflectors; this form may subsequently be passed (with tau) to
nag sym tridiag orth.

d(n) — real(kind=wp), intent(out)
Output: the diagonal elements of the tridiagonal matrix T .

e(n− 1) — real(kind=wp), intent(out)
Output: the off-diagonal elements of the tridiagonal matrix T .

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

q on a — logical, intent(in), optional
Input: specifies whether the transformation matrix Q is to be overwritten on a.

If q on a = .false., Q is not formed unless q is present;
if q on a = .true., Q is overwritten on a.

Default: q on a = .false..
Constraints: q on a must not be present if packed storage is used (a has rank 1).

q(n, n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the transformation matrix Q.
Note: if q on a is present and set to .true., and q is also present, then q is not used and a warning
is raised.
Constraints: q must be of the same type as a.

tau(n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: further details of the transformation matrix Q; a and tau together may be required for
passing to nag sym tridiag orth.
Constraints: tau must be of the same type as a.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

q is present when q on a is .true.: the matrix Q is returned in a, and q is not used.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 3 and 4 of this module document.

The first example uses the following call statement to overwrite the transformation matrix Q on a (only
possible if conventional storage is used for A):

CALL nag_sym_tridiag_reduc(uplo,a,d,e,q_on_a=.true.)

To store Q in a separate array of shape (n, n), the call statement should be changed to:

CALL nag_sym_tridiag_reduc(uplo,a,d,e,q=q)

If it is not convenient to form Q at the same time as the reduction to tridiagonal form, the call to this
procedure could be replaced by a call to this procedure followed by a call to nag sym tridiag orth; an
array tau of shape (n) is needed to pass extra information about Q from one procedure to the other:

CALL nag_sym_tridiag_reduc(uplo,a,d,e,tau=tau)

. . .

CALL nag_sym_tridiag_orth(uplo,a,tau,q_on_a=.true.)

6 Further Comments

6.1 Algorithmic Detail

The reduction is performed by applying elementary reflectors (Householder matrices), as described in
Golub and Van Loan [3], Section 8.2.

The algorithm is derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix A+ E, where

‖E‖2 = c(n)ε‖A‖2,

c(n) is a modestly increasing function of n, and ε = EPSILON(1.0 wp).

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the eigenvalues and eigenvectors.

The computed matrix Q differs from an exactly orthogonal or unitary matrix by a matrix E such that
‖E‖2 = O(ε).
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6.3 Timing

For real data, the total number of floating-point operations performed is roughly as follows:

to reduce A to tridiagonal form: (4/3)n3

to form the transformation matrix Q: (4/3)n3

For complex data, 4 times as many (real) floating-point operations are performed.
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Procedure: nag sym tridiag orth

1 Description

nag sym tridiag orth is intended for use following a call to nag sym tridiag reduc.

nag sym tridiag reduc reduces a real symmetric or complex Hermitian matrix A of order n to a real
symmetric tridiagonal matrix T by an orthogonal similarity transformation. The transformation is
written

A = QTQT with Q orthogonal, if A is real;

A = QTQH with Q unitary, if A is complex.

The transformation matrix Q is represented as the product of n− 1 elementary reflectors:

Q = H1H2 . . . Hn−1

where

Hi = I − τiviv
H
i ;

the vector vi is stored in the ith column of the upper or lower triangle of a, and the scalar τi is stored
in tau(i).

nag sym tridiag orth is a generic procedure which accepts this representation of a real orthogonal or
complex unitary matrix Q and either:

forms the matrix Q explicitly, or

applies Q to a given real or complex matrix C from the left or right, overwriting C with QC, CQ,
QTC or CQT (QHC or CQH if Q is complex).

This procedure allows either conventional or packed storage for the input representation of Q,
depending on which storage scheme was used for the matrix A on input to the preceding call to
nag sym tridiag reduc.

2 Usage

USE nag sym eig

CALL nag sym tridiag orth(uplo, a, tau [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data

Real data: a, tau, and the optional arguments q and c, are of type real(kind=wp).
Complex data: a, tau, and the optional arguments q and c, are of type

complex(kind=wp).

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.
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3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix Q

mC — the number of rows of the matrix C
nC — the number of columns of the matrix C

If Q is applied from the left, mC = n; if Q is applied from the right, nC = n.

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: must have the same value as in the previous call of nag sym tridiag reduc. It specifies
whether the upper or lower triangle of A was supplied to nag sym tridiag reduc.

If uplo = 'u' or 'U', the upper triangle was supplied;
if uplo = 'l' or 'L', the lower triangle was supplied.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n+ 1)/2) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: details of the representation of Q as returned by nag sym tridiag reduc with q on a =
.false..
Output: if q on a is present and set to .true.(conventional storage only), a is overwritten by the
transformation matrix Q; otherwise (by default), a is unchanged.

tau(n) — real(kind=wp) / complex(kind=wp), intent(in)
Input: further details of the representation of Q as returned by nag sym tridiag reduc.
Constraints: tau must be of the same type as a.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

q on a — logical, intent(in), optional
Input: specifies whether the transformation matrix Q is to be overwritten on a.

