Module 6.4: nag_lin_lsq Linear Least-squares Problems

nag_lin_lsq provides procedures for solving linear least-squares problems, using either the singular value decomposition (SVD) or the $Q R$ factorization, or a combination of the two.
It also provides procedures for performing the $Q R$ factorization and related computational tasks.

Contents

Introduction 6.4.3
Procedures
nag_lin_lsq_sol 6.4.7
Solves a real or complex linear least-squares problem
nag_lin_lsq_sol_svd6.4.11Solves a real or complex linear least-squares problem, assuming that a singular valuedecomposition of the coefficient matrix has already been computed
nag_qr_fac 6.4.15
$Q R$ factorization of a general real or complex matrix
nag_qr_orth 6.4.19Form or apply the matrix Q determined by nag_qr_fac
nag_lin_lsq_sol_qr 6.4.23Solves a real or complex linear least-squares problem, assuming that the $Q R$factorization of the coefficient matrix has already been computed
nag_lin_lsq_sol_qr_svd 6.4.27
Solves a real or complex linear least-squares problem using the SVD, assuming that the $Q R$ factorization of the coefficient matrix has already been computed
Examples
Example 1: Solution of a Real Linear Least-squares Problem Using the SVD 6.4.31
Example 2: Solution of a Real Linear Least-squares Problem Using the $Q R$ Factorization 6.4.35
Example 3: Solution of a Real Linear Least-squares Problem Using the $Q R$ Factorization Followed by the SVD 6.4.39
Additional Examples 6.4.41
References 6.4.42

Introduction

1 Notation and Background

The linear least-squares problem is to find x so as to

$$
\begin{equation*}
\operatorname{minimize} \quad\|b-A x\|_{2} \tag{1}
\end{equation*}
$$

where A is an $m \times n$ matrix, b is an m-element right-hand side vector, and x is an n-element solution vector.

Usually, $m \geq n$ and $\operatorname{rank}(A)=n$ (that is, A has full rank), and in this case the solution x is unique; the problem is also referred to as finding the least-squares solution to an over-determined system of linear equations.

If $m<n$ and $\operatorname{rank}(A)=m$ (again, A has full rank), there are an infinite number of solutions x which exactly satisfy $b-A x=0$. We can restore uniqueness by imposing the additional requirement of minimizing $\|x\|_{2}$. This problem is also referred to as finding the minimum norm solution to an underdetermined system of linear equations.

In general, if $\operatorname{rank}(A)<\min (m, n)$ (that is, A is rank-deficient), there is a unique minimum norm solution which minimizes both $\|b-A x\|_{2}$ and $\|x\|_{2}$.

The minimum norm solution is not always the preferred solution to a rank-deficient problem or when $m<n$. An alternative solution, which is sometimes preferable, is a solution with at most $\operatorname{rank}(A)$ non-zero components; this is known as a basic solution. A basic solution is not necessarily unique.

The theoretical remarks in this section assume that the rank of A is well defined. The next section discusses how to determine the rank in practical numerical work.

2 The SVD and the Numerical Rank of a Matrix

The most robust method for solving linear least-squares problems, allowing for the possibility that they may be rank-deficient, is the Singular Value Decomposition (SVD).
The SVD of an $m \times n$ real or complex matrix A is given by

$$
A=U \Sigma V^{H} \quad\left(\text { with } V^{H}=V^{T} \text { if } A \text { is real }\right) .
$$

Here
Σ is an $m \times n$ diagonal matrix, whose $\min (m, n)$ diagonal elements are the singular values σ_{i} of A; they are real and non-negative, and arranged in descending order:

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{\min (m, n)} \geq 0
$$

U is a real orthogonal or complex unitary matrix of order m; its leading $\min (m, n)$ columns are the left singular vectors of A.
V is a real orthogonal or complex unitary matrix of order n; its leading $\min (m, n)$ columns are the right singular vectors of A.

The largest singular value $\sigma_{1}(A)$ is the value of the 2 -norm of A :

$$
\|A\|_{2}=\sigma_{1}(A)
$$

and the ratio of the largest to the smallest singular value gives the condition number of A in the 2-norm:

$$
\kappa_{2}(A)=\frac{\sigma_{1}(A)}{\sigma_{\min (m, n)}(A)}
$$

For more details about the SVD, see the module nag_svd (6.3).

In exact arithmetic, a matrix A has rank r if it has precisely r non-zero singular values; A is rank-deficient if $r<\min (m, n)$, or, equivalently, if $\kappa_{2}(A)=\infty$.

In practical work, because of uncertainties in the data and rounding errors due to computation in finite precision arithmetic, the numerical rank is defined to be the number of singular values which are greater than a specified threshold.

In this module, the threshold is defined as tol $\times \sigma_{1}\left(=\right.$ tol $\left.\times\|A\|_{2}\right)$, where tol is a tolerance supplied by the user; tol should normally be set to the relative accuracy of the data. For example, if the elements of the matrix A are correct to 4 significant figures, then a suitable value for tol is 5×10^{-4}. It follows that A is effectively rank-deficient if $\kappa_{2}(A) \geq 1 /$ tol.

Note that the solution to the least-squares problem depends on the determination of rank, and hence on the user-supplied tolerance tol; it may be desirable to experiment with different values of tol.

3 Solution Using the SVD

Given the SVD of $A=U \Sigma V^{H}$,

$$
\|b-A x\|_{2}=\left\|c-\Sigma V^{H} x\right\|_{2}, \quad \text { where } \quad c=U^{H} b .
$$

If the numerical rank of A is r, let
c_{1} consist of the first r elements of c,
c_{2} consist of the remaining elements of c,
Σ_{1} be the leading $r \times r$ sub-matrix of Σ,
V_{1} consist of the leading r columns of V.
Then the minimum norm solution to (1) is given by

$$
x=V_{1} \Sigma_{1}^{-1} c_{1}
$$

and the residual sum of squares $\|b-A x\|_{2}^{2}=\left\|c_{2}\right\|_{2}^{2}$.

4 Solution Using $Q R$ Factorization

A cheaper route to solve problem (1) is via the $Q R$ factorization, with or without column pivoting.
In this section we assume $m \geq n$ (the more frequent case) for simplicity, although the procedures also handle problems with $m<n$.

4.1 $Q R$ Factorization Without Column Pivoting

The $Q R$ factorization (without column pivoting) of the $m \times n$ real or complex matrix A is:

$$
A=Q\binom{R}{0}
$$

where
Q is an $m \times m$ real orthogonal or complex unitary matrix,
R is an $n \times n$ upper triangular matrix.
If A has full rank n, the $Q R$ factorization can be used to solve the least-squares problem (1), since:

$$
\|b-A x\|_{2}=\left\|c-Q^{H} A x\right\|_{2}=\left\|\binom{c_{1}-R x}{c_{2}}\right\|_{2}
$$

where

$$
c=Q^{H} b,
$$

c_{1} consists of the first n elements of c, c_{2} consists of the remaining elements of c.

Then the unique solution x is given by:

$$
x=R^{-1} c_{1},
$$

and the residual sum of squares $\|b-A x\|_{2}^{2}=\left\|c_{2}\right\|_{2}^{2}$.
To check that the problem is indeed of full rank, we can check the condition number of R, since $\kappa_{2}(R)=\kappa_{2}(A)$.

4.2 $Q R$ Factorization with Column Pivoting

Rank-deficient linear least-squares problems can often be solved using the $Q R$ factorization with column pivoting. This involves interchanging columns of A, so that the factorization takes the form:

$$
A P=Q\binom{R}{0}
$$

where P is a permutation matrix. The column interchanges are chosen so that

$$
\left|r_{11}\right| \geq\left|r_{22}\right| \geq\left|r_{33}\right| \ldots,
$$

and, moreover, for each k

$$
\left|r_{k k}\right| \geq\left\|R_{k: j, j}\right\|_{2} \text { for } j=k+1, \ldots, \min (m, n)
$$

In exact arithmetic, if $\operatorname{rank}(A)=r$, then

$$
R=\left(\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right)
$$

where R_{11} is the leading $r \times r$ sub-matrix, and $R_{22}=0$. In numerical computation, we aim to determine an index r such that R_{11} is well conditioned, and R_{22} is negligible. Note that this is not always possible, even though the matrix is numerically rank-deficient.

If such a partition of R is possible, then a solution to the linear least-squares problem (1) is given by:

$$
x=P\binom{R_{11}^{-1} \hat{c}_{11}}{0}
$$

where \hat{c}_{1} consists of the first r elements of $c=Q^{H} b$. This is not a minimum-norm solution, but a basic solution with at most r non-zero components.

