
Eigenvalue and Least-squares Problems Module Contents

Module 6.3: nag svd

Singular Value Decomposition (SVD)

nag svd provides a procedure for computing the singular value decomposition (SVD)
of a real or complex matrix. It also provides lower-level procedures for performing two
computational sub-tasks involved in this problem.

Contents

Introduction . 6.3.3

Procedures

nag gen svd . 6.3.5
Singular value decomposition of a general real or complex matrix

nag gen bidiag reduc . 6.3.9
Reduction of a general real or complex matrix to real bidiagonal form

nag bidiag svd . 6.3.13
Singular value decomposition of a real bidiagonal matrix

Examples

Example 1: SVD of a real matrix . 6.3.17

Example 2: SVD of a complex matrix, using lower-level procedures . 6.3.19

Additional Examples . 6.3.23

References . 6.3.24

[NP3245/3/pdf] Module 6.3: nag svd 6.3.1

Module Contents Eigenvalue and Least-squares Problems

6.3.2 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Module Introduction

Introduction

1 Notation and Background

The singular value decomposition (SVD) of an m × n matrix A is given by

A = UΣV T , with U and V orthogonal, if A is real;

A = UΣV H , with U and V unitary, if A is complex.

Here

Σ is an m × n diagonal matrix, whose min(m, n) diagonal elements are the singular values σi of
A; they are real and non-negative, and arranged in descending order:

σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0.

U is a real orthogonal or complex unitary matrix of order m; its leading min(m, n) columns are
the left singular vectors of A.

V is a real orthogonal or complex unitary matrix of order n; its leading min(m, n) columns are the
right singular vectors of A.

The singular values and vectors satisfy Avi = σiui and AHui = σivi, where ui and vi are the ith columns
of U and V respectively.

The largest singular value σ1 is the value of the 2-norm of A:

σ1 = ‖A‖2

and the ratio of the largest to the smallest singular value gives the condition number of A in the 2-norm:

κ2(A) = σ1/σmin(m,n)

= ‖A‖2.‖A−1‖2 if A is square and non-singular
= ‖A‖2.‖A†‖2 where A† denotes the pseudo-inverse of A, and A may be rectangular.

The singular value decomposition is useful for the numerical determination of the rank of a matrix, and
for solving linear least-squares problems, especially when they are rank deficient or nearly so (see the
module nag lin lsq (6.4)).

In exact arithmetic, a matrix A has rank r if it has precisely r non-zero singular values. In numerical
work, because of uncertainties in the data and rounding errors in the computation, the effective rank is
defined to be the number of singular values which are greater than or equal to a specified threshold.

2 Choice of Procedures

The procedure nag gen svd should be suitable for most purposes; it computes the singular values of A,
and, if optional arguments are present, either the left or right singular vectors, or both.

The module also provides lower-level procedures which perform the two computational steps in the
decomposition.

nag gen bidiag reduc reduces the matrix A to a real bidiagonal matrix B by an orthogonal
transformation: A = QBPT , where Q and P are orthogonal (or if A is complex, A = QBPH with
Q and P unitary).

nag bidiag svd computes the SVD of the real bidiagonal matrix B as B = UBΣV T
B . The singular

values of B are the singular values of A, and the SVD of A is given by A = UΣV H , where U = QUB

and V = PVB .

These lower-level procedures are intended for use by more experienced users.

For the use of the SVD to solve linear least-squares problems, see the module nag lin lsq (6.4).

[NP3245/3/pdf] Module 6.3: nag svd 6.3.3

Module Introduction Eigenvalue and Least-squares Problems

6.3.4 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag gen svd

Procedure: nag gen svd

1 Description

nag gen svd is a generic procedure which computes part or all of the singular value decomposition (SVD)
of a real or complex m × n matrix.

By default, only the singular values are computed; optionally, the left or right singular vectors, or both,
may be computed.

We write the singular value decomposition as:

A = UΣV T , with U and V orthogonal, if A is real;

A = UΣV H , with U and V unitary, if A is complex.

See the Module Introduction for further details.

The leading min(m, n) columns of U are the left singular vectors of A; the leading min(m, n) columns
of V are the right singular vectors of A. Note that the procedure returns V H (= V T if real); in other
words, the right singular vectors are stored row-wise (and conjugated if they are complex).