If q on a = .true., Q is overwritten on a;
if q on a = .false., Q is returned in q if present, or else is not formed explicitly.

Default: q on a = .false..
Constraints: q on a must not be present if packed storage is used (a has rank 1).

q(n, n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the transformation matrix Q.
Note: if q on a is present and set to .true., and q is also present, then q is not used and a warning
is raised.
Constraints: q must be of the same type as a.
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c(mC , nC) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: the matrix C.
Output: overwritten by QC, QTC, QHC, CQ, CQT or CQH , according to the values of side and
trans.
Constraints: c must be of the same type as a.

side — character(len=1), intent(in), optional
Input: specifies whether Q (or QT or QH) is to be applied to C from the left or right.

If side = 'l' or 'L', from the left;
if side = 'r' or 'R', from the right.

Default: side = 'l'.
Constraints: side = 'l', 'L', 'r' or 'R'; side must not be present unless c is present.

trans — character(len=1), intent(in), optional
Input: specifies whether Q, QT or QH is to be applied to C.

If trans = 'n' or 'N', Q is applied;
if trans = 't' or 'T' (real matrices only), QT is applied;
if trans = 'c' or 'C' (complex matrices only), QH is applied.

Default: trans = 'n'.
Constraints: for real matrices trans = 'n', 'N', 't' or 'T'; for complex matrices trans = 'n',
'N', 'c' or 'C'; trans must not be present unless c is present.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

q is present when q on a is .true.; the matrix Q is returned in a, and q is not used.

102 No computation performed.

q on a is not present or is set to .false., and neither q nor c is present; no
computation has been requested.
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5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The algorithm is derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed matrix Q differs from an exactly orthogonal or unitary matrix by a matrix E such that
‖E‖2 = O(ε).

The computed result of applying Q to C differs from the exact result by a matrix E such that
‖E‖2 = O(ε)‖C‖2.

6.3 Timing

For real data, the total number of floating-point operations performed is roughly as follows:

to form the transformation matrix Q: (4/3)n3

to compute QC or QHC: 2n2nC

to compute CQ or CQH : 2mCn
2

For complex data, 4 times as many (real) floating-point operations are performed.
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Procedure: nag sym tridiag eig all

1 Description

nag sym tridiag eig all computes all the eigenvalues, and, optionally all the eigenvectors, of a real
symmetric tridiagonal matrix T of order n.

We write:

Tsi = λisi for i = 1, . . . , n,

where λi is an eigenvalue of T , and si is the corresponding eigenvector. We also write

T = SΛST ,

where Λ is a real diagonal matrix whose diagonal elements are the eigenvalues, and S is an orthogonal
matrix whose columns are the eigenvectors of T .

By default, only eigenvalues are computed. If the optional argument z is present, then eigenvectors are
also computed and stored in z.

By default, the computed eigenvectors are those of T . However, the procedure can also be used to
compute all the eigenvectors of a real symmetric or complex Hermitian matrix A which has been reduced
to tridiagonal form by nag sym tridiag reduc:

A = QTQT = (QS)Λ(STQT ), if A is real;

A = QTQH = (QS)Λ(STQH), if A is complex;

and so Z = QS is the matrix of eigenvectors of A.

To compute the eigenvectors of A, the optional argument z tridiag must be present and set to
.false., and on entry z must contain the matrix Q returned by nag sym tridiag reduc (or possibly
by nag sym tridiag orth).

Each eigenvector zi is normalized so that ‖zi‖2 = 1, and its component of largest absolute value is (real
and) positive.

A choice of algorithms is provided; see Section 6.1.

2 Usage

USE nag sym eig

CALL nag sym tridiag eig all(nag key, d, e [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for the following cases.

Real / complex data
Real data: nag key = nag key real, and the optional argument z is of type

real(kind=wp).
Complex data: nag key = nag key cmplx, and the optional argument z is of type

complex(kind=wp).

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix T
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3.1 Mandatory Arguments

nag key — a “key” argument, intent(in)
Input: must have one of the following values, which are named constants, each of a different derived
type, defined by the Library, and accessible from this module

nag key real if the matrix Z of eigenvectors (and the original matrix A) is real;
nag key cmplx if the matrix Z of eigenvectors (and the original matrix A) is complex.