5 Solution Using $Q R$ Factorization and SVD

To obtain the most reliable numerical determination of rank, and to compute a minimum-norm solution to a rank-deficient problem, it is necessary to use the SVD, as was described in Section 3. However, if a $Q R$ factorization of A has already been computed, this can be combined with the SVD of the $n \times n$ upper triangular matrix R, to give the SVD of A. (If $m \gg n$, this can in fact be a more efficient method for computing the SVD of A.)

Therefore the following approach is often effective:

1. Compute the $Q R$ factorization of A, with or without column pivoting.
2. If A is numerically of full rank, then compute the unique solution using the $Q R$ factorization, as described in Section 4.1.
3. If the numerical rank of A can be clearly determined from the matrix R, and if a basic solution is acceptable, then compute a basic solution, as described in Section 4.2.
4. Otherwise, compute the SVD of R, and use the resulting SVD of A to determine the numerical rank and compute a solution as described in Section 3.

6 Choice of Procedures

The procedure nag_lin_lsq_sol is the simplest procedure to use. It solves a linear least-squares problem in a single call, by computing the SVD of A. By default, it computes the minimum norm solution, but it has an option to return a basic solution.

It may be followed by calls to nag_lin_lsq_sol_svd in order to try the effect of varying the tolerance used to determine the numerical rank, or to compare a minimum norm solution with a basic solution. nag_lin_lsq_sol_svd may also be used

- to solve a problem with the same matrix A but a different right-hand side b, without recomputing the SVD of A;
- to solve a linear least-squares problem after the SVD of A has been computed by the procedure nag_gen_svd in the module nag_svd (6.3) (or calls to lower-level procedures in that module).

The remaining procedures enable a solution to be obtained using the $Q R$ factorization. Two or more procedures must be called in succession, and care must be taken in the numerical determination of rank.
nag_qr_fac computes a $Q R$ factorization, optionally with column pivoting, and nag_qr_orth performs related computational tasks (but is not strictly necessary for solving linear least-squares problems); nag_qr_fac has an optional argument rcond which can be used to check for rankdeficiency.
nag_lin_lsq_sol_qr solves a linear least-squares problem, assuming that a $Q R$ factorization has already been performed by nag_qr_fac, and that you have determined the numerical rank of the problem.
nag_lin_lsq_sol_qr_svd solves a linear least-squares problem using the SVD, assuming that a $Q R$ factorization of A has already been performed by nag_qr_fac.

Thus nag_qr_fac and nag_lin_lsq_sol_qr_svd together can perform the same tasks as the single procedure nag_lin_lsq_sol (and may be more efficient if $m \gg n$). They also may be followed by calls to nag_lin_lsq_sol_svd to try the effect of varying the tolerance, and so on.

All the relevant procedures can handle many right-hand side vectors b_{i} and their corresponding solution vectors x_{i} in a single call, storing them as columns of matrices B and X respectively. Note however that the linear least-squares problem is solved for each right-hand side vector independently; this is not the same as finding a matrix X which minimizes $\|B-A X\|_{2}$.

Procedure: nag_lin_lsq_sol

1 Description

nag_lin_lsq_sol is a generic procedure which solves a real or complex linear least-squares problem.
Notation: the problem is to find x so as to

$$
\operatorname{minimize} \quad\|b-A x\|_{2}
$$

where A is an $m \times n$ matrix, b is an m-element right-hand side vector, and x is an n-element solution vector.
In the most usual case, $m \geq n$ and $\operatorname{rank}(A)=n$ (that is, A has full rank); the solution is then unique.
For other types of problems (when $m<n$ or A is rank-deficient), the solution is not unique. By default the (unique) minimum norm solution is returned; however, the procedure has options to return a basic solution. See the Module Introduction for more details.

The procedure uses a method based on computing the SVD of A; see the Module Introduction for definition of the SVD. It has options to return the relevant parts of the SVD, so that they can subsequently be passed to the lower-level procedure nag_lin_lsq_sol_svd to solve additional problems without recomputing the SVD.

2 Usage

USE nag_lin_lsq
CALL nag_lin_lsq_sol(a, b, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:
Real / complex data
Real data: $\quad \mathrm{a}, \mathrm{b}, \mathrm{x}$ and the optional argument u are of type real(kind=wp).
Complex data: $\quad \mathrm{a}, \mathrm{b}, \mathrm{x}$ and the optional argument u are of type complex $($ kind $=w p)$.
One / many right-hand sides
One r.h.s.: $\quad b$ and x are rank- 1 arrays, and the optional argument std_err is a scalar.
Many r.h.s.: $\quad b$ and x are rank- 2 arrays, and the optional argument std_err is a rank- 1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array \mathbf{x} must have exactly n elements.

This procedure derives the values of the following problem parameters from the shape of the supplied arrays.
$m \quad$ - the number of equations (the number of rows of A)
$n \quad$ - the number of unknowns (the number of columns of A)
$k \quad$ - the number of right-hand sides
$n_{U}\left(\min (m, n) \leq n_{U} \leq m\right)$ - the number of columns to be computed of the matrix U

3.1 Mandatory Arguments

$\mathbf{a}(m, n)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}($ kind $=w p)$, intent(inout)
Input: the matrix A.
Output: the leading $\min (m, n)$ rows of A are overwritten by the corresponding rows of V^{H} (the right singular vectors of A, stored row-wise - and conjugated if complex).
$\mathbf{b}(m) / \mathbf{b}(m, k)-\operatorname{real}(\operatorname{kind}=w p) /$ complex $($ kind $=w p)$, intent(inout)
Input: if b has rank 1, it holds the single right-hand side vector b. If b has rank 2 , each of its columns holds a right-hand side vector.
Output: each right-hand side vector b is overwritten by $U^{H} b$.
Constraints: b must be of the same type as a.
$\mathbf{x}(n) / \mathbf{x}(n, k)-\operatorname{real}($ kind $=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(out)
Output: if x has rank 1 , it holds the single solution vector x. If x has rank 2 , then the i th column holds the solution vector corresponding to the right-hand side vector in the i th column of b .
Constraints: x must be of the same type and rank as b .

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
solution - character(len=1), intent(in), optional
Input: specifies the type of solution required.
If solution $=$ ' m ' or ' M ', the minimum norm solution;
if solution $=$ 'b' or 'B', a basic solution.
Default: solution $=$ ' m '.
Constraints: solution $=$ 'm', 'M', 'b' or 'B'.
tol $-\operatorname{real}($ kind $=w p)$, intent(in), optional
Input: the relative tolerance used to determine the rank of A. tol should be chosen as approximately the largest relative error in the elements of A. A singular value is considered negligible if it is less than or equal to tol $\times \sigma_{1}\left(=\mathrm{tol} \times\|A\|_{2}\right)$.
Default: tol = EPSILON(1.0_wp).
Constraints: $0.0 \leq$ tol ≤ 1.0.
rank - integer, intent(out), optional
Output: the effective rank r of the matrix A; it is the number of singular values which are not considered negligible (see tol).
std_err / std_err $(k)-\operatorname{real}($ kind $=w p)$, intent(out), optional
Output: if std_err is a scalar, it returns the standard error of the single solution vector x, defined as $\|A x-b\|_{2} / \sqrt{m-r}$ if $m>r$, and zero if $m=r$, where r is the effective rank of A. If std_err is an array, then std_err (i) returns the standard error of the solution vector in the i th column of x . Constraints: if b has rank 1 , std_err must be a scalar; if b has rank 2 , std_err must be a rank-1 array.
$\operatorname{sigma}(\min (m, n))-\operatorname{real}(\operatorname{kind}=w p)$, intent (out), optional
Output: the singular values of A, in descending order.
$\mathbf{u}\left(m, n_{U}\right)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(out), optional
Output: the first n_{U} columns of the matrix U. The most likely values of n_{U} are: $\min (m, n)$, giving the first $\min (m, n)$ columns of U (the left singular vectors); or m, giving the whole of $U . U$ is needed if you wish to solve additional problems with the same matrix A but different right-hand sides, without recomputing the SVD of A.
Constraints: u must be of the same type as a.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level $=3$):
 error\%code Description
 301 An input argument has an invalid value.
 303 Array arguments have inconsistent shapes.
 320 The procedure was unable to allocate enough memory.

Failures (error\%level =2):
error\%code Description
201 Failure to converge.
(This error is not likely to occur.) The $Q R$ algorithm failed to compute all the singular values in the permitted number of iterations.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.
See also Section 5 for procedure document nag_lin_lsq_sol_svd.

