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Linear Least-squares Problems

nag lin lsq provides procedures for solving linear least-squares problems, using either
the singular value decomposition (SVD) or the QR factorization, or a combination of the
two.

It also provides procedures for performing the QR factorization and related computational
tasks.
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Introduction

1 Notation and Background

The linear least-squares problem is to find x so as to

minimize ‖b−Ax‖2 (1)

where A is an m × n matrix, b is an m-element right-hand side vector, and x is an n-element solution
vector.

Usually, m ≥ n and rank(A) = n (that is, A has full rank), and in this case the solution x is unique; the
problem is also referred to as finding the least-squares solution to an over-determined system of linear
equations.

If m < n and rank(A) = m (again, A has full rank), there are an infinite number of solutions x which
exactly satisfy b − Ax = 0. We can restore uniqueness by imposing the additional requirement of
minimizing ‖x‖2. This problem is also referred to as finding the minimum norm solution to an under-

determined system of linear equations.

In general, if rank(A) < min(m,n) (that is, A is rank-deficient), there is a unique minimum norm

solution which minimizes both ‖b−Ax‖2 and ‖x‖2.
The minimum norm solution is not always the preferred solution to a rank-deficient problem or when
m < n. An alternative solution, which is sometimes preferable, is a solution with at most rank(A)
non-zero components; this is known as a basic solution. A basic solution is not necessarily unique.

The theoretical remarks in this section assume that the rank of A is well defined. The next section
discusses how to determine the rank in practical numerical work.

2 The SVD and the Numerical Rank of a Matrix

The most robust method for solving linear least-squares problems, allowing for the possibility that they
may be rank-deficient, is the Singular Value Decomposition (SVD).

The SVD of an m× n real or complex matrix A is given by

A = UΣV H (with V H = V T if A is real).

Here

Σ is an m × n diagonal matrix, whose min(m,n) diagonal elements are the singular values σi of
A; they are real and non-negative, and arranged in descending order:

σ1 ≥ σ2 ≥ . . . ≥ σmin(m,n) ≥ 0.

U is a real orthogonal or complex unitary matrix of order m; its leading min(m,n) columns are
the left singular vectors of A.

V is a real orthogonal or complex unitary matrix of order n; its leading min(m,n) columns are the
right singular vectors of A.

The largest singular value σ1(A) is the value of the 2-norm of A:

‖A‖2 = σ1(A)

and the ratio of the largest to the smallest singular value gives the condition number of A in the 2-norm:

κ2(A) =
σ1(A)

σmin(m,n)(A)
.

For more details about the SVD, see the module nag svd (6.3).
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In exact arithmetic, a matrix A has rank r if it has precisely r non-zero singular values; A is rank-deficient
if r < min(m,n), or, equivalently, if κ2(A) =∞.
In practical work, because of uncertainties in the data and rounding errors due to computation in finite
precision arithmetic, the numerical rank is defined to be the number of singular values which are greater
than a specified threshold.

In this module, the threshold is defined as tol ×σ1 (= tol ×‖A‖2), where tol is a tolerance supplied by
the user; tol should normally be set to the relative accuracy of the data. For example, if the elements
of the matrix A are correct to 4 significant figures, then a suitable value for tol is 5× 10−4. It follows
that A is effectively rank-deficient if κ2(A) ≥ 1/tol.
Note that the solution to the least-squares problem depends on the determination of rank, and hence on
the user-supplied tolerance tol; it may be desirable to experiment with different values of tol.

3 Solution Using the SVD

Given the SVD of A = UΣV H ,

‖b−Ax‖2 = ‖c− ΣV Hx‖2, where c = UHb.

If the numerical rank of A is r, let

c1 consist of the first r elements of c,

c2 consist of the remaining elements of c,

Σ1 be the leading r × r sub-matrix of Σ,

V1 consist of the leading r columns of V .

Then the minimum norm solution to (1) is given by

x = V1Σ
−1
1 c1

and the residual sum of squares ‖b−Ax‖22 = ‖c2‖22.

4 Solution Using QR Factorization

A cheaper route to solve problem (1) is via the QR factorization, with or without column pivoting.

In this section we assume m ≥ n (the more frequent case) for simplicity, although the procedures also
handle problems with m < n.

4.1 QR Factorization Without Column Pivoting

The QR factorization (without column pivoting) of the m× n real or complex matrix A is:

A = Q

(

R
0

)

,

where

Q is an m×m real orthogonal or complex unitary matrix,

R is an n× n upper triangular matrix.

If A has full rank n, the QR factorization can be used to solve the least-squares problem (1), since:

‖b−Ax‖2 = ‖c−QHAx‖2 =
∥

∥

∥

∥

(

c1 −Rx
c2

)∥

∥

∥

∥

2

,

where

c = QHb,

c1 consists of the first n elements of c,

c2 consists of the remaining elements of c.
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Then the unique solution x is given by:

x = R−1c1,

and the residual sum of squares ‖b−Ax‖22 = ‖c2‖22.
To check that the problem is indeed of full rank, we can check the condition number of R, since
κ2(R) = κ2(A).

4.2 QR Factorization with Column Pivoting

Rank-deficient linear least-squares problems can often be solved using the QR factorization with column

pivoting . This involves interchanging columns of A, so that the factorization takes the form:

AP = Q

(

R
0

)

,

where P is a permutation matrix. The column interchanges are chosen so that

|r11| ≥ |r22| ≥ |r33| . . . ,

and, moreover, for each k

|rkk| ≥ ‖Rk:j,j‖2 for j = k + 1, . . . ,min(m,n).

In exact arithmetic, if rank(A) = r, then

R =

(

R11 R12

0 R22

)

where R11 is the leading r× r sub-matrix, and R22 = 0. In numerical computation, we aim to determine
an index r such that R11 is well conditioned, and R22 is negligible. Note that this is not always possible,
even though the matrix is numerically rank-deficient.

If such a partition of R is possible, then a solution to the linear least-squares problem (1) is given by:

x = P

(

R−1
11 ĉ11
0

)

where ĉ1 consists of the first r elements of c = QHb. This is not a minimum-norm solution, but a basic
solution with at most r non-zero components.

5 Solution Using QR Factorization and SVD

To obtain the most reliable numerical determination of rank, and to compute a minimum-norm solution
to a rank-deficient problem, it is necessary to use the SVD, as was described in Section 3. However, if
a QR factorization of A has already been computed, this can be combined with the SVD of the n × n
upper triangular matrix R, to give the SVD of A. (If mÀ n, this can in fact be a more efficient method
for computing the SVD of A.)

Therefore the following approach is often effective:

1. Compute the QR factorization of A, with or without column pivoting.

2. If A is numerically of full rank, then compute the unique solution using the QR factorization, as
described in Section 4.1.

3. If the numerical rank of A can be clearly determined from the matrix R, and if a basic solution is
acceptable, then compute a basic solution, as described in Section 4.2.