If z is not present, either value may be supplied. For further explanation of “key” arguments, see
the Essential Introduction.

d(n) — real(kind=wp), intent(inout)
Input: the diagonal elements of the matrix T .
Output: the eigenvalues of T , arranged in ascending order.

e(n− 1) — real(kind=wp), intent(inout)
Input: the off-diagonal elements of the matrix T .
Output: overwritten by intermediate results.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

z(n, n) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: if z tridiag is .true.(the default), z need not be set on entry; if z tridiag is .false.,
z must contain the transformation matrix Q used by nag sym tridiag reduc to reduce A to
tridiagonal form.
Output: the matrix Z of eigenvectors of the tridiagonal matrix T , if z tridiag is .true., or of the
original matrix A, if z tridiag is .false..
The ith column z(:, i) holds the eigenvector corresponding to the ith eigenvalue in d(i).
Constraints: z must be of type real(kind=wp) if nag key = nag key real, and of type
complex(kind=wp) if nag key = nag key cmplex.

z tridiag — logical, intent(in), optional
Input: specifies whether the eigenvectors of the tridiagonal matrix T or of an original matrix A are
to be computed.

If z tridiag = .true.(the default), the eigenvectors of T are computed, and z need not be
set on entry;
if z tridiag = .false., the eigenvectors of A are computed, and on entry z must contain
the transformation matrix Q.

Default: z tridiag = .true..
Constraints: z tridiag must not be present unless z is present.

method — character(len=1), intent(in), optional
Input: the method to be used (see also Section 6.1).

If method = 'q' or 'Q', the QR algorithm with implicit shift;
if method = 'r' or 'R', a root-free variant of the QR algorithm, suitable for eigenvalues only;
if method = 's' or 'S', the SVD algorithm applied to the Cholesky factor of T , suitable only
for positive-definite matrices.

Note: if the specified algorithm is unsuitable, the default algorithm is used and a warning is raised.
Default: for eigenvalues only, method = 'r'; for eigenvalues and eigenvectors, method = 'q'.
Constraints: method = 'q', 'Q', 'r', 'R', 's' or 'S'.
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

(This error is unlikely to occur.) The bidiagonal SVD algorithm (used if method =
's') failed to compute all the eigenvalues in the permitted number of iterations.

202 Failure to converge.

(This error is unlikely to occur.) The tridiagonal QR algorithm or its root-free
variant (used if method = 'q' or 'r') failed to compute all the eigenvalues in the
permitted number of iterations. The symmetric tridiagonal matrix returned in d and
e is orthogonally similar to T , and gives information about those eigenvalues which
have converged.

Warnings (error%level = 1):

error%code Description

101 The specified algorithm could not be used.

The root-free QR algorithm (specified by method = 'r') could not be used because
eigenvectors were requested; the ordinary QR algorithm was used.

102 The specified algorithm could not be used.

The SVD algorithm (specified by method = 's') could not be used because T was
not positive definite; the QR algorithm or its root-free variant was used according to
whether or not the eigenvectors were required.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

That example uses the following call statement to compute all the eigenvalues and eigenvectors of a
full complex Hermitian matrix A which has been reduced to tridiagonal form by a preceding call to
nag sym tridiag reduc:

CALL nag_sym_tridiag_eig_all(nag_key_cmplx,d,e,z_tridiag=.false.,z=a)
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To compute the eigenvalues and eigenvectors of the real symmetric tridiagonal matrix stored in d and e,
an array z of type real(kind=wp) and shape (n, n) should be declared, and the call statement changed
to:

CALL nag_sym_tridiag_eig_all(nag_key_real,d,e,z=z)

6 Further Comments

6.1 Algorithmic Detail

A choice of algorithms is provided, specified by the optional argument method

method = 'q': the QR algorithm with implicit shift (the default if eigenvectors are required, that
is, if z is present);

method = 'r': a root-free variant of the QR algorithm with explicit shift (the default if only
eigenvalues are required);

method = 's': (assuming T is positive definite) performing a Cholesky factorization of T as
T = LLT and then computing part of the singular value decomposition (SVD) of the bidiagonal
matrix L: L = UΣV T , so that T = UΣ2UT . This algorithm computes the small eigenvalues of T
to high relative accuracy (see Demmel and Kahan [2]), but can only be used when T is positive
definite. If this algorithm is attempted and the Cholesky factorization fails because T is not positive
definite, the procedure uses the default algorithm instead.

All three algorithms switch between QR and QL variants in order to handle graded matrices effectively.
The algorithms are derived from LAPACK (Anderson et al. [1]). See also Chapter 8 of Parlett [4] or
Section 8.2 of Golub and Van Loan [3].

6.2 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix T + E, where

‖E‖2 = O(ε)‖A‖2,

and ε = EPSILON(1.0 wp).

If λi is an exact eigenvalue and λ̃i is the corresponding computed value, then

|λ̃i − λi| ≤ c(n)ε‖T ‖2,

where c(n) is a modestly increasing function of n.

If zi is the corresponding exact eigenvector and z̃i the computed eigenvector, then the angle θ(z̃i, zi)
between them is bounded as follows:

θ(z̃i, zi) ≤
c(n)ε‖A‖2

mini�=j |λi − λj |
.