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag_gen_svd to compute the SVD of A; more precisely, nag_gen_svd returns the singular values, overwrites A with the first $\min (m, n)$ rows of V^{H}, and overwrites each right-hand side vector b with $U^{H} b$. The algorithm is derived from LAPACK (see Anderson et al. [1]).
This procedure then calls nag_lin_lsq_sol_svd to solve the linear least-squares problem. This procedure first determines the rank r of A, using the value of tol as described in the Module Introduction. It then computes either the minimum norm solution or a basic solution, as described in the document for nag_lin_lsq_sol_svd.

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan [2], Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems).

6.3 Timing

The time taken is roughly proportional to $m n^{2}$ if $m \geq n$, or to $m^{2} n$ if $m \leq n$.

Procedure: nag_lin_lsq_sol_svd

1 Description

nag_lin_lsq_sol_svd is a generic procedure which solves a real or complex linear least-squares problem, assuming that the relevant parts of the singular value decomposition (SVD) of the coefficient matrix have already been computed, usually by nag_lin_1sq_sol.

This procedure can also be used following a call to nag_lin_lsq_sol_qr_svd, or following a call to nag_gen_svd in the module nag_svd (6.3) (or calls to lower-level procedures in that module).

Notation: the problem is to find x so as to

$$
\operatorname{minimize} \quad\|b-A x\|_{2}
$$

where A is an $m \times n$ matrix, b is an m-element right-hand side vector, and x is an n-element solution vector.

Let the SVD of A be

$$
\begin{aligned}
& A=U \Sigma V^{T}, \text { with } U \text { and } V \text { orthogonal, if } A \text { is real; } \\
& A=U \Sigma V^{H}, \text { with } U \text { and } V \text { unitary, if } A \text { is complex. }
\end{aligned}
$$

The problem is therefore equivalent to minimizing

$$
\left\|c-\Sigma V^{H} x\right\|_{2}
$$

where $c=U^{H} b$. This is the form in which the least-squares problem must be presented to this procedure, following a call to nag_gen_svd to compute Σ, V^{H} and $c=U^{H} b$.

In the most usual case, $m \geq n$ and $\operatorname{rank}(A)=n$ (that is, A has full rank), the solution is unique.
If the problem is rank-deficient or $m<n$, the solution is not unique. By default the (unique) minimum norm solution is returned; however, the procedure has options to return a basic solution. See the Module Introduction for more details.

The procedure may be called repeatedly with different values of solution or tol, but with the other input arguments unchanged, in order to see the difference between the two types of solution, or the effect of changing tol.

2 Usage

USE nag_lin_lsq
CALL nag_lin_lsq_sol_svd(vh, sigma, c, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:
Real / complex data
Real data:
vh, c and x are of type real $(\operatorname{kind}=w p)$.
Complex data:
vh, c and x are of type complex $($ kind $=w p)$.
One / many right-hand sides
One r.h.s.: c and x are rank-1 arrays, and the optional argument std_err is a scalar.
Many r.h.s.: $\quad c$ and x are rank- 2 arrays, and the optional argument std_err is a rank-1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array \mathbf{x} must have exactly n elements.

This procedure derives the values of the following problem parameters from the shape of the supplied arrays.
$m \quad$ - the number of equations
$n \quad$ - the number of unknowns
$k \quad$ - the number of right-hand sides

3.1 Mandatory Arguments

$\operatorname{vh}(\min (m, n), n)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(in)
Input: the leading $\min (m, n)$ rows of the matrix V^{H} from the singular value decomposition of A in other words, the right singular vectors of A, stored row-wise, as returned by nag_lin_lsq_sol, nag_lin_lsq_sol_qr_svd or nag_gen_svd.
$\operatorname{sigma}(\min (m, n))-\operatorname{real}(\operatorname{kind}=w p)$, intent(in)
Input: the singular values of A in descending order, as returned by nag_lin_1sq_sol, nag_lin_lsq_sol_qr_svd or nag_gen_svd.
$\mathbf{c}(m) / \mathbf{c}(m, k)-\operatorname{real}(\operatorname{kind}=w p) /$ complex $($ kind $=w p)$, intent(in)
Input: if c has rank 1 , it must hold the vector $c=U^{H} b$, as returned by nag_lin_1sq_sol or nag_lin_lsq_sol_qr_svd in its argument b, or by nag_gen_svd in its optional argument c_vec; here b is the single right-hand side vector of the original problem. If c has rank 2 , it must hold the matrix $C=U^{H} B$, as returned by nag_lin_lsq_sol or nag_lin_lsq_sol_qr_svd in its argument b , or by nag_gen_svd in its optional argument c_mat; here each column of B is a right-hand side vector of the original problem.
Constraints: c must be of the same type as vh.
$\mathbf{x}(n) / \mathbf{x}(n, k)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(out)
Output: if x has rank 1 , it holds the single solution vector x. If x has rank 2 , then the i th column holds the solution vector corresponding to the right-hand side vector in the i th column of c .
Constraints: x must be of the same type and rank as c.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
solution - character(len=1), intent(in), optional
Input: specifies the type of solution required.
If solution $=$ ' m ' or ' M ', the minimum norm solution; if solution $=$ ' b ' or ' B ', a basic solution.

Default: solution = 'm'.
Constraints: solution $=$ 'm', 'M', 'b' or 'B'.
tol $-\operatorname{real}($ kind $=w p)$, intent(in), optional
Input: the relative tolerance used to determine the rank of A. tol should be chosen as approximately the largest relative error in the elements of A. A singular value is considered negligible if it is less than or equal to $\mathrm{tol} \times \sigma_{1}\left(=\mathrm{tol} \times\|A\|_{2}\right)$.
Default: tol = EPSILON(1.0_wp).
Constraints: $0.0 \leq \mathrm{tol} \leq 1.0$.
rank - integer, intent(out), optional
Output: the effective rank r of the matrix A; it is the number of singular values which are not considered negligible (see tol).
std_err / std_err (k) - real(kind=wp), intent(out), optional
Output: if std_err is a scalar, it returns the standard error of the single solution vector x, defined as $\|A x-b\|_{2} / \sqrt{m-r}$ if $m>r$, and zero if $m=r$, where r is the effective rank of A. If std_err is an array, then std_err (i) returns the standard error of the solution vector in the i th column of x . Constraints: if chas rank 1, std_err must be a scalar; if c has rank 2 , std_err must be a rank-1 array.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level = 3):

error\%code Description

301 An input argument has an invalid value.
303 Array arguments have inconsistent shapes.
320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.
That example illustrates calls to this procedure following a call to nag_lin_lsq_sol: nag_lin_lsq_sol computes the minimum norm solution with one value of tol, and then alternative solutions to the same problem are computed using this procedure, reusing results returned by nag_lin_lsq_sol in the first $\min (m, n)$ rows of a , in sigma and in b . The calls are:

```
tol = 0.005_wp
CALL nag_lin_lsq_sol(a,b,x_ls,sigma=sigma,tol=tol,rank=rank, &
    std_err=std_err_ls)
tol = 0.0005_wp
CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_ls,tol=tol,rank=rank, &
    std_err=std_err_ls)
tol = 0.005_wp
CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_b,solution='Basic', &
    tol=tol,rank=rank,std_err=std_err_b)
```

The effect of the call to nag_lin_lsq_sol could be achieved by a call to the procedure nag_gen_svd followed by a call to this procedure as follows:

```
CALL nag_gen_svd(a,sigma,overwrite='v',c_vec=b)
CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_ls,tol=tol,rank=rank, &
    std_err=std_err_ls)
```

To enable a second problem with a different right-hand side to be solved, without recomputing the SVD of A, nag_lin_lsq_sol must return the whole of the matrix U in an array u, of shape (m, m) ; this must then be applied to the new right-hand side b to compute $c=U^{H} b$. This procedure may be then be used as follows:

```
CALL nag_lin_lsq_sol(a,b,x_ls,sigma=sigma,u=u,tol=tol,rank=rank, &
    std_err=std_err_ls)
READ (*,*) b
    ! read new right-hand side
b = Matmul(Conjg(u),b)
CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_ls,tol=tol,rank=rank, &
    std_err=std_err_ls)
```


6 Further Comments

6.1 Algorithmic Detail

The procedure first determines the numerical rank r, using the value of tol: r is the number of singular values σ_{i} which are greater than tol $\times \sigma_{1}$.