4. Otherwise, compute the SVD of R, and use the resulting SVD of A to determine the numerical
rank and compute a solution as described in Section 3.
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6 Choice of Procedures

The procedure nag lin lsq sol is the simplest procedure to use. It solves a linear least-squares problem
in a single call, by computing the SVD of A. By default, it computes the minimum norm solution, but
it has an option to return a basic solution.

It may be followed by calls to nag lin lsq sol svd in order to try the effect of varying the tolerance
used to determine the numerical rank, or to compare a minimum norm solution with a basic solution.
nag lin lsq sol svd may also be used

• to solve a problem with the same matrix A but a different right-hand side b, without recomputing
the SVD of A;

• to solve a linear least-squares problem after the SVD of A has been computed by the procedure
nag gen svd in the module nag svd (6.3) (or calls to lower-level procedures in that module).

The remaining procedures enable a solution to be obtained using the QR factorization. Two or more
procedures must be called in succession, and care must be taken in the numerical determination of rank.

nag qr fac computes a QR factorization, optionally with column pivoting, and nag qr orth

performs related computational tasks (but is not strictly necessary for solving linear least-squares
problems); nag qr fac has an optional argument rcond which can be used to check for rank-
deficiency.

nag lin lsq sol qr solves a linear least-squares problem, assuming that a QR factorization has
already been performed by nag qr fac, and that you have determined the numerical rank of the
problem.

nag lin lsq sol qr svd solves a linear least-squares problem using the SVD, assuming that a QR
factorization of A has already been performed by nag qr fac.

Thus nag qr fac and nag lin lsq sol qr svd together can perform the same tasks as the single
procedure nag lin lsq sol (and may be more efficient if m À n). They also may be followed by
calls to nag lin lsq sol svd to try the effect of varying the tolerance, and so on.

All the relevant procedures can handle many right-hand side vectors bi and their corresponding solution
vectors xi in a single call, storing them as columns of matrices B and X respectively. Note however that
the linear least-squares problem is solved for each right-hand side vector independently ; this is not the
same as finding a matrix X which minimizes ‖B −AX‖2.
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Procedure: nag lin lsq sol

1 Description

nag lin lsq sol is a generic procedure which solves a real or complex linear least-squares problem.

Notation: the problem is to find x so as to

minimize ‖b−Ax‖2

where A is an m × n matrix, b is an m-element right-hand side vector, and x is an n-element solution
vector.

In the most usual case, m ≥ n and rank(A) = n (that is, A has full rank); the solution is then unique.

For other types of problems (when m < n or A is rank-deficient), the solution is not unique. By default
the (unique) minimum norm solution is returned; however, the procedure has options to return a basic
solution. See the Module Introduction for more details.

The procedure uses a method based on computing the SVD of A; see the Module Introduction for
definition of the SVD. It has options to return the relevant parts of the SVD, so that they can
subsequently be passed to the lower-level procedure nag lin lsq sol svd to solve additional problems
without recomputing the SVD.

2 Usage

USE nag lin lsq

CALL nag lin lsq sol(a, b, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data

Real data: a, b, x and the optional argument u are of type real(kind=wp).

Complex data: a, b, x and the optional argument u are of type complex(kind=wp).

One / many right-hand sides
One r.h.s.: b and x are rank-1 arrays, and the optional argument std err is a scalar.

Many r.h.s.: b and x are rank-2 arrays, and the optional argument std err is a rank-1
array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of equations (the number of rows of A)

n — the number of unknowns (the number of columns of A)

k — the number of right-hand sides

nU (min(m,n) ≤ nU ≤ m) — the number of columns to be computed of the matrix U

[NP3506/4] Module 6.4: nag lin lsq 6.4.7
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3.1 Mandatory Arguments

a(m,n) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the matrix A.

Output: the leading min(m,n) rows of A are overwritten by the corresponding rows of V H (the
right singular vectors of A, stored row-wise — and conjugated if complex).

b(m) / b(m, k) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: if b has rank 1, it holds the single right-hand side vector b. If b has rank 2, each of its
columns holds a right-hand side vector.

Output: each right-hand side vector b is overwritten by UHb.

Constraints: b must be of the same type as a.

x(n) / x(n, k) — real(kind=wp) / complex(kind=wp), intent(out)

Output: if x has rank 1, it holds the single solution vector x. If x has rank 2, then the ith column
holds the solution vector corresponding to the right-hand side vector in the ith column of b.

Constraints: x must be of the same type and rank as b.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

solution — character(len=1), intent(in), optional

Input: specifies the type of solution required.

If solution = 'm' or 'M', the minimum norm solution;

if solution = 'b' or 'B', a basic solution.

Default: solution = 'm'.

Constraints: solution = 'm', 'M', 'b' or 'B'.

tol — real(kind=wp), intent(in), optional

Input: the relative tolerance used to determine the rank of A. tol should be chosen as
approximately the largest relative error in the elements of A. A singular value is considered
negligible if it is less than or equal to tol×σ1 (= tol×‖A‖2).
Default: tol = EPSILON(1.0 wp).

Constraints: 0.0 ≤ tol ≤ 1.0.

rank — integer, intent(out), optional

Output: the effective rank r of the matrix A; it is the number of singular values which are not
considered negligible (see tol).

std err / std err(k) — real(kind=wp), intent(out), optional

Output: if std err is a scalar, it returns the standard error of the single solution vector x, defined
as ‖Ax− b‖2/

√
m− r if m > r, and zero if m = r, where r is the effective rank of A. If std err is

an array, then std err(i) returns the standard error of the solution vector in the ith column of x.

Constraints: if b has rank 1, std err must be a scalar; if b has rank 2, std err must be a rank-1
array.

sigma(min(m,n)) — real(kind=wp), intent(out), optional

Output: the singular values of A, in descending order.
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u(m,nU) — real(kind=wp) / complex(kind=wp), intent(out), optional

Output: the first nU columns of the matrix U . The most likely values of nU are: min(m,n), giving
the first min(m,n) columns of U (the left singular vectors); or m, giving the whole of U . U is
needed if you wish to solve additional problems with the same matrix A but different right-hand
sides, without recomputing the SVD of A.

Constraints: u must be of the same type as a.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

(This error is not likely to occur.) The QR algorithm failed to compute all the singular
values in the permitted number of iterations.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

See also Section 5 for procedure document nag lin lsq sol svd.

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag gen svd to compute the SVD of A; more precisely, nag gen svd returns
the singular values, overwrites A with the first min(m,n) rows of V H , and overwrites each right-hand
side vector b with UHb. The algorithm is derived from LAPACK (see Anderson et al. [1]).

This procedure then calls nag lin lsq sol svd to solve the linear least-squares problem. This procedure
first determines the rank r of A, using the value of tol as described in the Module Introduction. It then
computes either the minimum norm solution or a basic solution, as described in the document for
nag lin lsq sol svd.

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan
[2], Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems).