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalues and all the
other eigenvalues.

If the SVD algorithm is used (method = 's'), stronger results hold good. The eigenvalues and
eigenvectors are all computed to high relative accuracy, so that any small eigenvalues (and the
corresponding eigenvectors) are computed more accurately than by the QR algorithm. However, if
T was obtained by reducing a full positive definite matrix A to tridiagonal form, then rounding errors in
the reduction may preclude the possibility of obtaining high relative accuracy in the small eigenvalues
of A, if its eigenvalues vary widely in magnitude.

The stronger bounds which hold when the SVD algorithm is used are as follows:

|λ̃i − λi| ≤ c(n)εκ2(H)λi,
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where H is the tridiagonal matrix defined by hij = tij/
√
tiitjj , and κ2(H) = ‖H‖2‖H−1‖2 (the 2-norm

condition number of H);

θ(z̃i, zi) ≤
c(n)εκ2(H)
relgapi

,

where relgapi is the relative gap between λi and the other eigenvalues, defined by

relgapi = min
i�=j

|λi − λj |
λi + λj

.

6.3 Timing

The total number of floating-point operations performed by the different algorithms is typically as follows,
but depends on how rapidly the algorithms converge:

Eigenvalues only Real eigenvectors Complex eigenvectors
QR algorithm 24n2 7n3 14n3

root-free QR algorithm 14n2

SVD algorithm 30n2 6n3 12n3

When eigenvalues only are required, the operations are all performed in scalar mode; the additional
operations to compute the eigenvectors can be vectorized and on some machines may be performed
much faster.
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Procedure: nag sym tridiag eig val

1 Description

nag sym tridiag eig val computes selected eigenvalues of a real symmetric tridiagonal matrix T of
order n, using bisection.

Eigenvalues may be selected either by index or by value (but not by a combination of the two). If either
or both of the optional arguments il and iu are present, the procedure computes those eigenvalues λi

whose indices i satisfy

il ≤ i ≤ iu.

If either or both of the optional arguments vl and vu are present, it computes those eigenvalues λ which
satisfy

vl < λ ≤ vu.

The procedure searches for zero or negligible off-diagonal elements of T to see if the matrix splits into
block diagonal form:

T =




T1

T2

. . .
Tns


 .

It performs bisection on each of the blocks Ti, for i = 1, . . . , ns and, if required, can return the block
index of each computed eigenvalue in block, so that a subsequent call to nag sym tridiag eig vec to
compute the corresponding eigenvectors can also take advantage of the block structure.

The number of selected eigenvalues is denoted by m. The argument lambda and the optional argument
block are pointer arrays, because, if eigenvalues are selected by value, the number of them in the
specified range may not be known in advance. If eigenvalues are selected by index, m = iu − il +
1. The procedure allocates the required amount of memory to lambda and block; on exit from the
procedure, m = SIZE(lambda).

The selected eigenvalues are returned in ascending order for the entire matrix, irrespective of the block
structure.

2 Usage

USE nag sym eig

CALL nag sym tridiag eig val(d, e, lambda [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix T
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3.1 Mandatory Arguments

d(n) — real(kind=wp), intent(in)
Input: the diagonal elements of the matrix T .

e(n− 1) — real(kind=wp), intent(in)
Input: the off-diagonal elements of the matrix T .

lambda(:) — real(kind=wp), pointer
Output: the m selected eigenvalues, in ascending order.
Note: the procedure creates a target array of shape (m). If there are no eigenvalues in the selected
interval then m = 0.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

il — integer, intent(in), optional
iu — integer, intent(in), optional

Input: the first and last indices, respectively, of the selected eigenvalues, where the eigenvalues are
indexed in ascending order. An eigenvalue λi is selected if il ≤ i ≤ iu.
Default: il = 1, iu = n.
Constraints: 1 ≤ il≤ iu ≤ n (or if n = 0, il = 1 and iu = 0) ; il and iu must not be present if
either vl or vu is present.

vl — real(kind=wp), intent(in), optional
vu — real(kind=wp), intent(in), optional

Input: the lower and upper bounds, respectively, on the selected eigenvalues. An eigenvalue λ is
selected if vl < λ ≤ vu.
Default: vl = −∞, vu = +∞.
Constraints: vl ≤ vu; vl and vu must not be present if either il or iu is present.

block(:) — integer, pointer, optional
Output: block(i) specifies the index of the block to which the ith eigenvalue lambda(i) belongs.
If error code 201 is returned, block(i) < 0 indicates that the ith eigenvalue, returned in lambda(i),
failed to converge to the required accuracy.
Note: the procedure creates a target array of shape (m).

abs tol — real(kind=wp), intent(in), optional
Input: the absolute tolerance for the eigenvalues. An eigenvalue (or cluster) is accepted if it has
been determined to lie in an interval whose width ≤ abs tol. If abs tol ≤ 0, then the default
value is used.
Default: abs tol = ε‖T ‖1, where ε = EPSILON(1.0 wp).