The optional argument overwritemay be used to specify that either the left or the right singular vectors
are to be overwritten on A. Alternatively, optional arguments u and/or vh may be supplied for storing
the singular vectors.

Each pair of singular vectors ui and vi is normalized so that ‖ui‖2 = ‖vi‖2 = 1, but is defined only to
within a factor ±1 if the vector is real, or a complex factor of absolute value 1 if the vector is complex.

The procedure also has an option to pre-multiply by UH (= UT if real) either a vector c or a matrix C;
this facility may be useful if the computed SVD is also being used to solve a linear least-squares problem
(see the module nag lin lsq (6.4)).

2 Usage

USE nag svd

CALL nag gen svd(a, sigma [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of rows of the matrix A

n — the number of columns of the matrix A

nU (min(m, n) ≤ nU ≤ m) — the number of columns to be computed of the matrix U

mV (min(m, n) ≤ mV ≤ n) — the number of rows to be computed of the matrix V H

k — the number of columns of the matrix C

[NP3245/3/pdf] Module 6.3: nag svd 6.3.5

nag gen svd Eigenvalue and Least-squares Problems

3.1 Mandatory Arguments

a(m, n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix A.
Output: the contents of a on exit according to the setting of overwrite.

If overwrite is not present or overwrite = 'n' or 'N', A is overwritten by intermediate
results;
if overwrite = 'u' or 'U', the leading min(m, n) columns of A are overwritten by the left
singular vectors, stored column-wise;
if overwrite = 'v' or 'V', the leading min(m, n) rows of A are overwritten by the right
singular vectors, stored row-wise.

sigma(min(m, n)) — real(kind=wp), intent(out)
Output: the singular values of A in descending order.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

overwrite — character(len=1), intent(in), optional
Input: specifies whether the left or right singular vectors are to be overwritten on A.

If overwrite = 'n' or 'N', no left or right singular vectors are computed unless either u or
vh is present;
if overwrite = 'u' or 'U', the leading min(m, n) columns of A are overwritten by the
corresponding columns of U (the left singular vectors);
if overwrite = 'v' or 'V', the leading min(m, n) rows of A are overwritten by the
corresponding rows of V H (the right singular vectors).

Default: overwrite = 'n'.
Constraints: overwrite = 'n', 'N', 'u', 'U', 'v' or 'V'.

u(m, nU) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the first nU columns of the matrix U . The most likely values of nU are: min(m, n), giving
the first min(m, n) columns of U (the left singular vectors); or m, giving the whole of U .
Note: if overwrite = 'u' and u is also present, then u is not used and a warning is raised.
Constraints: u must be of the same type as a.

vh(mV , n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the first mV rows of the matrix V H (= V T if real). The most likely values of mV are:
min(m, n), giving the first min(m, n) rows of V H (the right singular vectors); or n, giving the whole
of V H .
Note: if overwrite = 'v' and vh is also present, then vh is not used and a warning is raised.
Constraints: vh must be of the same type as a.

c vec(m) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: a vector c.
Output: overwritten by UHc (= UT c if U is real).
Constraints: c vec must be of the same type as a; c vec and c mat must not both be present.

6.3.6 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag gen svd

c mat(m, k) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: a matrix C.
Output: overwritten by UHC (= UT C if U is real).
Constraints: c mat must be of the same type as a; c mat and c vec must not both be present.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

(This error is not likely to occur.) The QR algorithm failed to compute all the singular
values in the permitted number of iterations.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

One of the following conditions has occurred:

u is present when overwrite = 'u': the left singular vectors are returned in a,
and u is not used;
vh is present when overwrite = 'v': the right singular vectors are returned in
a, and vh is not used.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

In that example, the following call statement is used to compute the left and right singular vectors in
arrays u and vh:

CALL nag_gen_svd(a, sigma, u=u, vh=vh)

To compute only the right singular vectors, overwriting them on A, the call statement should be changed
to:

CALL nag_gen_svd(a, sigma, overwrite=’v’)

To overwrite the left singular vectors on A and to store the right singular vectors in a separate array vh,
the call statement should be changed to:

CALL nag_gen_svd(a, sigma, overwrite=’u’, vh=vh)

[NP3245/3/pdf] Module 6.3: nag svd 6.3.7

nag gen svd Eigenvalue and Least-squares Problems

6 Further Comments

6.1 Algorithmic Detail

The procedure performs the following steps (see Sections 5.4.3 and 8.3.2 of Golub and Van Loan [4] for
more details).