6.3 Timing

The time taken is roughly proportional to mn2 if m ≥ n, or to m2n if m ≤ n.
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Procedure: nag lin lsq sol svd

1 Description

nag lin lsq sol svd is a generic procedure which solves a real or complex linear least-squares problem,
assuming that the relevant parts of the singular value decomposition (SVD) of the coefficient matrix
have already been computed, usually by nag lin lsq sol.

This procedure can also be used following a call to nag lin lsq sol qr svd, or following a call to
nag gen svd in the module nag svd (6.3) (or calls to lower-level procedures in that module).

Notation: the problem is to find x so as to

minimize ‖b−Ax‖2

where A is an m × n matrix, b is an m-element right-hand side vector, and x is an n-element solution
vector.

Let the SVD of A be

A = UΣV T , with U and V orthogonal, if A is real;

A = UΣV H , with U and V unitary, if A is complex.

The problem is therefore equivalent to minimizing

‖c− ΣV Hx‖2

where c = UHb. This is the form in which the least-squares problem must be presented to this procedure,
following a call to nag gen svd to compute Σ, V H and c = UHb.

In the most usual case, m ≥ n and rank(A) = n (that is, A has full rank), the solution is unique.

If the problem is rank-deficient or m < n, the solution is not unique. By default the (unique) minimum
norm solution is returned; however, the procedure has options to return a basic solution. See the Module
Introduction for more details.

The procedure may be called repeatedly with different values of solution or tol, but with the other
input arguments unchanged, in order to see the difference between the two types of solution, or the effect
of changing tol.

2 Usage

USE nag lin lsq

CALL nag lin lsq sol svd(vh, sigma, c, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data

Real data: vh, c and x are of type real(kind=wp).

Complex data: vh, c and x are of type complex(kind=wp).

One / many right-hand sides
One r.h.s.: c and x are rank-1 arrays, and the optional argument std err is a scalar.

Many r.h.s.: c and x are rank-2 arrays, and the optional argument std err is a rank-1
array.
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3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of equations

n — the number of unknowns

k — the number of right-hand sides

3.1 Mandatory Arguments

vh(min(m,n), n) — real(kind=wp) / complex(kind=wp), intent(in)

Input: the leading min(m,n) rows of the matrix V H from the singular value decomposition of A—
in other words, the right singular vectors of A, stored row-wise, as returned by nag lin lsq sol,
nag lin lsq sol qr svd or nag gen svd.

sigma(min(m,n)) — real(kind=wp), intent(in)

Input: the singular values of A in descending order, as returned by nag lin lsq sol,
nag lin lsq sol qr svd or nag gen svd.

c(m) / c(m, k) — real(kind=wp) / complex(kind=wp), intent(in)

Input: if c has rank 1, it must hold the vector c = UHb, as returned by nag lin lsq sol or
nag lin lsq sol qr svd in its argument b, or by nag gen svd in its optional argument c vec; here
b is the single right-hand side vector of the original problem. If c has rank 2, it must hold the
matrix C = UHB, as returned by nag lin lsq sol or nag lin lsq sol qr svd in its argument
b, or by nag gen svd in its optional argument c mat; here each column of B is a right-hand side
vector of the original problem.

Constraints: c must be of the same type as vh.

x(n) / x(n, k) — real(kind=wp) / complex(kind=wp), intent(out)

Output: if x has rank 1, it holds the single solution vector x. If x has rank 2, then the ith column
holds the solution vector corresponding to the right-hand side vector in the ith column of c.

Constraints: x must be of the same type and rank as c.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

solution — character(len=1), intent(in), optional

Input: specifies the type of solution required.

If solution = 'm' or 'M', the minimum norm solution;

if solution = 'b' or 'B', a basic solution.

Default: solution = 'm'.

Constraints: solution = 'm', 'M', 'b' or 'B'.

tol — real(kind=wp), intent(in), optional

Input: the relative tolerance used to determine the rank of A. tol should be chosen as
approximately the largest relative error in the elements of A. A singular value is considered
negligible if it is less than or equal to tol×σ1 (= tol×‖A‖2).
Default: tol = EPSILON(1.0 wp).

Constraints: 0.0 ≤ tol ≤ 1.0.
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rank — integer, intent(out), optional

Output: the effective rank r of the matrix A; it is the number of singular values which are not
considered negligible (see tol).

std err / std err(k) — real(kind=wp), intent(out), optional

Output: if std err is a scalar, it returns the standard error of the single solution vector x, defined
as ‖Ax− b‖2/

√
m− r if m > r, and zero if m = r, where r is the effective rank of A. If std err is

an array, then std err(i) returns the standard error of the solution vector in the ith column of x.

Constraints: if c has rank 1, std err must be a scalar; if c has rank 2, std err must be a rank-1
array.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

That example illustrates calls to this procedure following a call to nag lin lsq sol: nag lin lsq sol
computes the minimum norm solution with one value of tol, and then alternative solutions to the same
problem are computed using this procedure, reusing results returned by nag lin lsq sol in the first
min(m,n) rows of a, in sigma and in b. The calls are:

tol = 0.005_wp

CALL nag_lin_lsq_sol(a,b,x_ls,sigma=sigma,tol=tol,rank=rank, &

std_err=std_err_ls)

tol = 0.0005_wp

CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_ls,tol=tol,rank=rank, &

std_err=std_err_ls)

tol = 0.005_wp

CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_b,solution=’Basic’, &

tol=tol,rank=rank,std_err=std_err_b)

The effect of the call to nag lin lsq sol could be achieved by a call to the procedure nag gen svd
followed by a call to this procedure as follows:

CALL nag_gen_svd(a,sigma,overwrite=’v’,c_vec=b)

CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_ls,tol=tol,rank=rank, &

std_err=std_err_ls)

To enable a second problem with a different right-hand side to be solved, without recomputing the SVD
of A, nag lin lsq sol must return the whole of the matrix U in an array u, of shape (m,m); this must
then be applied to the new right-hand side b to compute c = UHb. This procedure may be then be used
as follows:
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CALL nag_lin_lsq_sol(a,b,x_ls,sigma=sigma,u=u,tol=tol,rank=rank, &

std_err=std_err_ls)

READ (*,*) b ! read new right-hand side

b = Matmul(Conjg(u),b)

CALL nag_lin_lsq_sol_svd(a(:min(m,n),:),sigma,b,x_ls,tol=tol,rank=rank, &

std_err=std_err_ls)

6 Further Comments

6.1 Algorithmic Detail

The procedure first determines the numerical rank r, using the value of tol: r is the number of singular
values σi which are greater than tol × σ1.

Let:

V̂ consist of the first r columns of V ;

Σ̂ consist of the leading r × r sub-matrix of Σ;

ĉ1 consist of the first r elements of c.

If the minimum norm solution has been requested, it is computed as

x = V̂ Σ̂−1ĉ1.