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

The bisection algorithm has failed to compute some (or all) of the selected eigenvalues
to the desired accuracy; if lambda(i) did not converge, then on exit block(i) < 0.

202 Failure to find all the specified eigenvalues.

Eigenvalues were selected by index and the algorithm has failed to compute some or
all of them; try calling the procedure again with different values of il and iu, or try
using nag sym tridiag eig all to compute all the eigenvalues.

203 Error during the bisection.

No eigenvalues have been computed; the floating point arithmetic on your computer
is not behaving as expected.

These failures are unlikely to occur. If they are causing persistent trouble and you have checked that
the procedure is being called correctly, please contact NAG.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.
That example uses the following call statement to compute the eigenvalues of T in the interval
(vl,vu], and to store information in an integer array block for passing to a subsequent call of
nag sym tridiag eig vec:

CALL nag_sym_tridiag_eig_val(d,e,lambda,vl=vl,vu=vu,block=block)

To compute the 3 largest eigenvalues of T (that is, those with indices n − 2 to n), the call statement
should be changed to:

CALL nag_sym_tridiag_eig_val(d,e,lambda,il=n-2)

6 Further Comments

6.1 Algorithmic Detail

For background on the bisection method, see Chapter 3 of Parlett [4] or Section 8.4.1 of Golub and Van
Loan [3].

The algorithm is derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The eigenvalues of T are computed to high relative accuracy which means that if they vary widely in
magnitude, then any small eigenvalues will be computed more accurately than, for example, with the
standard QR algorithm. However, if T was obtained by reducing a full matrix A to tridiagonal form,
then rounding errors in the reduction may preclude the possibility of obtaining high relative accuracy in
the small eigenvalues of A, if its eigenvalues vary widely in magnitude.
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6.3 Timing

The total number of floating-point operations is O(mn), but depends on how rapidly the algorithm
converges.
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Procedure: nag sym tridiag eig vec

1 Description

nag sym tridiag eig vec computes selected eigenvectors of a real symmetric tridiagonal matrix T ,
corresponding to specified eigenvalues, using inverse iteration.

The relevant eigenvalues of T must be supplied. They may be computed, for example, by the procedure
nag sym tridiag eig val or nag sym tridiag eig all.

nag sym tridiag eig val also returns in the array block the index of the diagonal block to which each
eigenvalue belongs; this also should be passed to this procedure because, if T splits into block diagonal
form, it can reduce the amount of work and improve the orthogonality of the computed eigenvectors.

This procedure is generic, allowing the array z which holds the computed eigenvectors to be of type
real(kind=wp) or complex(kind=wp) (although the values of the eigenvectors are purely real). The
eigenvectors can subsequently be transformed, by calling nag sym tridiag orth, to eigenvectors of a
real symmetric or complex Hermitian matrix A, which has been reduced to tridiagonal form T by
nag sym tridiag reduc.

Each eigenvector zi is normalized so that ‖zi‖2 = 1, and its component of largest absolute value is
positive.

2 Usage

USE nag sym eig

CALL nag sym tridiag eig vec(d, e, lambda, z [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix T

m — the number of selected eigenvalues

3.1 Mandatory Arguments

d(n) — real(kind=wp), intent(in)
Input: the diagonal elements of the matrix T .

e(n− 1) — real(kind=wp), intent(in)
Input: the off-diagonal elements of the matrix T .

lambda(m) — real(kind=wp), intent(in)
Input: the selected eigenvalues.

z(n,m) — real(kind=wp) / complex(kind=wp), intent(out)
Output: the selected eigenvectors. The ith column z(:, i) holds the eigenvector corresponding to
the eigenvalue lambda(i). See also fail.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

block(m) — integer, intent(in), optional
Input: block(i) specifies the index of the block to which the ith eigenvalue lambda(i) belongs, as
returned by nag sym tridiag eig val.
Default: block(i) = 1 for i = 1, 2, . . . ,m; that is, T is treated as a single block.

fail(m) — integer, intent(out), optional
Output: on successful exit, all elements of fail are set to 0. If error code 201 is returned, the leading
elements of fail hold the column indices (in z) of those eigenvectors which failed to converge, and
the remaining elements are set to 0. For example, if fail(1) = 2, the eigenvector in column 2 of
z failed to converge.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

Some eigenvectors have failed to converge in 5 iterations; the most recent iterate is
stored in the corresponding column of z. If k eigenvectors failed to converge, their
indices are returned in fail(1 : k) (if present).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

That example shows a call to this procedure to compute the eigenvectors corresponding to the eigenvalues
stored in the array lambda by a preceding call to the procedure nag sym tridiag eig val. The relevant
statements are:

CALL nag_sym_tridiag_eig_val(d,e,lambda,vl=vl,vu=vu,block=block)

. . .