1. It calls nag gen bidiag reduc to reduce A to real bidiagonal form B, using an orthogonal or
unitary transformation: A = QBPH . If left singular vectors are required, it forms the matrix Q;
if right singular vectors are required, it forms the matrix PH .

2. It then calls nag bidiag svd, which uses the bidiagonal QR algorithm to compute the singular
values of B, by applying orthogonal transformations, until the off-diagonal elements are negligible:
thus Σ = UT

B BVB. Here UB and VB are the matrices of singular vectors of B. If the singular
vectors of A are required, the transformations are applied also to Q and PH , giving U = QUB and
V T = V T

B PH .

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed Σ, U and V satisfy the relation

A + E = UΣV H

where

‖E‖2 = O(ε)‖A‖2 = O(ε)σ1

and ε = EPSILON(1.0 wp).

6.3.8 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag gen bidiag reduc

Procedure: nag gen bidiag reduc

1 Description

nag gen bidiag reduc is a generic procedure which reduces a general real or complex m × n matrix A
to real bidiagonal form B by an orthogonal or unitary transformation.

The transformation is written:

A = QBPT with Q and P orthogonal, if A is real;

A = QBPH with Q and P unitary, if A is complex.

B is upper bidiagonal if m ≥ n, and lower bidiagonal if m < n.

By default, the transformation matrices Q and P are represented as products of elementary reflectors.
Optionally, the matrices Q and/or PH (= PT if real) can be formed explicitly (they may be required
for a subsequent call to nag bidiag svd, to compute singular vectors).

The procedure also has an option to pre-multiply by QH (= QT if real) either a vector c or a matrix C;
this facility may be needed as a step in solving a linear least-squares problem (see the module nag lin lsq
(6.4)).

2 Usage

USE nag svd

CALL nag gen bidiag reduc(a, d, e [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of rows of the matrix A

n — the number of columns of the matrix A

nQ (min(m, n) ≤ nQ ≤ m) — the number of columns of the matrix Q required
mP (min(m, n) ≤ mP ≤ n) — the number of columns of the matrix PT (PH) required
k — the number of columns of the matrix C

3.1 Mandatory Arguments

a(m, n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the matrix A.
Output: the contents of a on exit according to the setting of overwrite.

If overwrite is not present or overwrite = 'n' or 'N', A is overwritten by details of Q and
P , represented as products of elementary reflectors;
if overwrite = 'q' or 'Q', the leading min(m, n) columns of A are overwritten by the
corresponding columns of Q;
if overwrite = 'p' or 'P', the leading min(m, n) rows of A are overwritten by the
corresponding rows of PH .

[NP3245/3/pdf] Module 6.3: nag svd 6.3.9

nag gen bidiag reduc Eigenvalue and Least-squares Problems

d(min(m, n)) — real(kind=wp), intent(out)
Output: the diagonal elements of the bidiagonal matrix B.

e(min(m, n)− 1) — real(kind=wp), intent(out)
Output: the off-diagonal elements of the bidiagonal matrix B.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

overwrite — character(len=1), intent(in), optional
Input: specifies whether the matrix Q or PH is to be overwritten on A.

If overwrite = 'n' or 'N', the matrices Q and PH are not explicitly formed unless either q
or ph is present;
if overwrite = 'q' or 'Q', the leading min(m, n) columns of A are overwritten by the
corresponding columns of Q;
if overwrite = 'p' or 'P', the leading min(m, n) rows of A are overwritten by the
corresponding rows of PH .

Default: overwrite = 'n'.
Constraints: overwrite = 'n', 'N', 'q', 'Q', 'p' or 'P'.

q(m, nQ) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the first nQ columns of the matrix Q. The most likely values of nQ are min(m, n) or m.
Note: if overwrite = 'q' and q is also present, then q is not used and a warning is raised.
Constraints: q must be of the same type as a.

ph(mP , n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the first mP rows of the matrix PH (= PT if real). The most likely values of mP are
min(m, n) or n.
Note: if overwrite = 'p' and ph is also present, then ph is not used and a warning is raised.
Constraints: ph must be of the same type as a.

c vec(m) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: a vector c.
Output: overwritten by QHc (= QT c if Q is real).
Constraints: c vec must be of the same type as a; c vec and c mat must not both be present.

c mat(m, k) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: a matrix C.
Output: overwritten by QHC (= QT C if Q is real).
Constraints: c mat must be of the same type as a; c mat and c vec must not both be present.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

6.3.10 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag gen bidiag reduc

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

One of the following conditions has occurred:

q is present when overwrite = 'q': the leading min(m, n) columns of Q are
returned in a, and q is not used.
ph is present when overwrite = 'p': the leading min(m, n) rows of PH are
returned in a, and ph is not used.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The reduction is performed by applying elementary reflectors (Householder matrices), as described in
Section 5.4.3 of Golub and Van Loan [4].