If a basic solution has been requested and r < n, the procedure performs a QR factorization with column
pivoting of the r × n matrix Σ̂V̂ H :

Σ̂V̂ H = Q ( R1 R2 ) P
T

where Q is an orthogonal (or unitary) matrix of order r, R1 is upper triangular, and P is a permutation
matrix. A basic solution is then computed as:

x = P

(

R−1
1 QH ĉ1
0

)

.

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan
[2], Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems).

6.3 Timing

Computing a minimum norm solution requires O(nr) floating-point operations; computing a basic
solution is more expensive, and requires O(nr2) operations.
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Procedure: nag qr fac

1 Description

nag qr fac is a generic procedure which computes the QR factorization of a real or complex m × n
general matrix A. The factorization takes the following forms.

If m ≥ n:

A = Q

(

R
0

)

= Q1R,

where Q is an m×m real orthogonal or complex unitary matrix, Q1 consists of the first n columns
of Q, and R is an n× n upper triangular matrix.

If m < n:

A = QR = Q (R1 R2) ,

where R is upper trapezoidal, R1 is n× n upper triangular, and R2 is rectangular.

By default, the orthogonal or unitary matrix Q is represented as the product of min(m,n) elementary
reflectors; this representation can be passed to the procedure nag qr orth to perform further operations
with Q.

Note that for any k < min(m,n), the information returned in the first k columns of the array a represents
a QR factorization of the first k columns of A.

If the optional argument q is present, Q (or its leading columns if m > n) is formed explicitly and
returned in q. If m ≥ n, the first n columns of Q form an orthonormal basis for the space spanned by
the columns of A.

If the optional argument pivot is present, then the procedure computes the QR factorization of A with

column pivoting — that is, the QR factorization of A with its columns interchanged, or in other words
the QR factorization of AP , where P is a permutation matrix. The column interchanges are chosen so
that

|r11| ≥ |r22| ≥ |r33| . . . ,

and, moreover, for each k

|rkk| ≥ ‖Rk:j,j‖2 for j = k + 1, . . . ,min(m,n).

The procedure also allows specified columns of A to be moved to the leading columns of AP at the start
of the factorization and fixed there. The remaining columns are free to be interchanged so that at the
ith stage the pivot column is chosen to be the column which maximizes the 2-norm of elements i to m
over columns i to n.

The procedure can optionally return an estimate of the reciprocal of the condition number of R in the
1-norm, κ1(R) (see the optional argument rcond). If m ≥ n, the condition number of R in the 2-norm
is equal to that of A: κ2(R) = κ2(A); κ1(R) differs from κ2(R) by a factor of at most n, and hence can
be used to test whether A is near to being numerically rank-deficient.

2 Usage

USE nag lin lsq

CALL nag qr fac(a, tau [, optional arguments])
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3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of rows of A

n — the number of columns of A

nQ — the number of leading columns to be computed of the orthogonal (unitary) matrix Q

nQ must satisfy the constraint: min(m,n) ≤ nQ ≤ m; hence, if m < n, nQ = m.

3.1 Mandatory Arguments

a(m,n) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the m by n matrix A.

Output: details of the factorization.

If m ≥ n, the elements below the diagonal are overwritten by details of the matrix Q and the
upper triangle is overwritten by the corresponding elements of the n by n upper triangular
matrix R;

if m < n, the strictly lower triangular part is overwritten by details of the matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

tau(min(m,n)) — real(kind=wp) / complex(kind=wp), intent(out)

Output: further details of the transformation matrix Q; a and tau together may be required for
passing to nag qr orth, nag lin lsq sol qr or nag lin lsq sol qr svd.

Constraints: tau must be of the same type as a.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

pivot(n) — integer, intent(inout), optional

Input: if pivot(i) 6= 0, then the ith column of A is moved to the beginning of AP before the
factorization is computed and is fixed in place during the computation. Otherwise, the ith column
of A is a free column (i.e., one which may be interchanged during the computation with any other
free column).

Output: details of the permutation matrix P . More precisely, if pivot(i) = k, then the kth column
of A is moved to become the ith column of AP ; in other words, the columns of AP are the columns
of A in the order pivot(1), pivot(2), . . . , pivot(n).

Default: if pivot is absent, no columns are interchanged, i.e., the QR factorization is computed
without column pivoting.

rcond — real(kind=wp), intent(out), optional

Output: an estimate of the reciprocal of the condition number of R if m ≥ n, or of R1 if m < n (this
is less likely to be useful). If m ≥ n and rcond is less than the relative accuracy of the data, then R
is approximately singular to that working accuracy, and therefore A is numerically rank-deficient.
The reciprocal is returned rather than the condition number itself to avoid the risk of overflow.
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q(m,nQ) — real(kind=wp) / complex(kind=wp), intent(out), optional

Output: the leading nQ columns of the orthogonal or unitary matrix Q, where min(m,n) ≤ nQ ≤
m.

Constraints: q must be of the same type as a.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 2 and 3 of this module document.

The first of these examples illustrates a call to this procedure, followed by a call to nag qr orth to form
the leading columns of Q. The calls are:

CALL nag_qr_fac(a,tau,pivot=pivot,rcond=rcond)

CALL nag_qr_orth(a,tau,q=q)

The same effect could have been achieved by a single call to this procedure:

CALL nag_qr_fac(a,tau,pivot=pivot,q=q,rcond=rcond)

6 Further Comments

6.1 Algorithmic Detail

The algorithms used are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed factorization is the exact factorization of a nearby matrix A+E, where ‖E‖2 = O(ε) ‖A‖2.
If the matrix Q is computed, this differs from an exactly orthogonal (unitary) matrix by a matrix F
such that ‖F‖2 = O(ε).

The estimate of the reciprocal of the condition number returned in rcond is never less than the true
value ρ, and in practice is nearly always less than 10ρ (although examples can be constructed where the
computed estimate is much larger). Strictly speaking, the algorithm estimates the condition number in
the 1-norm, but this differs from the condition number in the 2-norm by a factor of at most n.

6.3 Timing

For real data, the total number of floating-point operations performed is roughly as follows:
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m ≥ n m < n
QR factorization: (2/3)n2(3m− n) (2/3)m2(3n−m)
Form leading n columns of Q: (2/3)n2(3m− n)
Form leading m columns of Q: 4mn(m− n) + (4/3)n3 (4/3)m3

Estimate rcond: 2cn2 2cm2

where 4 ≤ c ≤ 11.
For complex data, 4 times as many (real) floating-point operations are performed.
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Procedure: nag qr orth

1 Description

nag qr orth is intended for use following a call to nag qr fac which performs the QR factorization of a
general real or complex m× n matrix A. nag qr fac represents the orthogonal or unitary matrix Q as
the product of min(m,n) elementary reflectors:

Q = H1H2 . . . Hmin(m,n)

where

Hi = I − τiviv
H
i ;

the vector vi is stored in a(i+ 1 : m, i) and the scalar τi is stored in tau(i).