ALLOCATE (z(n,size(lambda)))

CALL nag_sym_trid_eig_vec(d,e,lambda,z,block=block)

You may wish to compute all the eigenvalues of T by a call to nag sym tridiag eig all, before selecting
those eigenvalues for which you wish to compute the corresponding eigenvectors. If so, you must save a
copy of the arrays d and e, because they are overwritten by nag sym tridiag eig all. Suppose in this
case that you wish to compute the eigenvectors corresponding to the 2 smallest eigenvalues. Then arrays
dd and ee should be declared of type real(kind=wp) and shape (n) and (n − 1) respectively, and the
statements should be changed to:
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dd = d

ee = e

CALL nag_sym_tridiag_eig_all(nag_key_real,dd,ee)

. . .

ALLOCATE (z(n,2))

CALL nag_sym_tridiag_eig_vec(d,e,dd(1:2),z)

6 Further Comments

6.1 Algorithmic Detail

The algorithm is derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

Each computed eigenvector zi is the exact eigenvector of a nearby matrix T + Ei, such that ‖Ei‖2 =
O(ε)‖T ‖2, where ε = EPSILON(1.0 wp). Hence, the residual is small:

‖Tzi − λizi‖2 = O(ε)‖T ‖2.

However, a set of eigenvectors computed by this procedure may not be orthogonal to so high a degree
of accuracy as those computed by nag sym tridiag eig all.

6.3 Timing

The total number of floating-point operations performed is O(mn), but depends on how rapidly the
algorithm converges.
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Example 1: All eigenvalues and eigenvectors
of a real symmetric matrix

Compute all the eigenvalues and eigenvectors of a real symmetric matrix A. This example calls the single
procedure nag sym eig all, using conventional storage for A.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_eig_ex01

! Example Program Text for nag_sym_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_eig, ONLY : nag_sym_eig_all

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), lambda(:), z(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_eig_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) uplo

READ (nag_std_in,*) n

ALLOCATE (a(n,n),lambda(n),z(n,n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

READ (nag_std_in,*) (a(i,:i),i=1,n)

CASE (’U’,’u’)

READ (nag_std_in,*) (a(i,i:),i=1,n)

END SELECT

! Compute the eigenvalues and eigenvectors of A

CALL nag_sym_eig_all(uplo,a,lambda,z=z)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Eigenvalues’

WRITE (nag_std_out,’(2X,6(F9.3:))’) lambda

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’(F9.3)’,title=’Eigenvectors’)

DEALLOCATE (a,lambda,z) ! Deallocate storage

END PROGRAM nag_sym_eig_ex01
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2 Program Data
Example Program Data for nag_sym_eig_ex01

’U’ : Value of uplo

4 : Value of n

2.07 3.87 4.20 -1.15

-0.21 1.87 0.63

1.15 2.06

-1.81 : End of Matrix A (Upper triangle)

3 Program Results
Example Program Results for nag_sym_eig_ex01

Eigenvalues

-5.003 -1.999 0.201 8.001

Eigenvectors

0.566 -0.233 -0.397 0.684

-0.348 0.799 -0.178 0.456

-0.474 -0.409 0.538 0.565

0.578 0.374 0.722 0.068

6.1.36 Module 6.1: nag sym eig [NP3245/3/pdf]



Eigenvalue and Least-squares Problems Example 2

Example 2: Selected eigenvalues and eigenvectors
of a complex Hermitian matrix

Compute selected eigenvalues and the corresponding eigenvectors of a complex Hermitian matrix A. The
eigenvalues are selected by index: eigenvalues with indices from il to iu are computed, the values of il
and iu being read from the data file. This example calls the single procedure nag sym eig sel, using
packed storage for A.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_eig_ex02

! Example Program Text for nag_sym_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_write_mat, ONLY : nag_write_gen_mat

USE nag_sym_eig, ONLY : nag_sym_eig_sel

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, il, iu, j, n

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), POINTER :: lambda(:)

COMPLEX (wp), ALLOCATABLE :: a(:)

COMPLEX (wp), POINTER :: z(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_eig_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) uplo

READ (nag_std_in,*) n

READ (nag_std_in,*) il, iu

ALLOCATE (a(n*(n+1)/2)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) (a(i+(2*n-j)*(j-1)/2),j=1,i)

END DO

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) (a(i+j*(j-1)/2),j=i,n)

END DO

END SELECT

! Compute the eigenvalues and eigenvectors of A

CALL nag_sym_eig_sel(uplo,a,lambda,il=il,iu=iu,z=z)
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WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Selected eigenvalues’

WRITE (nag_std_out,’(12X,5(F6.3:,10X))’) lambda

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’(F6.3)’,title=’Selected eigenvectors’)

DEALLOCATE (a,lambda,z) ! Deallocate storage

NULLIFY (lambda,z)