The algorithm is derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed matrices B, Q and PH satisfy QBPH = A + E, where

‖E‖2 = c(n)ε‖A‖2,

c(n) is a modestly increasing function of n, and ε = EPSILON(1.0 wp).

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the
computation, but this does not affect the stability of the singular values and vectors.

6.3 Timing

For real data, the total number of floating-point operations performed is roughly as follows.

m � n m = n m 	 n

To reduce A to bidiagonal form: 4mn2 (8/3)n3 4m2n
To form the first n columns of Q: 2mn2 (4/3)n3 (4/3)m3

To form the whole of Q: 4m2n (4/3)n3 (4/3)m3

To form the first m rows of PH : (4/3)n3 (4/3)n3 2m2n

To form the whole of PH : (4/3)n3 (8/3)n3 4mn2

To form QHC: 4mnk 2n2k 2m2k

For complex data, 4 times as many (real) floating-point operations are performed.

[NP3245/3/pdf] Module 6.3: nag svd 6.3.11

nag gen bidiag reduc Eigenvalue and Least-squares Problems

6.3.12 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag bidiag svd

Procedure: nag bidiag svd

1 Description

nag bidiag svd computes part or all of the singular value decomposition (SVD) of a real upper or lower
bidiagonal matrix B of order n:

B = UBΣV T
B .

By default, only the singular values are computed. Optionally, the left or right singular vectors, or both,
may be computed; for this, the optional arguments u and/or vh must be supplied and must be initialized
to the unit matrix.

The procedure can also be used to compute the singular vectors of a real or complex mA ×nA matrix A
which has been reduced to real bidiagonal form B by nag gen bidiag reduc:

A = QBPT = (QUB)Σ(V T
B PT), if A is real;

A = QBPH = (QUB)Σ(V T
B PH), if A is complex.

In this case, n = min(mA, nA).

To compute the singular vectors of A, the matrices Q and PH must be formed explicitly by
nag gen bidiag reduc, and supplied to this procedure in the optional arguments u and vh. They
are then overwritten by U = QUB and V H = V T

B PH ; the columns of U are the left singular vectors of
A, and the rows of V H are the right singular vectors of A.

Each pair of singular vectors ui and vi is normalized so that ‖ui‖2 = ‖vi‖2 = 1, but is defined only to
within a factor ±1 if the vector is real, or a complex factor of absolute value 1 if the vector is complex.

The procedure also has an option to pre-multiply by UT
B either a vector c or a matrix C; this facility

is needed if the procedure is used as a step in solving a linear least-squares problem (see the module
nag lin lsq (6.4)).

2 Usage

USE nag svd

CALL nag bidiag svd(nag key, uplo, d, e [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for the following cases.

Real / complex data
Real data: nag key = nag key real, and the optional arguments u, vh, c vec and

c mat are of type real(kind=wp).
Complex data: nag key = nag key cmplx, and the optional arguments u, vh, c vec and

c mat are of type complex(kind=wp).

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix B

mA ≥ n — the number of rows in the matrix of left singular vectors
nA ≥ n — the number of columns in the matrix of right singular vectors
k — the number of columns in the matrix C

[NP3245/3/pdf] Module 6.3: nag svd 6.3.13

nag bidiag svd Eigenvalue and Least-squares Problems

3.1 Mandatory Arguments

nag key — a “key” argument, intent(in)
Input: must have one of the following values, which are named constants, each of a different derived
type, defined by the Library, and accessible from this module:

nag key real if the arguments u, vh, c vec and c mat are of type real(kind=wp);
nag key cmplx if the arguments u, vh, c vec and c mat are of type complex(kind=wp).

If no optional array arguments are present, either value may be supplied. For further explanation
of “key” arguments, see the Essential Introduction.

uplo — character(len=1), intent(in)
Input: specifies whether the matrix B is upper or lower bidiagonal.