This procedure accepts this representation and may be used to carry out either or both of the following
tasks:

• form Q explicitly as a square matrix or form only its leading columns; Q can be returned either in
the optional argument q or overwritten on a.

• apply Q to a given real (complex) matrix C from the left or right, overwriting C with QC, CQ,
QHC or CQH (QH = QT for real data) or to a real (complex) vector c from the left only, overwriting
c with Qc or QHc.

2 Usage

USE nag lin lsq

CALL nag qr orth(a, tau [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of rows of the factorized matrix A

n — the number of columns of the factorized matrix A

nQ — the number of leading columns to be computed of the orthogonal (unitary) matrix Q

mC — the number of rows of C or of elements of c: mC = m if Q is applied from the left

nC — the number of columns of C: nC = m if Q is applied from the right

nQ must satisfy the constraint: min(m,n) ≤ nQ ≤ m; hence, if m < n, nQ = m.

3.1 Mandatory Arguments

a(m,n) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: details of the representation of Q as returned by nag qr fac.

Output: if q on a is present and set to .true., the leading min(m,n) columns of a are overwritten
by the leading min(m,n) columns of Q; otherwise (by default), a is unchanged.
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tau(min(m,n)) — real(kind=wp) / complex(kind=wp), intent(in)

Input: further details of the representation of Q as returned by nag qr fac.

Constraints: tau must be of the same type as a.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

q on a — logical, intent(in), optional

Input: specifies whether the leading columns of the matrix Q are to be overwritten on a.

If q on a = .true., the leading min(m,n) columns of Q are overwritten on a;

if q on a = .false., the leading nQ columns of Q are returned in q if present, or else are not
formed explicitly.

Default: q on a = .false..

q(m,nQ) — real(kind=wp) / complex(kind=wp), intent(out), optional

Output: the leading nQ columns of the orthogonal or unitary matrix Q, where min(m,n) ≤ nQ ≤
m.

Note: if q on a is present and set to .true., and q is also present, then q is not used and a warning
is raised.

Constraints: q must be of the same type as a.

side — character(len=1), intent(in), optional

Input: specifies whether Q (or QT or QH) is to be applied to C from the left or from the right
(always from the left for c).

If side = 'l' or 'L', from the left;

if side = 'r' or 'R', from the right.

Default: side = 'l'.

Constraints: if c mat is present, then side = 'l', 'L', 'r' or 'R'; if c vec is present, then side

= 'l' or 'L'. side must not be present unless c mat or c vec is present.

trans — character(len=1), intent(in), optional

Input: specifies whether Q, QT or QH is to be applied to C or c.

If trans = 'n' or 'N', Q is applied;

if trans = 't' or 'T' (real matrices only), QT is applied;

if trans = 'c' or 'C' (complex matrices only), QH is applied.

Default: trans = 'n'.

Constraints:

for the real case trans = 'n', 'N', 't' or 'T';

for the complex case trans = 'n', 'N', 'c' or 'C';

trans must not be present unless c mat or c vec is present.

c mat(mC , nC) — real(kind=wp) / complex(kind=wp), intent(inout), optional

Input: the matrix C.

Output: overwritten by QC, QTC, QHC, CQ, CQT or CQH , according to the values of side and
trans.

Constraints:

c mat must be of the same type as a;

c mat and c vec must not both be present.
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c vec(m) — real(kind=wp) / complex(kind=wp), intent(inout), optional

Input: the vector c.

Output: overwritten by Qc, QT c or QHc according to the value of trans.

Constraints:

c vec must be of the same type as a;

c mat and c vec must not both be present.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 Optional argument present but not used.

q is present when q on a is .true.; the matrix Q is returned in a, and q is not used.

102 No computation performed.

q on a is not present or is set to .false., and none of q, c mat or c vec is present;
no computation has been requested.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

In this example nag qr orth is called to form the leading columns of Q in an array q. The call is:

CALL nag_qr_orth(a,tau,q=q)

To overwrite the leading columns of Q on the array a, the call would be:

CALL nag_qr_orth(a,tau,q_on_a=.true.)

6 Further Comments

6.1 Algorithmic Detail

The algorithms used are derived from LAPACK (see Anderson et al. [1]).
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6.2 Accuracy

If the matrix Q is formed, it differs from an exactly orthogonal (unitary) matrix by a matrix E such
that ‖E‖2 = O(ε),

If the matrix C is to be transformed, the computed result differ from the exact result by a matrix F
such that ‖F‖2 = O(ε)‖C‖2.

6.3 Timing

For real data, the total number of floating-point operations performed is roughly as follows:

m ≥ n m < n
Form leading n columns of Q: (2/3)n2(3m− n)
Form leading m columns of Q: 4mn(m− n) + (4/3)n3 (4/3)m3

Compute QC or QTC: 2nCn(2m− n) 2nCm2

Compute Qc or QT c: 2n(2m− n) 2m2

Compute CQ or CQT : 2mCn(2m− n) 2mCm2

For complex data, 4 times as many (real) floating-point operations are performed.
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Procedure: nag lin lsq sol qr

1 Description

nag lin lsq sol qr is a generic procedure which solves a real or complex linear least-squares problem,
assuming that a QR factorization of the coefficient matrix has already been computed by nag qr fac.

Notation: the problem is to find x so as to

minimze ‖b−Ax‖2

where A is an m × n matrix, b is an m-element right-hand side vector, and x is an n-element solution
vector. The procedure can handle either a single right-hand side or several right-hand sides (stored as
the columns of the array b).

First, assume m ≥ n (the most usual case).

If A has rank n (that is, A has full rank), there is a unique solution. If you are sure that A has full rank
and is nowhere near to being rank-deficient (you can use the optional argument rcond in nag qr fac to
test for this), then this procedure can reliably find the solution, using a QR factorization of A without
pivoting.

However, if you are not confident that A has full rank, you should use the column pivoting option when
calling nag qr fac (that is, supply the optional argument pivot). See the Module Introduction for
advice on using the QR factorization with column pivoting for the numerical determination of rank. If A
is deemed to be of full rank n, then this procedure can find the unique solution (the optional argument
pivot must be supplied). If A is deemed to have well determined rank r < n, then a solution can be
found by setting the optional argument rank to r; this solution is a basic solution (with r non-zero
components), not a minimum norm solution. To find a minimum norm solution or to make the most
reliable numerical determination of rank, use the procedure nag lin lsq sol qr svd.

Ifm < n, the problem is equivalent to finding a solution to an underdetermined system of linear equations
Ax = b. There are an infinite number of solutions. This procedure can compute a basic solution, with
m non-zero components if A is known to have full rank m, or with r < m non-zero components if A has
well determined rank r; the column-pivoting option must be used in the QR factorization of A, and the
rank r supplied through the optional argument rank, as when m ≥ n.

2 Usage

USE nag lin lsq

CALL nag lin lsq sol qr(a, tau, b, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data

Real data: a, tau, b and x are of type real(kind=wp).

Complex data: a, tau, b and x are of type complex(kind=wp).