Let:
\hat{V} consist of the first r columns of V;
$\hat{\Sigma}$ consist of the leading $r \times r$ sub-matrix of Σ;
\hat{c}_{1} consist of the first r elements of c.
If the minimum norm solution has been requested, it is computed as

$$
x=\hat{V} \hat{\Sigma}^{-1} \hat{c}_{1} .
$$

If a basic solution has been requested and $r<n$, the procedure performs a $Q R$ factorization with column pivoting of the $r \times n$ matrix $\hat{\Sigma} \hat{V}^{H}$:

$$
\hat{\Sigma} \hat{V}^{H}=Q\left(\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right) P^{T}
$$

where Q is an orthogonal (or unitary) matrix of order r, R_{1} is upper triangular, and P is a permutation matrix. A basic solution is then computed as:

$$
x=P\binom{R_{1}^{-1} Q^{H} \hat{c}_{1}}{0} .
$$

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan [2], Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems).

6.3 Timing

Computing a minimum norm solution requires $O(n r)$ floating-point operations; computing a basic solution is more expensive, and requires $O\left(n r^{2}\right)$ operations.

Procedure: nag_qr_fac

1 Description

nag_qr_fac is a generic procedure which computes the $Q R$ factorization of a real or complex $m \times n$ general matrix A. The factorization takes the following forms.

If $m \geq n$:

$$
A=Q\binom{R}{0}=Q_{1} R
$$

where Q is an $m \times m$ real orthogonal or complex unitary matrix, Q_{1} consists of the first n columns of Q, and R is an $n \times n$ upper triangular matrix.
If $m<n$:

$$
A=Q R=Q\left(R_{1} R_{2}\right),
$$

where R is upper trapezoidal, R_{1} is $n \times n$ upper triangular, and R_{2} is rectangular.
By default, the orthogonal or unitary matrix Q is represented as the product of $\min (m, n)$ elementary reflectors; this representation can be passed to the procedure nag_qr orth to perform further operations with Q.

Note that for any $k<\min (m, n)$, the information returned in the first k columns of the array a represents a $Q R$ factorization of the first k columns of A.

If the optional argument q is present, Q (or its leading columns if $m>n$) is formed explicitly and returned in q. If $m \geq n$, the first n columns of Q form an orthonormal basis for the space spanned by the columns of A.

If the optional argument pivot is present, then the procedure computes the $Q R$ factorization of A with column pivoting - that is, the $Q R$ factorization of A with its columns interchanged, or in other words the $Q R$ factorization of $A P$, where P is a permutation matrix. The column interchanges are chosen so that

$$
\left|r_{11}\right| \geq\left|r_{22}\right| \geq\left|r_{33}\right| \ldots,
$$

and, moreover, for each k

$$
\left|r_{k k}\right| \geq\left\|R_{k: j, j}\right\|_{2} \text { for } j=k+1, \ldots, \min (m, n) .
$$

The procedure also allows specified columns of A to be moved to the leading columns of $A P$ at the start of the factorization and fixed there. The remaining columns are free to be interchanged so that at the i th stage the pivot column is chosen to be the column which maximizes the 2 -norm of elements i to m over columns i to n.

The procedure can optionally return an estimate of the reciprocal of the condition number of R in the 1 -norm, $\kappa_{1}(R)$ (see the optional argument rcond). If $m \geq n$, the condition number of R in the 2 -norm is equal to that of $A: \kappa_{2}(R)=\kappa_{2}(A) ; \kappa_{1}(R)$ differs from $\kappa_{2}(R)$ by a factor of at most n, and hence can be used to test whether A is near to being numerically rank-deficient.

2 Usage

USE nag_lin_lsq
CALL nag_qr_fac(a, tau [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array \mathbf{x} must have exactly n elements.

This procedure derives the values of the following problem parameters from the shape of the supplied arrays.
$m \quad$ - the number of rows of A
n - the number of columns of A
$n_{Q} \quad$ - the number of leading columns to be computed of the orthogonal (unitary) matrix Q
n_{Q} must satisfy the constraint: $\min (m, n) \leq n_{Q} \leq m$; hence, if $m<n, n_{Q}=m$.

3.1 Mandatory Arguments

$\mathbf{a}(m, n)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(inout)
Input: the m by n matrix A.
Output: details of the factorization.
If $m \geq n$, the elements below the diagonal are overwritten by details of the matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper triangular matrix R;
if $m<n$, the strictly lower triangular part is overwritten by details of the matrix Q and the remaining elements are overwritten by the corresponding elements of the m by n upper trapezoidal matrix R.

```
tau(min}(m,n)) - real(kind=wp) / complex(kind=wp), intent(out
```

Output: further details of the transformation matrix Q; a and tau together may be required for passing to nag_qr_orth, nag_lin_lsq_sol_qr or nag_lin_lsq_sol_qr_svd.
Constraints: tau must be of the same type as a.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
$\operatorname{pivot}(n)$ - integer, intent(inout), optional
Input: if $\operatorname{pivot}(i) \neq 0$, then the i th column of A is moved to the beginning of $A P$ before the factorization is computed and is fixed in place during the computation. Otherwise, the i th column of A is a free column (i.e., one which may be interchanged during the computation with any other free column).
Output: details of the permutation matrix P. More precisely, if pivot $(i)=k$, then the k th column of A is moved to become the i th column of $A P$; in other words, the columns of $A P$ are the columns of A in the order pivot(1), pivot (2), \ldots, pivot (n).
Default: if pivot is absent, no columns are interchanged, i.e., the $Q R$ factorization is computed without column pivoting.
rcond $-\operatorname{real}($ kind $=w p)$, intent(out), optional
Output: an estimate of the reciprocal of the condition number of R if $m \geq n$, or of R_{1} if $m<n$ (this is less likely to be useful). If $m \geq n$ and rcond is less than the relative accuracy of the data, then R is approximately singular to that working accuracy, and therefore A is numerically rank-deficient. The reciprocal is returned rather than the condition number itself to avoid the risk of overflow.
$\mathbf{q}\left(m, n_{Q}\right)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent (out), optional
Output: the leading n_{Q} columns of the orthogonal or unitary matrix Q, where $\min (m, n) \leq n_{Q} \leq$ m.

Constraints: q must be of the same type as a.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level = 3):
error\%code Description
303 Array arguments have inconsistent shapes.
320
The procedure was unable to allocate enough memory.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 2 and 3 of this module document.
The first of these examples illustrates a call to this procedure, followed by a call to nag_qr_orth to form the leading columns of Q. The calls are:

```
CALL nag_qr_fac(a,tau,pivot=pivot,rcond=rcond)
CALL nag_qr_orth(a,tau,q=q)
```

The same effect could have been achieved by a single call to this procedure:
CALL nag_qr_fac (a,tau, pivot=pivot, $q=q, r \operatorname{cond}=r \operatorname{cond})$

6 Further Comments

6.1 Algorithmic Detail

The algorithms used are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed factorization is the exact factorization of a nearby matrix $A+E$, where $\|E\|_{2}=O(\epsilon)\|A\|_{2}$.
If the matrix Q is computed, this differs from an exactly orthogonal (unitary) matrix by a matrix F such that $\|F\|_{2}=O(\epsilon)$.

The estimate of the reciprocal of the condition number returned in rcond is never less than the true value ρ, and in practice is nearly always less than 10ρ (although examples can be constructed where the computed estimate is much larger). Strictly speaking, the algorithm estimates the condition number in the 1-norm, but this differs from the condition number in the 2 -norm by a factor of at most n.

6.3 Timing

For real data, the total number of floating-point operations performed is roughly as follows:
$Q R$ factorization:
Form leading n columns of Q :
Form leading m columns of Q :
Estimate rcond:

$$
\begin{array}{cc}
m \geq n & m<n \\
(2 / 3) n^{2}(3 m-n) & (2 / 3) m^{2}(3 n-m) \\
(2 / 3) n^{2}(3 m-n) & \\
4 m n(m-n)+(4 / 3) n^{3} & (4 / 3) m^{3} \\
2 c n^{2} & 2 c m^{2}
\end{array}
$$

where $4 \leq c \leq 11$.
For complex data, 4 times as many (real) floating-point operations are performed.

Procedure: nag_qr_orth

1 Description

nag_qr_orth is intended for use following a call to nag_qr_fac which performs the $Q R$ factorization of a general real or complex $m \times n$ matrix A. nag_qr_fac represents the orthogonal or unitary matrix Q as the product of $\min (m, n)$ elementary reflectors:

$$
Q=H_{1} H_{2} \ldots H_{\min (m, n)}
$$

where

$$
H_{i}=I-\tau_{i} v_{i} v_{i}^{H} ;
$$

the vector v_{i} is stored in $\mathrm{a}(i+1: m, i)$ and the scalar τ_{i} is stored in tau(i).
This procedure accepts this representation and may be used to carry out either or both of the following tasks:

- form Q explicitly as a square matrix or form only its leading columns; Q can be returned either in the optional argument q or overwritten on a.
- apply Q to a given real (complex) matrix C from the left or right, overwriting C with $Q C, C Q$, $Q^{H} C$ or $C Q^{H}$ ($Q^{H}=Q^{T}$ for real data) or to a real (complex) vector c from the left only, overwriting c with $Q c$ or $Q^{H} c$.