If uplo = 'u' or 'U', B is upper bidiagonal;
if uplo = 'l' or 'L', B is lower bidiagonal.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

d(n) — real(kind=wp), intent(inout)
Input: the diagonal elements of B.
Output: overwritten by the singular values in descending order.

e(n − 1) — real(kind=wp), intent(inout)
Input: the off-diagonal elements of B.
Output: overwritten by intermediate results.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

u(mA, n) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: if the left singular vectors of the bidiagonal matrix B are desired, then mA = n and u must
be set to the unit matrix of order n.
If the left singular vectors of the general matrix A are desired, then mA is the number of rows of A
and u must contain the mA × n matrix Q which was determined by nag gen bidiag reduc when
reducing A to bidiagonal form.
Output: the matrix in u is postmultiplied by the matrix UB to give the desired left singular vectors.
Constraints: u must be of type real(kind=wp) if nag key = nag key real, and of type
complex(kind=wp) if nag key = nag key cmplex.

vh(n, nA) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: if the right singular vectors of the bidiagonal matrix B are desired, then nA = n and vh
must be set to the unit matrix of order n.
If the right singular vectors of the general matrix A are desired, then nA is the number of columns
of A and vh must contain the n× nA matrix PH which was determined by nag gen bidiag reduc
when reducing A to bidiagonal form.
Output: the matrix in vh is pre-multiplied by the matrix V T

B to give the desired right singular
vectors.
Constraints: vh must be of type real(kind=wp) if nag key = nag key real, and of type
complex(kind=wp) if nag key = nag key cmplex.

6.3.14 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag bidiag svd

c vec(mA) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: a vector c.
Output: c is overwritten by UT

B c.
Constraints: c vec must be of type real(kind=wp) if nag key = nag key real, and of type
complex(kind=wp) if nag key = nag key cmplex; c vec and c mat must not both be present.

c mat(mA, k) — real(kind=wp) / complex(kind=wp), intent(inout), optional
Input: a matrix C.
Output: C is overwritten by UT

BC.
Constraints: c mat must be of type real(kind=wp) if nag key = nag key real, and of type
complex(kind=wp) if nag key = nag key cmplex; c mat and c vec must not both be present.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

(This error is not likely to occur.) The QR algorithm has failed to compute all
the singular values in the permitted number of iterations; some of the off-diagonal
elements of B have not become negligible. The bidiagonal matrix returned in d and
e is orthogonally equivalent to B, and gives information about those singular values
which have converged.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

In that example, in which the arrays a and vh are complex, the following call statement is used:

CALL nag_bidiag_svd(nag_key_cmplx,uplo,d,e,u=a,v=vh)

If the arrays a and vh are real, the call statement must be changed to:

CALL nag_bidiag_svd(nag_key_real,uplo,d,e,u=a,v=vh)

[NP3245/3/pdf] Module 6.3: nag svd 6.3.15

nag bidiag svd Eigenvalue and Least-squares Problems

6 Further Comments

6.1 Algorithmic Detail

The procedure uses two different algorithms. If any singular vectors are required (that is, if u, vh, c vec
or c mat is present), the procedure uses the bidiagonal QR algorithm, switching between zero-shift and
implicitly shifted forms to preserve the accuracy of small singular values, and switching between QR and
QL variants in order to handle graded matrices effectively (see Demmel and Kahan [2]). Otherwise, if
only singular values are required, they are computed by the differential qd algorithm (see Fernando and
Parlett [3]), which is faster and can achieve even greater accuracy.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

Each singular value and vector is computed to high relative accuracy. However, the reduction to
bidiagonal form (prior to calling this procedure) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If σi is an exact singular value of B and σ̃i is the corresponding computed value, then

|σ̃i − σi| ≤ c(n)εσi,

where c(n) is a modestly increasing function of n, and ε = EPSILON(1.0 wp).

If ui is the corresponding exact left singular vector of B and ũi is the corresponding computed vector,
then the angle θ(ũi, ui) between them is bounded thus:

θ(ũi, ui) ≤
c(n)ε
relgapi

where relgapi is the relative gap between σi and any other singular value, defined by

relgapi = min
i�=j

|σi − σj |
σi + σj

.

A similar bound holds for the right singular vectors.