One / many right-hand sides
One r.h.s.: b and x are rank-1 arrays, and the optional argument std err is a scalar.

Many r.h.s.: b and x are rank-2 arrays, and the optional argument std err is a rank-1
array.

[NP3506/4] Module 6.4: nag lin lsq 6.4.23



nag lin lsq sol qr Eigenvalue and Least-squares Problems

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of equations

n — the number of unknowns

k — the number of right-hand sides

3.1 Mandatory Arguments

a(m,n) — real(kind=wp) / complex(kind=wp), intent(in)

Input: details of the QR factorization as returned by nag qr fac.

tau(min(m,n)) — real(kind=wp) / complex(kind=wp), intent(in)

Input: further details of the orthogonal matrix Q as returned by nag qr fac.

Constraints: tau must be of the same type as a.

b(m) / b(m, k) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: if b has rank 1, it holds the single right-hand side vector b. If b has rank 2, each of its
columns holds a right-hand side vector.

Output: each right-hand side vector b is overwritten by QHb.

Constraints: b must be of the same type as a.

x(n) / x(n, k) — real(kind=wp) / complex(kind=wp), intent(out)

Output: if x has rank 1, it holds the single solution vector x. If x has rank 2, then the ith column
holds the solution vector corresponding to the right-hand side vector in the ith column of b.

Constraints: x must be of the same type and rank as b.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

pivot(n) — integer, intent(in), optional

Input: details of the permutation matrix P as returned by nag qr fac if column pivoting was used.
pivot must be present in the call to this procedure, if it was present in the call to nag qr fac.

Default: it is assumed that column pivoting was not used.

Constraints: 1 ≤ pivot(i) ≤ n, for i = 1, 2, . . . , n; pivot must be present if m < n.

rank — integer, intent(in), optional

Input: the rank r of the matrix.

Default: rank = min(m,n).

Constraints: 0 ≤ rank ≤ min(m,n); rank must not be present unless pivot is present.

std err / std err(k) — real(kind=wp), intent(out), optional

Output: if std err is a scalar, it returns the standard error of the single solution vector x, defined
as ‖Ax − b‖2/

√
m− r if m > r, and zero if m = r, where r is the rank of A if supplied in rank,

or min(m,n) otherwise. If std err is an array, then std err(i) returns the standard error of the
solution vector in the ith column of x.

Constraints: if b has rank 1, std err must be a scalar; if b has rank 2, std err must be a rank-1
array.
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error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

A description of the method employed can be found in the Module Introduction.

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan
[2], Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems).

6.3 Timing

Computing a solution requires roughly 2 min(m,n) (2m−min(m,n)) + r2 floating-point operations for
real problems, and 4 times as many floating-point operations for complex problems.
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Procedure: nag lin lsq sol qr svd

1 Description

nag lin lsq sol qr svd is a generic procedure which solves a real or complex linear least-squares
problem, assuming that a QR factorization of the coefficient matrix has already been computed by
nag qr fac.

The solution is obtained by computing the SVD (Singular Value Decomposition) of the n × n upper
triangular matrix R, and combining this with the QR factorization to give the SVD of A.

nag qr fac and this procedure together provide the same facilities as the single procedure
nag lin lsq sol.

This procedure has options to return the relevant parts of the SVD so that they can subsequently
be passed to nag lin lsq sol svd to solve additional problems with the same A but different b
without recomputing the SVD of A. nag lin lsq sol qr svd may also be followed by calls to
nag lin lsq sol svd to try the effect of varying the value of tol, or to compare a minimum norm
solution with a basic solution.

2 Usage

USE nag lin lsq

CALL nag lin lsq sol qr svd(a, tau, b, x [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data

Real data: a, tau, b and x and the optional argument u are of type real(kind=wp).

Complex data: a, tau, b and x and the optional argument u are of type
complex(kind=wp).

One / many right-hand sides
One r.h.s.: b and x are rank-1 arrays, and the optional argument std err is a scalar.

Many r.h.s.: b and x are rank-2 arrays, and the optional argument std err is a rank-1
array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m — the number of equations

n — the number of unknowns

k — the number of right-hand sides

3.1 Mandatory Arguments

a(m,n) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: details of the QR factorization of A as returned by nag qr fac.

Output: the leading min(m,n) rows of the matrix of the right singular vectors V H .
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tau(min(m,n)) — real(kind=wp) / complex(kind=wp), intent(in)

Input: further details of the orthogonal matrix Q as returned by nag qr fac.

Constraints: tau must be of the same type as a.

b(m) / b(m, k) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: if b has rank 1, it holds the single right-hand side vector b. If b has rank 2, each of its
columns holds a right-hand side vector.

Output: each right-hand side vector b is overwritten by UHb.

Constraints: b must be of the same type as a.

x(n) / x(n, k) — real(kind=wp) / complex(kind=wp), intent(out)

Output: if x has rank 1, it holds the single solution vector x. If x has rank 2, then the ith column
holds the solution vector corresponding to the right-hand side vector in the ith column of b.

Constraints: x must be of the same type and rank as b.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

pivot(n) — integer, intent(in), optional

Input: details of the permutation matrix P as returned by nag qr fac if column pivoting was used.

Default: it is assumed that column pivoting was not used.

Constraints: 1 ≤ pivot(i) ≤ n, for i = 1, 2, . . . , n.

solution — character(len=1), intent(in), optional

Input: specifies the type of solution required.

If solution = 'm' or 'M', the minimum norm solution;

if solution = 'b' or 'B', a basic solution.

Default: solution = 'm'.

Constraints: solution = 'm', 'M', 'b' or 'B'.

tol — real(kind=wp), intent(in), optional

Input: the relative tolerance used to determine the rank of A. tol should be chosen as
approximately the largest relative error in the elements of A. A singular value is considered
negligible if it is less than or equal to tol×σ1 (= tol× ‖A‖2).
Default: tol = EPSILON(1.0 wp).

Constraints: 0.0 ≤ tol ≤ 1.0.

rank — integer, intent(out), optional

Output: the effective rank r of the matrix A; it is the number of singular values which are not
considered negligible (see tol).

std err / std err(k) — real(kind=wp), intent(out), optional

Output: if std err is a scalar, it returns the standard error of the single solution vector x, defined
as ‖Ax− b‖2/

√
m− r if m > r, and zero if m = r, where r is the effective rank of A. If std err is

an array, then std err(i) returns the standard error of the solution vector in the ith column of x.

Constraints: if b has rank 1, std err must be a scalar; if b has rank 2, std err must be a rank-1
array.
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sigma(min(m,n)) — real(kind=wp), intent(out), optional

Output: the singular values of A, in descending order.

u(m,nU) — real(kind=wp) / complex(kind=wp), intent(out), optional

Output: the first nU columns of the matrix U . The most likely values of nU are: min(m,n), giving
the first min(m,n) columns of U (the left singular vectors); or m, giving the whole of U . U is
needed if you wish to solve additional problems with the same matrix A but different right-hand
sides, without recomputing the SVD of A.