2 Usage

```
USE nag_lin_lsq
CALL nag_qr_orth(a, tau [, optional arguments])
```


3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array \mathbf{x} must have exactly n elements.

This procedure derives the values of the following problem parameters from the shape of the supplied arrays.
$m \quad$ - the number of rows of the factorized matrix A
$n \quad$ - the number of columns of the factorized matrix A
$n_{Q} \quad$ - the number of leading columns to be computed of the orthogonal (unitary) matrix Q
$m_{C} \quad$ - the number of rows of C or of elements of $c: m_{C}=m$ if Q is applied from the left
$n_{C} \quad$ - the number of columns of $C: n_{C}=m$ if Q is applied from the right
n_{Q} must satisfy the constraint: $\min (m, n) \leq n_{Q} \leq m$; hence, if $m<n, n_{Q}=m$.

3.1 Mandatory Arguments

$\mathbf{a}(m, n)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(inout)
Input: details of the representation of Q as returned by nag_qr_fac.
Output: if q_on_a is present and set to .true., the leading $\min (m, n)$ columns of a are overwritten by the leading $\min (m, n)$ columns of Q; otherwise (by default), a is unchanged.
$\boldsymbol{\operatorname { t a u }}(\min (m, n)) — \operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p), \operatorname{intent}(\mathrm{in})$
Input: further details of the representation of Q as returned by nag_qr fac.
Constraints: tau must be of the same type as a.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
q_on_a - logical, intent(in), optional
Input: specifies whether the leading columns of the matrix Q are to be overwritten on a.
If q_on_a $=$.true., the leading $\min (m, n)$ columns of Q are overwritten on a;
if q_on_a $=$. false., the leading n_{Q} columns of Q are returned in q if present, or else are not formed explicitly.

Default: q_on_a $=. f a l s e$.
$\mathbf{q}\left(m, n_{Q}\right)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(out), optional
Output: the leading n_{Q} columns of the orthogonal or unitary matrix Q, where $\min (m, n) \leq n_{Q} \leq$ m.

Note: if q_on_a is present and set to .true., and q is also present, then q is not used and a warning is raised.
Constraints: q must be of the same type as a.
side - character(len=1), intent(in), optional
Input: specifies whether Q (or Q^{T} or Q^{H}) is to be applied to C from the left or from the right (always from the left for c).

If side $=$ ' l ' or ' L ', from the left;
if side $=$ ' r ' or ' R ', from the right.
Default: side = 'l'.
Constraints: if c_mat is present, then side $=$ ' l^{\prime}, ' L ', ' r ' or ' R '; if c_vec is present, then side $=$ ' l ' or ' L '. side must not be present unless c _mat or c_vec is present.
trans - character(len=1), intent(in), optional
Input: specifies whether Q, Q^{T} or Q^{H} is to be applied to C or c.
If trans $=$ ' n ' or ' N ', Q is applied;
if trans $=$ ' t ' or ' T ' (real matrices only), Q^{T} is applied;
if trans $=$ ' c ' or ' C ' (complex matrices only), Q^{H} is applied.
Default: trans $=$ ' n '.
Constraints:
for the real case trans $=$ ' n^{\prime}, 'N', 't' or 'T';
for the complex case trans $=$ 'n', 'N', 'c' or 'C';
trans must not be present unless c_mat or c_vec is present.
$\mathbf{c _ m a t}\left(m_{C}, n_{C}\right)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(inout), optional
Input: the matrix C.
Output: overwritten by $Q C, Q^{T} C, Q^{H} C, C Q, C Q^{T}$ or $C Q^{H}$, according to the values of side and trans.
Constraints:
c_mat must be of the same type as a;
c_mat and c_vec must not both be present.

```
c_vec}(m) - real(kind=wp) / complex(kind=wp), intent(inout), optional
    Input: the vector c.
    Output: overwritten by Qc, Q T}c\mathrm{ or }\mp@subsup{Q}{}{H}c\mathrm{ according to the value of trans.
    Constraints:
        c_vec must be of the same type as a;
        c_mat and c_vec must not both be present.
error - type(nag_error), intent(inout), optional
    The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
    nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to
    use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this
    procedure is called.
```


4 Error Codes

```
Fatal errors (error\%level \(=3\) ):
error\%code Description
301 An input argument has an invalid value.
303 Array arguments have inconsistent shapes.
304 Invalid presence of an optional argument.
320 The procedure was unable to allocate enough memory.
Warnings (error\%level \(=1\) ):
error\%code Description
101 Optional argument present but not used. q is present when q_on_a is .true.; the matrix \(Q\) is returned in a, and q is not used.
102 No computation performed.
q_on_a is not present or is set to .false., and none of q, c_mat or c_vec is present; no computation has been requested.
```


5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.
In this example nag_qr_orth is called to form the leading columns of Q in an array q. The call is:

```
CALL nag_qr_orth(a,tau,q=q)
```

To overwrite the leading columns of Q on the array a, the call would be:

```
CALL nag_qr_orth(a,tau,q_on_a=.true.)
```


6 Further Comments

6.1 Algorithmic Detail

The algorithms used are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

If the matrix Q is formed, it differs from an exactly orthogonal (unitary) matrix by a matrix E such that $\|E\|_{2}=O(\epsilon)$,

If the matrix C is to be transformed, the computed result differ from the exact result by a matrix F such that $\|F\|_{2}=O(\epsilon)\|C\|_{2}$.

6.3 Timing

For real data, the total number of floating-point operations performed is roughly as follows:

	$m \geq n$	$m<n$
Form leading n columns of $Q:$	$(2 / 3) n^{2}(3 m-n)$	
Form leading m columns of $Q:$	$4 m n(m-n)+(4 / 3) n^{3}$	$(4 / 3) m^{3}$
Compute $Q C$ or $Q^{T} C:$	$2 n_{C} n(2 m-n)$	$2 n_{C} m^{2}$
Compute $Q c$ or $Q^{T} c:$	$2 n(2 m-n)$	$2 m^{2}$
Compute $C Q$ or $C Q^{T}:$	$2 m_{C} n(2 m-n)$	$2 m_{C} m^{2}$

For complex data, 4 times as many (real) floating-point operations are performed.

Procedure: nag_lin_lsq_sol_qr

1 Description

nag_lin_lsq_sol_qr is a generic procedure which solves a real or complex linear least-squares problem, assuming that a $Q R$ factorization of the coefficient matrix has already been computed by nag_qr_fac.
Notation: the problem is to find x so as to

$$
\text { minimze } \quad\|b-A x\|_{2}
$$

where A is an $m \times n$ matrix, b is an m-element right-hand side vector, and x is an n-element solution vector. The procedure can handle either a single right-hand side or several right-hand sides (stored as the columns of the array b).
First, assume $m \geq n$ (the most usual case).
If A has rank n (that is, A has full rank), there is a unique solution. If you are sure that A has full rank and is nowhere near to being rank-deficient (you can use the optional argument rcond in nag_qr fac to test for this), then this procedure can reliably find the solution, using a $Q R$ factorization of A without pivoting.
However, if you are not confident that A has full rank, you should use the column pivoting option when calling nag_qr_fac (that is, supply the optional argument pivot). See the Module Introduction for advice on using the $Q R$ factorization with column pivoting for the numerical determination of rank. If A is deemed to be of full rank n, then this procedure can find the unique solution (the optional argument pivot must be supplied). If A is deemed to have well determined rank $r<n$, then a solution can be found by setting the optional argument rank to r; this solution is a basic solution (with r non-zero components), not a minimum norm solution. To find a minimum norm solution or to make the most reliable numerical determination of rank, use the procedure nag_lin_lsq_sol_qr_svd.

If $m<n$, the problem is equivalent to finding a solution to an underdetermined system of linear equations $A x=b$. There are an infinite number of solutions. This procedure can compute a basic solution, with m non-zero components if A is known to have full rank m, or with $r<m$ non-zero components if A has well determined rank r; the column-pivoting option must be used in the $Q R$ factorization of A, and the rank r supplied through the optional argument rank, as when $m \geq n$.