6.3 Timing

The total number of floating-point operations performed is typically about 30n2 if only the singular
values are computed, but depends on how rapidly the algorithm converges.

For real data, an additional 6n2mA operations are performed if u is present, and an additional 6n2nA if
vh is present; these operations counts must be doubled if the data are complex.

When singular values only are required, the operations are all performed in scalar mode; the additional
operations required to compute the singular vectors can be vectorized and on some machines may be
performed much faster.

6.3.16 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Example 1

Example 1: SVD of a real matrix
Compute the singular values and left and right singular vectors of a real matrix A. This example calls
the single procedure nag gen svd.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_svd_ex01

! Example Program Text for nag_svd

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_svd, ONLY : nag_gen_svd

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, MIN

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n, ns

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), sigma(:), u(:,:), vh(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_svd_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ns = MIN(m,n)

ALLOCATE (a(m,n),sigma(ns),u(m,ns),vh(ns,n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,m)

! Compute the SVD

CALL nag_gen_svd(a,sigma,u=u,vh=vh)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Singular values’

WRITE (nag_std_out,’(4X,5(F7.4:,1X))’) sigma

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(u,int_col_labels=.TRUE., &

row_labels=(/(’ ’,i=1,m)/),title= &

’Left singular vectors (one vector per column)’)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(vh,int_row_labels=.TRUE., &

title=’Right singular vectors (one vector per row)’)

DEALLOCATE (a,sigma,u,vh) ! Deallocate storage

END PROGRAM nag_svd_ex01

[NP3245/3/pdf] Module 6.3: nag svd 6.3.17

Example 1 Eigenvalue and Least-squares Problems

2 Program Data
Example Program Data for nag_svd_ex01

6 5 : Values of m and n

-0.09 0.14 -0.46 0.68 1.29

-1.56 0.20 0.29 1.09 0.51

-1.48 -0.43 0.89 -0.71 -0.96

-1.09 0.84 0.77 2.11 -1.27

0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 : End of Matrix A

3 Program Results
Example Program Results for nag_svd_ex01

Singular values

3.9997 2.9962 2.0001 0.9988 0.0025

Left singular vectors (one vector per column)

1 2 3 4 5

0.0468 -0.5061 0.0627 -0.1233 -0.8302

-0.3914 -0.3776 0.2058 0.3269 0.3227

-0.3220 0.4146 0.5273 0.5287 -0.3543

-0.6397 -0.0734 -0.6933 0.1872 -0.1228

0.2558 -0.6094 0.1009 0.4601 0.2050

-0.5161 -0.2293 0.4299 -0.5930 0.1549

Right singular vectors (one vector per row)

1 0.6554 0.0104 -0.4376 -0.5300 0.3130

2 0.1391 -0.1857 0.2942 -0.5255 -0.7638

3 -0.5134 -0.5066 0.1540 -0.5115 0.4409

4 -0.5064 0.6588 -0.3827 -0.3792 -0.1389

5 -0.1765 -0.5241 -0.7428 0.1934 -0.3239

6.3.18 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Example 2

Example 2: SVD of a complex matrix,
using lower-level procedures

Compute the singular values and left and right singular vectors of a complex matrix A. This example calls
the lower-level procedures nag gen bidiag reduc and nag bidiag svd. It calls nag gen bidiag reduc
to reduce A to real bidiagonal form, and to compute the unitary transformation matrices Q and PH .
It then calls nag bidiag svd to compute the singular values of B, and to overwrite the matrices Q and
PH with the matrices of left and right singular vectors of A.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_svd_ex02

! Example Program Text for nag_svd

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_svd, ONLY : nag_key_cmplx, nag_gen_bidiag_reduc, nag_bidiag_svd

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, MAX, MIN

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n, ns

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: d(:), e(:)

COMPLEX (wp), ALLOCATABLE :: a(:,:), vh(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_svd_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ns = MIN(m,n)

IF (m>=n) THEN

uplo = ’U’

ELSE

uplo = ’L’

END IF

ALLOCATE (a(m,n),d(ns),e(MAX(0,ns-1)),vh(ns,n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,m)

! Reduction to bidiagonal form

CALL nag_gen_bidiag_reduc(a,d,e,overwrite=’Q’,ph=vh)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Results of the reduction to bidiagonal form’

WRITE (nag_std_out,*) ’Diagonal’