Constraints: u must be of the same type as a and min(m,n) ≤ nU ≤ m.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses nag gen svd to compute the SVD of R, and nag qr orth to help compute the SVD
of A, overwriting a with the first min(m,n) columns of V H and overwriting b with UHb.

This procedure then calls nag lin lsq sol svd to solve the linear least-squares problem.
nag lin lsq sol svd first determines the rank r of A, using the value of tol as described in the Module
Introduction. It then computes either the minimum norm solution or a basic solution, as described in
the document for nag lin lsq sol svd.

6.2 Accuracy

For a discussion of the sensitivity of the solution to uncertainties in the data, see Golub and Van Loan
[2] , Sections 5.3 (for full rank problems) and 5.5 (for rank-deficient problems).

6.3 Timing

The number of floating point operations required to compute the SVD of R is proportional to n3.

Given the relevant parts of the SVD of A, computing a minimum norm solution requires O(nr) floating-
point operations; computing a basic solution is more expensive, and requires O(nr2) operations.
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Example 1: Solution of a Real Linear Least-squares

Problem Using the SVD

This program calls the procedure nag lin lsq sol to compute a solution to a linear least-squares
problem using the singular value decomposition.

Assuming that the data is only accurate to within ±0.5%, tol is set to 0.005; to this tolerance, the
matrix A is numerically rank-deficient, and the minimum norm solution is returned by default.

The singular values of A are printed out. They show that with tol reduced by a factor of 10, A would
be regarded as being of full rank. The program makes a subsequent call to nag lin lsq sol svd to
compute the solution returned with tol = 0.0005.

Finally, the program calls nag lin lsq sol svd again to compute a basic solution with the original value
tol = 0.005.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_lin_lsq_ex01

! Example Program Text for nag_lin_lsq

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_lin_lsq, ONLY : nag_lin_lsq_sol, nag_lin_lsq_sol_svd

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, MIN

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n, ns, rank

REAL (wp) :: std_err_b, std_err_ls, tol

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:), sigma(:), x_b(:), x_ls(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_lin_lsq_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ns = MIN(m,n)

ALLOCATE (a(m,n),b(m),sigma(ns),x_b(n),x_ls(n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) b

! Compute the minimum norm solution with tol = 0.005

tol = 0.005_wp

CALL nag_lin_lsq_sol(a,b,x_ls,sigma=sigma,tol=tol,rank=rank, &

std_err=std_err_ls)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,F7.4)’) ’Minimum norm solution with tol =’, &

tol
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WRITE (nag_std_out,’(2X,F7.4)’) x_ls

WRITE (nag_std_out,’(1X,A,I7,A,F7.4)’) ’rank =’, rank, &

’ standard error =’, std_err_ls

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Singular values of A’

WRITE (nag_std_out,’(2X,F7.4)’) sigma

! Compute the minimum norm solution with tol = 0.0005

tol = 0.0005_wp

CALL nag_lin_lsq_sol_svd(a(:ns,:),sigma,b,x_ls,tol=tol,rank=rank, &

std_err=std_err_ls)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,F7.4)’) ’Minimum norm solution with tol =’, &

tol

WRITE (nag_std_out,’(2X,F7.4)’) x_ls

WRITE (nag_std_out,’(1X,A,I7,A,F7.4)’) ’rank =’, rank, &

’ standard error =’, std_err_ls

! Compute a basic solution with tol = 0.005

tol = 0.005_wp

CALL nag_lin_lsq_sol_svd(a(:ns,:),sigma,b,x_b,solution=’Basic’,tol=tol, &

rank=rank,std_err=std_err_b)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,F7.4)’) ’Basic solution with tol =’, tol

WRITE (nag_std_out,’(2X,F7.4)’) x_b

WRITE (nag_std_out,’(1X,A,I7,A,F7.4)’) ’rank =’, rank, &

’ standard error =’, std_err_b

DEALLOCATE (a,b,sigma,x_b,x_ls) ! Deallocate storage

END PROGRAM nag_lin_lsq_ex01

2 Program Data

Example Program Data for nag_lin_lsq_ex01

6 5 : Values of m, n

-0.09 0.14 -0.46 0.68 1.29

-1.56 0.20 0.29 1.09 0.51

-1.48 -0.43 0.89 -0.71 -0.96

-1.09 0.84 0.77 2.11 -1.27

0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 : End of Matrix A

-0.01

0.04

0.05

-0.03

0.02

-0.06 : End of right-hand side vector b
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3 Program Results

Example Program Results for nag_lin_lsq_ex01

Minimum norm solution with tol = 0.0050

-0.0440

0.0440

-0.0293

-0.0439

-0.0062

rank = 4 standard error = 0.0225

Singular values of A

3.9997

2.9962

2.0001

0.9988

0.0025

Minimum norm solution with tol = 0.0005

-0.1841

-0.3719

-0.6189

0.1097

-0.2632

rank = 5 standard error = 0.0318

Basic solution with tol = 0.0050

-0.0370

0.0647

0.0000

-0.0515

0.0066

rank = 4 standard error = 0.0225
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Example 2: Solution of a Real Linear Least-squares

Problem Using the QR Factorization

This example uses the same data as Example 1.

The program calls nag qr fac to perform a QR factorization of A with column pivoting, and prints the
matrix R. It calls nag qr orth to compute the leading columns of Q for illustration, and prints them,
although they are not needed for solving the linear least-squares problem.

The program then calls nag lin lsq sol qr to compute a solution, assuming that the problem is of full
rank.

However, the estimate of the condition number shows that if the data are only known to an accuracy
of ±0.5% (1 part in 200), the problem should be regarded as rank-deficient. Inspection of the matrix
R shows a clear separation between the leading 4 × 4 sub-matrix and the (5,5) element. The program
calls nag lin lsq sol qr a second time with rank = 4; note that a copy of the original right-hand side
b must be kept for this second call.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_lin_lsq_ex02

! Example Program Text for nag_lin_lsq

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_lin_lsq, ONLY : nag_qr_fac, nag_qr_orth, nag_lin_lsq_sol_qr

USE nag_write_mat, ONLY : nag_write_gen_mat, nag_write_tri_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, MIN

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n, ns

REAL (wp) :: rcond, std_err

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: pivot(:)

REAL (wp), ALLOCATABLE :: a(:,:), b(:), bb(:), q(:,:), tau(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_lin_lsq_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ns = MIN(m,n)

ALLOCATE (pivot(n),a(m,n),b(m),bb(m),q(m,ns),tau(ns), &

x(n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) b

bb = b

! Compute the QR factorization

pivot = 0
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CALL nag_qr_fac(a,tau,pivot=pivot,rcond=rcond)

WRITE (nag_std_out,*)

CALL nag_write_tri_mat(’upper’,a(:n,:),format=’(1X,F7.4)’, &

title=’Matrix R’)