2 Usage

USE nag_lin_lsq
CALL nag_lin_lsq_sol_qr (a, tau, b, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:
Real / complex data
Real data: $\quad \mathrm{a}$, tau, b and x are of type $\operatorname{real}($ kind $=w p)$.
Complex data: a , tau, b and x are of type complex $($ kind $=w p)$.
One / many right-hand sides
One r.h.s.: $\quad b$ and x are rank- 1 arrays, and the optional argument std_err is a scalar.
Many r.h.s.: $\quad b$ and x are rank- 2 arrays, and the optional argument std_err is a rank-1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array \mathbf{x} must have exactly n elements.
This procedure derives the values of the following problem parameters from the shape of the supplied arrays.
$m \quad$ - the number of equations
$n \quad$ - the number of unknowns
$k \quad$ - the number of right-hand sides

3.1 Mandatory Arguments

$\mathbf{a}(m, n)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(in)
Input: details of the $Q R$ factorization as returned by nag_qr_fac.
$\boldsymbol{\operatorname { t a u }}(\min (m, n)) — \operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p), \operatorname{intent}(i n)$
Input: further details of the orthogonal matrix Q as returned by nag_qr_fac.
Constraints: tau must be of the same type as a.
$\mathbf{b}(m) / \mathbf{b}(m, k)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(inout)
Input: if b has rank 1 , it holds the single right-hand side vector b. If b has rank 2 , each of its columns holds a right-hand side vector.
Output: each right-hand side vector b is overwritten by $Q^{H} b$.
Constraints: b must be of the same type as a.
$\mathbf{x}(n) / \mathbf{x}(n, k)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(out)
Output: if x has rank 1 , it holds the single solution vector x. If x has rank 2 , then the i th column holds the solution vector corresponding to the right-hand side vector in the i th column of b .
Constraints: x must be of the same type and rank as b .

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
$\operatorname{pivot}(n)$ - integer, intent(in), optional
Input: details of the permutation matrix P as returned by nag_qr_fac if column pivoting was used. pivot must be present in the call to this procedure, if it was present in the call to nag_qr_fac.
Default: it is assumed that column pivoting was not used.
Constraints: $1 \leq \operatorname{pivot}(i) \leq n$, for $i=1,2, \ldots, n$; pivot must be present if $m<n$.
rank - integer, intent(in), optional
Input: the rank r of the matrix.
Default: rank $=\min (m, n)$.
Constraints: $0 \leq \operatorname{rank} \leq \min (m, n)$; rank must not be present unless pivot is present.
std_err / std_err (k) - real(kind=wp), intent(out), optional
Output: if std_err is a scalar, it returns the standard error of the single solution vector x, defined as $\|A x-b\|_{2} / \sqrt{m-r}$ if $m>r$, and zero if $m=r$, where r is the rank of A if supplied in rank, or $\min (m, n)$ otherwise. If std_err is an array, then std_err (i) returns the standard error of the solution vector in the i th column of x .
Constraints: if b has rank 1, std_err must be a scalar; if b has rank 2 , std_err must be a rank-1 array.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level $=3$):

error\%code Description

301 An input argument has an invalid value.
303 Array arguments have inconsistent shapes.
305 Invalid absence of an optional argument.
320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

A description of the method employed can be found in the Module Introduction.

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan [2], Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems)

6.3 Timing

Computing a solution requires roughly $2 \min (m, n)(2 m-\min (m, n))+r^{2}$ floating-point operations for real problems, and 4 times as many floating-point operations for complex problems.

Procedure: nag_lin_lsq_sol_qr_svd

1 Description

nag_lin_lsq_sol_qr_svd is a generic procedure which solves a real or complex linear least-squares problem, assuming that a $Q R$ factorization of the coefficient matrix has already been computed by nag_qr_fac.

The solution is obtained by computing the SVD (Singular Value Decomposition) of the $n \times n$ upper triangular matrix R, and combining this with the $Q R$ factorization to give the SVD of A.
nag_qr_fac and this procedure together provide the same facilities as the single procedure nag_lin_lsq_sol.
This procedure has options to return the relevant parts of the SVD so that they can subsequently be passed to nag_lin_lsq_sol_svd to solve additional problems with the same A but different b without recomputing the SVD of A. nag_lin_lsq_sol_qr_svd may also be followed by calls to nag_lin_lsq_sol_svd to try the effect of varying the value of tol, or to compare a minimum norm solution with a basic solution.

2 Usage

USE nag_lin_lsq
CALL nag_lin_lsq_sol_qr_svd(a, tau, b, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:
Real / complex data
Real data: $\quad \mathrm{a}$, tau, b and x and the optional argument u are of type real(kind $=w p$).
Complex data: a, tau, b and x and the optional argument u are of type complex (kind=wp).

One / many right-hand sides
One r.h.s.: $\quad b$ and x are rank- 1 arrays, and the optional argument std_err is a scalar.
Many r.h.s.: b and x are rank-2 arrays, and the optional argument std_err is a rank-1 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array x must have exactly n elements.

This procedure derives the values of the following problem parameters from the shape of the supplied arrays.
$m \quad$ - the number of equations
$n \quad$ - the number of unknowns
$k \quad$ - the number of right-hand sides

3.1 Mandatory Arguments

$\mathbf{a}(m, n)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p), \operatorname{intent}($ inout $)$
Input: details of the $Q R$ factorization of A as returned by nag_qr_fac.
Output: the leading $\min (m, n)$ rows of the matrix of the right singular vectors V^{H}.
$\operatorname{tau}(\min (m, n))-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(in)
Input: further details of the orthogonal matrix Q as returned by nag_qr_fac.
Constraints: tau must be of the same type as a.
$\mathbf{b}(m) / \mathbf{b}(m, k) — \operatorname{real}($ kind $=w p) / \operatorname{complex}($ kind $=w p)$, intent(inout)
Input: if b has rank 1 , it holds the single right-hand side vector b. If b has rank 2 , each of its columns holds a right-hand side vector.
Output: each right-hand side vector b is overwritten by $U^{H} b$.
Constraints: b must be of the same type as a.
$\mathbf{x}(n) / \mathbf{x}(n, k)-\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent(out)
Output: if x has rank 1, it holds the single solution vector x. If x has rank 2 , then the i th column holds the solution vector corresponding to the right-hand side vector in the i th column of b .
Constraints: x must be of the same type and rank as b .

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
$\operatorname{pivot}(n)$ - integer, intent(in), optional
Input: details of the permutation matrix P as returned by nag_qr_fac if column pivoting was used. Default: it is assumed that column pivoting was not used.
Constraints: $1 \leq \operatorname{pivot}(i) \leq n$, for $i=1,2, \ldots, n$.
solution - character(len=1), intent(in), optional
Input: specifies the type of solution required.
If solution $=$ ' m ' or ' M ' , the minimum norm solution;
if solution $=$ ' b ' or ' B ', a basic solution.
Default: solution = 'm'.
Constraints: solution $=$ 'm', 'M', 'b' or 'B'.
tol $-\operatorname{real}($ kind $=w p)$, intent(in), optional
Input: the relative tolerance used to determine the rank of A. tol should be chosen as approximately the largest relative error in the elements of A. A singular value is considered negligible if it is less than or equal to tol $\times \sigma_{1}\left(=\mathrm{tol} \times\|A\|_{2}\right)$.
Default: tol $=$ EPSILON (1.0_wp).
Constraints: $0.0 \leq \mathrm{tol} \leq 1.0$.
rank - integer, intent(out), optional
Output: the effective rank r of the matrix A; it is the number of singular values which are not considered negligible (see tol).
std_err / std_err (k) - real $(\operatorname{kind}=w p)$, intent (out), optional
Output: if std_err is a scalar, it returns the standard error of the single solution vector x, defined as $\|A x-b\|_{2} / \sqrt{m-r}$ if $m>r$, and zero if $m=r$, where r is the effective rank of A. If std err is an array, then std_err (i) returns the standard error of the solution vector in the i th column of x . Constraints: if b has rank 1, std_err must be a scalar; if b has rank 2, std_err must be a rank-1 array.
$\operatorname{sigma}(\min (m, n)) — \operatorname{real}(\operatorname{kind}=w p)$, intent(out), optional
Output: the singular values of A, in descending order.
$\mathbf{u}\left(m, n_{U}\right)$ - $\operatorname{real}(\operatorname{kind}=w p) / \operatorname{complex}(\operatorname{kind}=w p)$, intent $($ out $)$, optional
Output: the first n_{U} columns of the matrix U. The most likely values of n_{U} are: $\min (m, n)$, giving the first $\min (m, n)$ columns of U (the left singular vectors); or m, giving the whole of $U . U$ is needed if you wish to solve additional problems with the same matrix A but different right-hand sides, without recomputing the SVD of A.
Constraints: u must be of the same type as a and $\min (m, n) \leq n_{U} \leq m$.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level = 3):
error\%code Description
301 An input argument has an invalid value.
303 Array arguments have inconsistent shapes.
320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses nag_gen_svd to compute the SVD of R, and nag_qr_orth to help compute the SVD of A, overwriting a with the first $\min (m, n)$ columns of V^{H} and overwriting b with $U^{H} b$.