END PROGRAM nag_sym_eig_ex02

2 Program Data
Example Program Data for nag_sym_eig_ex02

’L’ : Value of uplo

4 : Value of n

1 3 : Values of il, iu

( 2.17, 0.00)

( 0.74,-1.33) (-2.28, 0.00)

(-2.06,-1.17) ( 1.78, 2.03) (-1.12, 0.00)

( 1.28,-1.64) ( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00) : End of Matrix A

3 Program Results
Example Program Results for nag_sym_eig_ex02

Selected eigenvalues

-5.472 -2.591 1.916

Selected eigenvectors

(-0.221,-0.146) (-0.354,-0.274) (-0.293,-0.078)

( 0.739, 0.000) (-0.265,-0.142) ( 0.189,-0.482)

(-0.373,-0.455) (-0.158,-0.348) ( 0.664, 0.000)

(-0.186,-0.051) ( 0.751, 0.000) (-0.051,-0.443)
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Example 3: All eigenvalues and eigenvectors of a
complex Hermitian matrix, using lower-level procedures

Compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A. This example calls
the lower-level procedures nag sym tridiag reduc and nag sym tridiag eig all, using conventional
storage for A. It calls nag sym tridiag reduc to reduce A to tridiagonal form T , and to compute
the unitary transformation matrix Q, overwriting it on A. It then calls nag sym tridiag eig all to
compute the eigenvalues of T , and to overwrite Q with the matrix of eigenvectors of A.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_eig_ex03

! Example Program Text for nag_sym_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_write_mat, ONLY : nag_write_gen_mat

USE nag_sym_eig, ONLY : nag_key_cmplx, nag_sym_tridiag_reduc, &

nag_sym_tridiag_eig_all

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: d(:), e(:)

COMPLEX (wp), ALLOCATABLE :: a(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_eig_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) uplo

READ (nag_std_in,*) n

ALLOCATE (a(n,n),d(n),e(n-1)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

READ (nag_std_in,*) (a(i,:i),i=1,n)

CASE (’U’,’u’)

READ (nag_std_in,*) (a(i,i:),i=1,n)

END SELECT

! Reduce A to real symmetric tridiagonal form

CALL nag_sym_tridiag_reduc(uplo,a,d,e,q_on_a=.TRUE.)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Diagonal of the tridiagonal matrix T’

WRITE (nag_std_out,’(12X,5(F6.3:,10X))’) d

WRITE (nag_std_out,*) ’Super-diagonal of the tridiagonal matrix T’

[NP3245/3/pdf] Module 6.1: nag sym eig 6.1.39



Example 3 Eigenvalue and Least-squares Problems

WRITE (nag_std_out,’(12X,5(F6.3:,10X))’) e

! Compute all the eigenvalues and eigenvectors of A

CALL nag_sym_tridiag_eig_all(nag_key_cmplx,d,e,z_tridiag=.FALSE.,z=a)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Eigenvalues’

WRITE (nag_std_out,’(12X,5(F6.3:,10X))’) d

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a,format=’(F6.3)’,title=’Eigenvectors’)

DEALLOCATE (a,d,e) ! Deallocate storage

END PROGRAM nag_sym_eig_ex03

2 Program Data
Example Program Data for nag_sym_eig_ex03

’U’ : Value of uplo

4 : Value of n

( 2.17, 0.00) ( 0.74, 1.33) (-2.06, 1.17) ( 1.28, 1.64)

(-2.28, 0.00) ( 1.78,-2.03) ( 2.26, 0.10)

(-1.12, 0.00) ( 0.01, 0.43)

(-0.37, 0.00) : End of Matrix A

3 Program Results
Example Program Results for nag_sym_eig_ex03

Diagonal of the tridiagonal matrix T

-1.178 -1.249 1.197 -0.370

Super-diagonal of the tridiagonal matrix T

3.733 -2.162 -3.103

Eigenvalues

-5.472 -2.591 1.916 4.546

Eigenvectors

(-0.221,-0.146) (-0.354,-0.274) (-0.293,-0.078) ( 0.798, 0.000)

( 0.739, 0.000) (-0.265,-0.142) ( 0.189,-0.482) ( 0.061,-0.302)

(-0.373,-0.455) (-0.158,-0.348) ( 0.664, 0.000) (-0.133,-0.223)

(-0.186,-0.051) ( 0.751, 0.000) (-0.051,-0.443) ( 0.210,-0.395)
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Example 4: Selected eigenvalues and eigenvectors of a
real symmetric matrix, using lower-level procedures

Compute selected eigenvalues and the corresponding eigenvectors of a real symmetric matrix A.
Eigenvalues in the interval (vl,vu] are selected, the values of vl and vu being read from the data
file. This example calls the lower-level procedures nag sym tridiag reduc, nag sym tridiag eig val,
nag sym tridiag eig vec and nag sym tridiag orth, using packed storage for A. It first calls
nag sym tridiag reduc to reduce A to tridiagonal form T , then nag sym tridiag eig val to compute
selected eigenvalues of T , nag sym tridiag eig vec to compute the corresponding eigenvectors of T ,
and finally nag sym tridiag orth to transform the eigenvectors of T to eigenvectors of A.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_eig_ex04

! Example Program Text for nag_sym_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_eig, ONLY : nag_sym_tridiag_reduc, nag_sym_tridiag_eig_val, &

nag_sym_tridiag_eig_vec, nag_sym_tridiag_orth

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, SIZE

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, n

REAL (wp) :: vl, vu

CHARACTER (1) :: uplo

! .. Local Arrays ..