WRITE (nag_std_out,’(14X,4(F7.4:,11X))’) d

[NP3245/3/pdf] Module 6.3: nag svd 6.3.19

Example 2 Eigenvalue and Least-squares Problems

IF (ns>1) THEN

SELECT CASE (uplo)

CASE (’U’,’u’)

WRITE (nag_std_out,*) ’First super-diagonal’

CASE (’L’,’l’)

WRITE (nag_std_out,*) ’First sub-diagonal’

END SELECT

WRITE (nag_std_out,’(14X,4(F7.4:,11X))’) e

END IF

! Compute the SVD

CALL nag_bidiag_svd(nag_key_cmplx,uplo,d,e,u=a,vh=vh)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Singular Value Decomposition’

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Singular values’

WRITE (nag_std_out,’(14X,4(F7.4:,11X))’) d

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a,int_col_labels=.TRUE., &

row_labels=(/(’ ’,i=1,m)/),format=’(F7.4)’,title= &

’Left singular vectors (one vector per column)’)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(vh,int_row_labels=.TRUE.,format=’(F7.4)’, &

title=’Right singular vectors (one vector per row)’)

DEALLOCATE (a,d,e,vh) ! Deallocate storage

END PROGRAM nag_svd_ex02

2 Program Data
Example Program Data for nag_svd_ex02

5 4 : Values of m, n

(0.47,-0.34) (-0.40, 0.54) (0.60, 0.01) (0.80,-1.02)

(-0.32,-0.23) (-0.05, 0.20) (-0.26,-0.44) (-0.43, 0.17)

(0.35,-0.60) (-0.52,-0.34) (0.87,-0.11) (-0.34,-0.09)

(0.89, 0.71) (-0.45,-0.45) (-0.02,-0.57) (1.14,-0.78)

(-0.19, 0.06) (0.11,-0.85) (1.44, 0.80) (0.07, 1.14) : End of Matrix A

6.3.20 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Example 2

3 Program Results
Example Program Results for nag_svd_ex02

Results of the reduction to bidiagonal form

Diagonal

-1.5199 -1.4211 0.9249 0.0192

First super-diagonal

-1.9194 1.9985 -1.0610

Singular Value Decomposition

Singular values

2.9979 1.9983 1.0044 0.0064

Left singular vectors (one vector per column)

1 2 3 4

(-0.4388,-0.0009) (0.2766,-0.2091) (0.7189, 0.3089) (-0.1991,-0.0538)

(0.0523, 0.1531) (-0.3131,-0.0540) (-0.1777, 0.0488) (-0.7147,-0.0842)

(-0.0928,-0.0554) (0.1119,-0.6069) (-0.3662, 0.0072) (0.2567,-0.1220)

(-0.5431,-0.2297) (0.2200, 0.3164) (-0.2818,-0.3674) (-0.3668,-0.1447)

(0.3633,-0.5384) (0.1710,-0.4692) (0.0290,-0.0668) (-0.4068, 0.1945)

Right singular vectors (one vector per row)

1 (-0.3352, 0.0000) (0.3721,-0.1084) (-0.0616, 0.4811) (-0.4465, 0.5503)

2 (0.5389, 0.0000) (0.0529,-0.2020) (0.0597, 0.7312) (0.0289,-0.3564)

3 (-0.3736, 0.0000) (0.4361, 0.5487) (0.3416, 0.2185) (0.3581,-0.2766)

4 (-0.6765, 0.0000) (-0.3830,-0.4102) (-0.1106, 0.2234) (0.0465,-0.4038)

[NP3245/3/pdf] Module 6.3: nag svd 6.3.21

Example 2 Eigenvalue and Least-squares Problems

6.3.22 Module 6.3: nag svd [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Additional Examples

Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag svd ex03

SVD of a real matrix, using lower-level procedures.

nag svd ex04

SVD of a complex matrix, using nag gen svd.

[NP3245/3/pdf] Module 6.3: nag svd 6.3.23

References Eigenvalue and Least-squares Problems

References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Ostrouchov S and Sorensen D (1995) LAPACK Users’ Guide (2nd Edition) SIAM,
Philadelphia

[2] Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci.
Statist. Comput. 11 873–912

[3] Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms
Numer. Math. 67 191–229

[4] Golub G H and Van Loan C F (1989) Matrix Computations Johns Hopkins University Press (2nd
Edition)

6.3.24 Module 6.3: nag svd [NP3245/3/pdf]