This procedure then calls nag_lin_lsq_sol_svd to solve the linear least-squares problem. nag_lin_lsq_sol_svd first determines the rank r of A, using the value of tol as described in the Module Introduction. It then computes either the minimum norm solution or a basic solution, as described in the document for nag_lin_lsq_sol_svd.

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan [2] , Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems).

6.3 Timing

The number of floating point operations required to compute the SVD of R is proportional to n^{3}.
Given the relevant parts of the SVD of A, computing a minimum norm solution requires $O(n r)$ floatingpoint operations; computing a basic solution is more expensive, and requires $O\left(n r^{2}\right)$ operations.

Example 1: Solution of a Real Linear Least-squares Problem Using the SVD

This program calls the procedure nag_lin_lsq_sol to compute a solution to a linear least-squares problem using the singular value decomposition.
Assuming that the data is only accurate to within $\pm 0.5 \%$, tol is set to 0.005 ; to this tolerance, the matrix A is numerically rank-deficient, and the minimum norm solution is returned by default.

The singular values of A are printed out. They show that with tol reduced by a factor of $10, A$ would be regarded as being of full rank. The program makes a subsequent call to nag_lin_lsq_sol_svd to compute the solution returned with tol $=0.0005$.

Finally, the program calls nag_lin_lsq_sol_svd again to compute a basic solution with the original value tol $=0.005$.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
PROGRAM nag_lin_lsq_ex01
    ! Example Program Text for nag_lin_lsq
    ! NAG f190, Release 4. NAG Copyright 2000.
    ! .. Use Statements ..
    USE nag_examples_io, ONLY : nag_std_in, nag_std_out
    USE nag_lin_lsq, ONLY : nag_lin_lsq_sol, nag_lin_lsq_sol_svd
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Intrinsic Functions ..
    INTRINSIC KIND, MIN
    ! .. Parameters ..
    INTEGER, PARAMETER :: wp = KIND(1.ODO)
    ! .. Local Scalars ..
    INTEGER :: i, m, n, ns, rank
    REAL (wp) :: std_err_b, std_err_ls, tol
    ! .. Local Arrays ..
    REAL (wp), ALLOCATABLE :: a(:,:), b(:), sigma(:), x_b(:), x_ls(:)
    ! .. Executable Statements ..
    WRITE (nag_std_out,*) 'Example Program Results for nag_lin_lsq_ex01'
    READ (nag_std_in,*) ! Skip heading in data file
    READ (nag_std_in,*) m, n
    ns = MIN (m,n)
    ALLOCATE (a(m,n),b(m),sigma(ns),x_b(n),x_ls(n)) ! Allocate storage
    READ (nag_std_in,*) (a(i,:),i=1,m)
    READ (nag_std_in,*) b
    ! Compute the minimum norm solution with tol = 0.005
    tol = 0.005_wp
    CALL nag_lin_lsq_sol(a,b,x_ls,sigma=sigma,tol=tol,rank=rank, &
    std_err=std_err_ls)
    WRITE (nag_std_out,*)
    WRITE (nag_std_out,'(1X,A,F7.4)') 'Minimum norm solution with tol =', &
    tol
```

```
    WRITE (nag_std_out,'(2X,F7.4)') x_ls
    WRITE (nag_std_out,'(1X,A,I7,A,F7.4)') 'rank =', rank, &
    standard error =', std_err_ls
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) 'Singular values of A'
WRITE (nag_std_out,'(2X,F7.4)') sigma
    ! Compute the minimum norm solution with tol = 0.0005
tol = 0.0005_wp
CALL nag_lin_lsq_sol_svd(a(:ns,:),sigma,b,x_ls,tol=tol,rank=rank, &
    std_err=std_err_ls)
WRITE (nag_std_out,*)
WRITE (nag_std_out,'(1X,A,F7.4)') 'Minimum norm solution with tol =', &
    tol
WRITE (nag_std_out,'(2X,F7.4)') x_ls
WRITE (nag_std_out,'(1X,A,I7,A,F7.4)') 'rank =', rank, &
    ' standard error =', std_err_ls
    ! Compute a basic solution with tol = 0.005
tol = 0.005_wp
CALL nag_lin_lsq_sol_svd(a(:ns,:),sigma,b,x_b,solution='Basic',tol=tol, &
    rank=rank,std_err=std_err_b)
WRITE (nag_std_out,*)
WRITE (nag_std_out,'(1X,A,F7.4)') 'Basic solution with tol =', tol
WRITE (nag_std_out,'(2X,F7.4)') x_b
WRITE (nag_std_out,'(1X,A,I7,A,F7.4)') 'rank =', rank, &
    , standard error =', std_err_b
DEALLOCATE (a,b,sigma,x_b,x_ls) ! Deallocate storage
```

END PROGRAM nag_lin_lsq_ex01

2 Program Data

Example Program Data for nag_lin_lsq_ex01					
65					Values of m, n
-0.09	0.14	-0.46	0.68	1.29	
-1.56	0.20	0.29	1.09	0.51	
-1.48	-0.43	0.89	-0.71	-0.96	
-1.09	0.84	0.77	2.11	-1.27	
0.08	0.55	-1.13	0.14	1.74	
-1.59	-0.72	1.06	1.24	0.34	End of Matrix A
-0.01					
0.04					
0.05					
-0.03					
0.02					
-0.06					End of right-han

3 Program Results

```
Example Program Results for nag_lin_lsq_ex01
Minimum norm solution with tol = 0.0050
    -0.0440
        0.0440
        -0.0293
        -0.0439
        -0.0062
rank = 4 standard error = 0.0225
Singular values of A
    3.9997
    2.9962
    2.0001
    0.9988
    0.0025
Minimum norm solution with tol = 0.0005
    -0.1841
    -0.3719
    -0.6189
    0.1097
    -0.2632
rank = 5 standard error = 0.0318
Basic solution with tol = 0.0050
    -0.0370
    0.0647
    0.0000
    -0.0515
    0.0066
rank = 4 standard error = 0.0225
```


Example 2: Solution of a Real Linear Least-squares Problem Using the $Q R$ Factorization

This example uses the same data as Example 1.
The program calls nag_qr_fac to perform a $Q R$ factorization of A with column pivoting, and prints the matrix R. It calls nag_qr_orth to compute the leading columns of Q for illustration, and prints them, although they are not needed for solving the linear least-squares problem.

The program then calls nag_lin_lsq_sol_qr to compute a solution, assuming that the problem is of full rank.

However, the estimate of the condition number shows that if the data are only known to an accuracy of $\pm 0.5 \%$ (1 part in 200), the problem should be regarded as rank-deficient. Inspection of the matrix R shows a clear separation between the leading 4×4 sub-matrix and the $(5,5)$ element. The program calls nag_lin_lsq_sol_qr a second time with rank $=4$; note that a copy of the original right-hand side b must be kept for this second call.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
PROGRAM nag_lin_lsq_ex02
    ! Example Program Text for nag_lin_lsq
    ! NAG fl90, Release 4. NAG Copyright 2000.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_in, nag_std_out
USE nag_lin_lsq, ONLY : nag_qr_fac, nag_qr_orth, nag_lin_lsq_sol_qr
USE nag_write_mat, ONLY : nag_write_gen_mat, nag_write_tri_mat
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Intrinsic Functions ..
INTRINSIC KIND, MIN
! .. Parameters ..
INTEGER, PARAMETER :: wp = KIND(1.0D0)
! .. Local Scalars ..
INTEGER :: i, m, n, ns
REAL (wp) :: rcond, std_err
! .. Local Arrays ..
INTEGER, ALLOCATABLE :: pivot(:)
REAL (wp), ALLOCATABLE :: a(:,:), b(:), bb(:), q(:,:), tau(:), x(:)
! .. Executable Statements ..
WRITE (nag_std_out,*) 'Example Program Results for nag_lin_lsq_ex02'
READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) m, n
ns = MIN(m,n)
ALLOCATE (pivot (n),a(m,n),b(m),bb(m),q(m,ns),tau(ns), &
    x(n)) ! Allocate storage
READ (nag_std_in,*) (a(i,:),i=1,m)
READ (nag_std_in,*) b
bb}=\textrm{b
! Compute the QR factorization
pivot = 0
```

```
CALL nag_qr_fac(a,tau,pivot=pivot,rcond=rcond)
WRITE (nag_std_out,*)
CALL nag_write_tri_mat('upper',a(:n,:),format='(1X,F7.4)', &
    title='Matrix R')
WRITE (nag_std_out,'(1X,A,ES11.2)') 'Estimated condition number =', &
    1/rcond
! Compute the leading min(m,n) columns of Q
CALL nag_qr_orth(a,tau,q=q)
WRITE (nag_std_out,*)
CALL nag_write_gen_mat(q,format='(1X,F7.4)',title='Leading columns of Q' &
    )
! Compute the solution, assuming that A has full rank
CALL nag_lin_lsq_sol_qr(a,tau,b,x,pivot=pivot,std_err=std_err)
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) 'Solution assuming that A has full rank'
WRITE (nag_std_out,'(3X,F7.4)') x
WRITE (nag_std_out,'(1X,A,F7.4)') 'standard error =', std_err
! Compute the solution, assuming that A has rank 4
b = bb
CALL nag_lin_lsq_sol_qr(a,tau,b,x,pivot=pivot,rank=4,std_err=std_err)
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) 'Solution assuming that A has rank 4'
WRITE (nag_std_out,'(3X,F7.4)') x
WRITE (nag_std_out,'(1X,A,F7.4)') 'standard error =', std_err
DEALLOCATE (pivot,a,b,bb,q,tau,x) ! Deallocate storage
END PROGRAM nag_lin_lsq_ex02
```