WRITE (nag_std_out,’(1X,A,ES11.2)’) ’Estimated condition number =’, &

1/rcond

! Compute the leading min(m,n) columns of Q

CALL nag_qr_orth(a,tau,q=q)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(q,format=’(1X,F7.4)’,title=’Leading columns of Q’ &

)

! Compute the solution, assuming that A has full rank

CALL nag_lin_lsq_sol_qr(a,tau,b,x,pivot=pivot,std_err=std_err)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Solution assuming that A has full rank’

WRITE (nag_std_out,’(3X,F7.4)’) x

WRITE (nag_std_out,’(1X,A,F7.4)’) ’standard error =’, std_err

! Compute the solution, assuming that A has rank 4

b = bb

CALL nag_lin_lsq_sol_qr(a,tau,b,x,pivot=pivot,rank=4,std_err=std_err)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Solution assuming that A has rank 4’

WRITE (nag_std_out,’(3X,F7.4)’) x

WRITE (nag_std_out,’(1X,A,F7.4)’) ’standard error =’, std_err

DEALLOCATE (pivot,a,b,bb,q,tau,x) ! Deallocate storage

END PROGRAM nag_lin_lsq_ex02

2 Program Data

Example Program Data for nag_lin_lsq_ex02

6 5 : Values of m, n

-0.09 0.14 -0.46 0.68 1.29

-1.56 0.20 0.29 1.09 0.51

-1.48 -0.43 0.89 -0.71 -0.96

-1.09 0.84 0.77 2.11 -1.27

0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 : End of Matrix A

-0.01

0.04

0.05

-0.03

0.02

-0.06 : End of right-hand side vector b
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3 Program Results

Example Program Results for nag_lin_lsq_ex02

Matrix R

2.8904 0.5162 -1.7198 0.2024 -1.5026

-2.7084 -0.3648 -0.0873 1.1475

2.2523 0.8397 -0.0060

-1.0086 0.7116

-0.0034

Estimated condition number = 2.03E+03

Leading columns of Q

-0.0311 -0.4822 0.2000 0.0632 -0.8302

-0.5397 -0.2912 0.0247 -0.2609 0.3231

-0.5120 0.2569 -0.6646 -0.2520 -0.3540

-0.3771 0.3970 0.7132 -0.3491 -0.1226

0.0277 -0.6372 -0.0199 -0.5012 0.2059

-0.5501 -0.2304 0.0932 0.7010 0.1540

Solution assuming that A has full rank

-0.1841

-0.3719

-0.6189

0.1097

-0.2632

standard error = 0.0318

Solution assuming that A has rank 4

-0.0370

0.0647

0.0000

-0.0515

0.0066

standard error = 0.0225
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Example 3: Solution of a Real Linear Least-squares Problem

Using the QR Factorization Followed by the SVD

This example again uses the same data as Example 1.

The program calls nag qr fac to perform a QR factorization of A with column pivoting, and prints the
matrix R, and the estimate of its condition number.

If the problem is considered to be of full rank (for the given value of tol), the program calls
nag lin lsq sol qr to solve the problem, otherwise it calls nag lin lsq sol qr svd to use the SVD for
a reliable determination of the numerical rank of the problem and to compute a minimum norm solution.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_lin_lsq_ex03

! Example Program Text for nag_lin_lsq

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_lin_lsq, ONLY : nag_qr_fac, nag_lin_lsq_sol_qr, &

nag_lin_lsq_sol_qr_svd

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, MIN

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n, ns, rank

REAL (wp) :: rcond, std_err, tol

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: pivot(:)

REAL (wp), ALLOCATABLE :: a(:,:), b(:), tau(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_lin_lsq_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ns = MIN(m,n)

ALLOCATE (pivot(n),a(m,n),b(m),tau(ns),x(n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) b

! Compute the QR factorization

pivot = 0

CALL nag_qr_fac(a,tau,pivot=pivot,rcond=rcond)

tol = 0.005_wp

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,2(A,ES11.2))’) ’tol =’, tol, ’ rcond =’, rcond

WRITE (nag_std_out,*)

IF (rcond>tol) THEN
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! Compute the solution, assuming that A has full rank,

! using the QR factorization

CALL nag_lin_lsq_sol_qr(a,tau,b,x,pivot=pivot,std_err=std_err)

WRITE (nag_std_out,*) &

’Solution from nag_lin_lsq_sol_qr, assuming A has full rank’

ELSE

! Compute the minimum norm solution using the SVD

CALL nag_lin_lsq_sol_qr_svd(a,tau,b,x,pivot=pivot,tol=tol,rank=rank, &

std_err=std_err)

WRITE (nag_std_out,’(1X,A,I7)’) &

’Solution from nag_lin_lsq_sol_qr_svd, assuming A has rank’, rank

END IF

WRITE (nag_std_out,’(3X,F7.4)’) x

WRITE (nag_std_out,’(1X,A,F7.4)’) ’standard error =’, std_err

DEALLOCATE (pivot,a,b,tau,x) ! Deallocate storage

END PROGRAM nag_lin_lsq_ex03

2 Program Data

Example Program Data for nag_lin_lsq_ex03

6 5 : Values of m, n

-0.09 0.14 -0.46 0.68 1.29

-1.56 0.20 0.29 1.09 0.51

-1.48 -0.43 0.89 -0.71 -0.96

-1.09 0.84 0.77 2.11 -1.27

0.08 0.55 -1.13 0.14 1.74

-1.59 -0.72 1.06 1.24 0.34 : End of Matrix A

-0.01

0.04

0.05

-0.03

0.02

-0.06 : End of right-hand side vector b

3 Program Results

Example Program Results for nag_lin_lsq_ex03

tol = 5.00E-03 rcond = 4.92E-04

Solution from nag_lin_lsq_sol_qr_svd, assuming A has rank 4

-0.0440

0.0440

-0.0293

-0.0439

-0.0062

standard error = 0.0225
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Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag lin lsq ex04

Solution of a complex linear least-squares problem with one right-hand side using the SVD.

nag lin lsq ex05

Solution of a real linear least-squares problem with many right-hand sides using the SVD.

nag lin lsq ex06

Solution of a complex linear least-squares problem with many right-hand sides using the SVD.

nag lin lsq ex07

Solution of a complex linear least-squares problem with one right-hand side using the QR
factorization.

nag lin lsq ex08

Solution of a real linear least-squares problem with many right-hand sides using the QR
factorization.

nag lin lsq ex09

Solution of a complex linear least-squares problem with many right-hand sides using the QR
factorization.

nag lin lsq ex10

Solution of a complex linear least-squares problem with one right-hand side using the QR
factorization followed by the SVD (rank-deficient).

nag lin lsq ex11

Basic solution of a real linear least-squares problem with many right-hand sides using the QR
factorization followed by the SVD.

nag lin lsq ex12

Basic solution of a complex linear least-squares problem with many right-hand sides using the QR
factorization followed by the SVD.
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