INTEGER, POINTER :: block(:)

REAL (wp), ALLOCATABLE :: a(:), d(:), e(:), tau(:), z(:,:)

REAL (wp), POINTER :: lambda(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_eig_ex04’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) uplo

READ (nag_std_in,*) n

READ (nag_std_in,*) vl, vu

ALLOCATE (a(n*(n+1)/2),d(n),e(n-1),tau(n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) (a(i+(2*n-j)*(j-1)/2),j=1,i)

END DO

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) (a(i+j*(j-1)/2),j=i,n)

END DO

END SELECT
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! Reduce A to real symmetric tridiagonal form

CALL nag_sym_tridiag_reduc(uplo,a,d,e,tau=tau)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Diagonal of the tridiagonal matrix T’

WRITE (nag_std_out,’(2X,6(F9.3:))’) d

WRITE (nag_std_out,*) ’Super-diagonal of the tridiagonal matrix T’

WRITE (nag_std_out,’(2X,6(F9.3:))’) e

! Compute the selected eigenvalues of T

CALL nag_sym_tridiag_eig_val(d,e,lambda,vl=vl,vu=vu,block=block)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Selected eigenvalues’

WRITE (nag_std_out,’(2X,6(F9.3:))’) lambda

ALLOCATE (z(n,SIZE(lambda))) ! Allocate storage for the eigenvectors

! Compute the selected eigenvectors of T

CALL nag_sym_tridiag_eig_vec(d,e,lambda,block=block,z=z)

! Transform the eigenvectors of T into eigenvectors of A

CALL nag_sym_tridiag_orth(uplo,a,tau,c=z)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’(F9.3)’,title=’Selected eigenvectors’)

DEALLOCATE (a,d,e,block,lambda,tau,z) ! Deallocate storage

NULLIFY (block,lambda)

END PROGRAM nag_sym_eig_ex04

2 Program Data
Example Program Data for nag_sym_eig_ex04

’L’ : Value of uplo

4 : Value of n

-2.00 10.00 : Values of vl and vu

2.07

3.87 -0.21

4.20 1.87 1.15

-1.15 0.63 2.06 -1.81 : Matrix A (lower triangle)

3 Program Results
Example Program Results for nag_sym_eig_ex04

Diagonal of the tridiagonal matrix T

2.070 1.474 -0.649 -1.695

Super-diagonal of the tridiagonal matrix T

-5.826 2.624 0.916

Selected eigenvalues

-1.999 0.201 8.001
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Selected eigenvectors

-0.233 0.397 -0.684

0.799 0.178 -0.456

-0.409 -0.538 -0.565

0.374 -0.722 -0.068
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Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag sym eig ex05

All eigenvalues and eigenvectors of a complex Hermitian matrix, using nag sym eig all with
conventional storage.

nag sym eig ex06

Selected eigenvalues and eigenvectors of a real symmetric matrix, using nag sym eig sel with
packed storage.

nag sym eig ex07

All eigenvalues and eigenvectors of a real symmetric matrix, using lower-level procedures with
conventional storage.

nag sym eig ex08

Selected eigenvalues and eigenvectors of a complex Hermitian matrix, using lower-level procedures
with packed storage.

nag sym eig ex09

All eigenvalues and eigenvectors of a real symmetric matrix, using nag sym eig all with packed
storage.

nag sym eig ex10

All eigenvalues and eigenvectors of a real symmetric matrix, using lower-level procedures with
packed storage.

nag sym eig ex11

Selected eigenvalues and eigenvectors of a real symmetric matrix, using nag sym eig sel with
conventional storage.

nag sym eig ex12

Selected eigenvalues and eigenvectors of a real symmetric matrix, using lower-level procedures with
conventional storage.

nag sym eig ex13

Selected eigenvalues and eigenvectors of a complex Hermitian matrix, using nag sym eig sel with
conventional storage.

nag sym eig ex14

Selected eigenvalues and eigenvectors of a complex Hermitian matrix, using lower-level procedures
with conventional storage.

nag sym eig ex15

All eigenvalues and eigenvectors of a complex Hermitian matrix, using nag sym eig all with
packed storage.

nag sym eig ex16

All eigenvalues and eigenvectors of a complex Hermitian matrix, using lower-level procedures with
packed storage.
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