2 Program Data

```
Example Program Data for nag_lin_lsq_ex02
    6 : Values of m, n
-0.09 0.14 -0.46 0.68 1.29
-1.56 0.20
-1.48 -0.43 0.89 -0.71 -0.96
-1.09 0.84 0.77 2.11 -1.27
    0.08
-1.59 -0.72 1.06 1.24 0.34 : End of Matrix A
-0.01
    0.04
    0.05
    -0.03
    0.02
-0.06 : End of right-hand side vector b
```


3 Program Results

```
Example Program Results for nag_lin_lsq_ex02
Matrix R
    2.8904 0.5162 -1.7198 0.2024 -1.5026
            -2.7084 -0.3648-0.0873 1.1475
                            2.2523 0.8397 -0.0060
                        -1.0086 0.7116
                                    -0.0034
Estimated condition number = 2.03E+03
Leading columns of Q
    -0.0311 -0.4822 0.2000 0.0632 -0.8302
    -0.5397 -0.2912 0.0247 -0.2609 0.3231
    -0.5120 0.2569 -0.6646-0.2520-0.3540
    -0.3771 0.3970 0.7132 -0.3491 -0.1226
        0.0277-0.6372 -0.0199 -0.5012 0.2059
    -0.5501 -0.2304 0.0932 0.7010 0.1540
Solution assuming that A has full rank
    -0.1841
    -0.3719
    -0.6189
        0.1097
    -0.2632
standard error = 0.0318
Solution assuming that A has rank 4
    -0.0370
        0.0647
        0.0000
        -0.0515
        0.0066
standard error = 0.0225
```


Example 3: Solution of a Real Linear Least-squares Problem Using the $Q R$ Factorization Followed by the SVD

This example again uses the same data as Example 1.
The program calls nag_qr_fac to perform a $Q R$ factorization of A with column pivoting, and prints the matrix R, and the estimate of its condition number.

If the problem is considered to be of full rank (for the given value of tol), the program calls nag_lin_lsq_sol_qr to solve the problem, otherwise it calls nag_lin_lsq_sol_qr_svd to use the SVD for a reliable determination of the numerical rank of the problem and to compute a minimum norm solution.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
PROGRAM nag_lin_lsq_ex03
! Example Program Text for nag_lin_lsq
! NAG fl90, Release 4. NAG Copyright 2000.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_in, nag_std_out
USE nag_lin_lsq, ONLY : nag_qr_fac, nag_lin_lsq_sol_qr, &
    nag_lin_lsq_sol_qr_svd
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Intrinsic Functions ..
INTRINSIC KIND, MIN
! .. Parameters ..
INTEGER, PARAMETER :: wp = KIND(1.ODO)
! .. Local Scalars ..
INTEGER :: i, m, n, ns, rank
REAL (wp) :: rcond, std_err, tol
! .. Local Arrays ..
INTEGER, ALLOCATABLE :: pivot(:)
REAL (wp), ALLOCATABLE :: a(:,:), b(:), tau(:), x(:)
! .. Executable Statements ..
WRITE (nag_std_out,*) 'Example Program Results for nag_lin_lsq_ex03'
READ (nag_std_in,*) ! Skip heading in data file
READ (nag_std_in,*) m, n
ns = MIN (m,n)
ALLOCATE (pivot(n),a(m,n),b(m),tau(ns),x(n)) ! Allocate storage
READ (nag_std_in,*) (a(i,:),i=1,m)
READ (nag_std_in,*) b
! Compute the QR factorization
pivot = 0
CALL nag_qr_fac(a,tau,pivot=pivot,rcond=rcond)
tol = 0.005_wp
WRITE (nag_std_out,*)
WRITE (nag_std_out,'(1X,2(A,ES11.2))') 'tol =', tol, ' rcond =', rcond
WRITE (nag_std_out,*)
IF (rcond>tol) THEN
```

```
    ! Compute the solution, assuming that A has full rank,
    ! using the QR factorization
    CALL nag_lin_lsq_sol_qr(a,tau,b,x,pivot=pivot,std_err=std_err)
    WRITE (nag_std_out,*) &
    'Solution from nag_lin_lsq_sol_qr, assuming A has full rank'
ELSE
    ! Compute the minimum norm solution using the SVD
    CALL nag_lin_lsq_sol_qr_svd(a,tau,b,x,pivot=pivot,tol=tol,rank=rank, &
    std_err=std_err)
    WRITE (nag_std_out,'(1X,A,I7)') &
    'Solution from nag_lin_lsq_sol_qr_svd, assuming A has rank', rank
END IF
WRITE (nag_std_out,'(3X,F7.4)') x
WRITE (nag_std_out,'(1X,A,F7.4)') 'standard error =', std_err
DEALLOCATE (pivot,a,b,tau,x) ! Deallocate storage
END PROGRAM nag_lin_lsq_ex03
```


2 Program Data

Example Program Data for nag_lin_lsq_ex03					
65					Values of m, n
-0.09	0.14	-0.46	0.68	1.29	
-1.56	0.20	0.29	1.09	0.51	
-1.48	-0.43	0.89	-0.71	-0.96	
-1.09	0.84	0.77	2.11	-1.27	
0.08	0.55	-1.13	0.14	1.74	
-1.59	-0.72	1.06	1.24	0.34	End of Matrix A
-0.01					
0.04					
0.05					
-0.03					
0.02					
-0.06					End of right-han

3 Program Results

Example Program Results for nag_lin_lsq_ex03

```
tol = 5.00E-03 rcond = 4.92E-04
```

Solution from nag_lin_lsq_sol_qr_svd, assuming A has rank 4
-0.0440
0.0440
-0.0293
-0.0439
-0.0062
standard error $=0.0225$

Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following additional examples, associated with this module, are available.
nag_lin_lsq_ex04
Solution of a complex linear least-squares problem with one right-hand side using the SVD.
nag_lin_lsq_ex05
Solution of a real linear least-squares problem with many right-hand sides using the SVD.
nag_lin_lsq_ex06
Solution of a complex linear least-squares problem with many right-hand sides using the SVD.
nag_lin_lsq_ex07
Solution of a complex linear least-squares problem with one right-hand side using the $Q R$ factorization.
nag_lin_lsq_ex08
Solution of a real linear least-squares problem with many right-hand sides using the $Q R$ factorization.
nag_lin_lsq_ex09
Solution of a complex linear least-squares problem with many right-hand sides using the $Q R$ factorization.
nag_lin_lsq_ex10
Solution of a complex linear least-squares problem with one right-hand side using the $Q R$ factorization followed by the SVD (rank-deficient).
nag_lin_lsq_ex11
Basic solution of a real linear least-squares problem with many right-hand sides using the $Q R$ factorization followed by the SVD.
nag_lin_lsq_ex12
Basic solution of a complex linear least-squares problem with many right-hand sides using the $Q R$ factorization followed by the SVD.

References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A, Blackford S and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia
[2] Golub G H and Van Loan C F (1989) Matrix Computations Johns Hopkins University Press (2nd Edition)

