
Eigenvalue and Least-squares Problems Module Contents

Module 6.6: nag nsym gen eig

Nonsymmetric Generalized Eigenvalue Problems

nag nsym gen eig provides procedures for solving nonsymmetric generalized eigenvalue
problems

Ax = λBx,

where A and B are general real or complex square matrices, and for computing the related
generalized Schur factorization of the pencil A − λB.

Contents

Introduction . 6.6.3

Procedures

nag nsym gen eig all . 6.6.5
All eigenvalues, and optionally eigenvectors, of a real or complex nonsymmetric
generalized eigenvalue problem

nag gen schur fac . 6.6.9
Generalized Schur factorization of a real or complex matrix pencil

Examples

Example 1: Eigenvalues and eigenvectors of a real nonsymmetric generalized eigenvalue
problem . 6.6.13

Example 2: Generalized Schur factorization of a real matrix pencil . 6.6.15

Additional Examples . 6.6.19

References . 6.6.20

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.1

Module Contents Eigenvalue and Least-squares Problems

6.6.2 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Module Introduction

Introduction

1 Notation and Background

The generalized eigenvalue problem is to find the eigenvalues λ, and the corresponding eigenvectors x,
satisfying

Ax = λBx, x �= 0, (1)

where A and B are real or complex square matrices. We also refer to the pencil A− λB (that is the set
of all matrices A−λB where λ is a complex scalar), and to the eigenvalues of the pencil which are those
values λ such that det(A − λB) = 0.

If A and B are known to be real symmetric or complex Hermitian, and B positive definite, you should
turn to the module nag sym gen eig (6.5) because in these cases the problem has special properties and
it is desirable to take advantage of them (in particular, the eigenvalues are real).

This module is intended for nonsymmetric generalized eigenvalue problems , when A and B are not known
to satisfy the conditions for using nag sym gen eig. (Strictly speaking, when A and B are complex, we
should talk of non-Hermitian problems.)

The eigenvalues and eigenvectors may be complex, even when A and B are real. If A and B are real,
complex eigenvalues and eigenvectors always occur in complex conjugate pairs; if x is an eigenvector
corresponding to the complex eigenvalue λ, then the complex conjugate vector x̄ is the eigenvector
corresponding to λ̄:

Ax = λBx and Ax̄ = λ̄Bx̄.

An eigenvector x defined in (1) is sometimes referred to as a right eigenvector . A left eigenvector y is
defined by:

yHA = λyHB or equivalently AHy = λ̄BHy.

Thus a left eigenvector of A−λB is a right eigenvector of AH −λBH (= AT −λBT if A and B are real).

Generalized eigenvalue problems exhibit a wider range of behaviour than standard eigenvalue problems
(which result when B = I).

1. Infinite eigenvalues: the equation (1) may be re-written

µAx = Bx, where µ = 1/λ.

We say that λ is an infinite eigenvalue of the pencil A − λB if and only if µ is a zero eigenvalue
of the pencil B − µA. In this case, if x is the corresponding right eigenvector, then Bx = 0, so B
must be singular and x is a null vector of B.

2. Singular pencils: if A and B are both singular and have a common null space, then for any vector
x in this null space, Ax = λBx = 0 for all values of λ. The pencil A − λB is called a singular
pencil. See Wilkinson [4] for a discussion of the difficulties that can arise with pencils that are
singular or almost singular.

To cope with infinite eigenvalues and singular pencils, the procedures in this module do not compute
the eigenvalues λi directly, but return scalars αi and βi such that

βiAxi = αiBxi, for i = 1, . . . , n.

For finite eigenvalues, λi = αi/βi.

Infinite eigenvalues are indicated by a zero value (or in practice a very small value) of βi.

Singular pencils are generally indicated by zero values (or in practice very small values) of both αi and
βi.

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.3

Module Introduction Eigenvalue and Least-squares Problems

2 Generalized Schur Factorization

An important tool for solving nonsymmetric generalized eigenvalue problems is the generalized Schur
factorization of the pencil A − λB (also referred to as the generalized Schur decomposition). This is
defined as follows:

if A and B are real,

A = QTZT and B = QSZT ,

with T real upper quasi-triangular , S real upper triangular, and Q and Z orthogonal;

if A and B are complex,

A = QTZH and B = QSZH ,

with T and S complex upper triangular, and Q and Z unitary.

The pencil T − λS is called the generalized Schur form of A − λB. The diagonal elements of S are the
scalars βi referred to above. If A − λB is complex, or if A − λB is real and all its eigenvalues are real,
then T is upper triangular, and the diagonal elements of T are the scalars αi. If A− λB is real and has
complex conjugate pairs of eigenvalues, then, corresponding to each such pair, T has a 2 × 2 block on
the diagonal; the eigenvalues of the diagonal blocks of T − λS are the complex eigenvalues of A − λB.

The columns of Q are the left Schur vectors , and the columns of Z are the right Schur vectors. The
Schur vectors are mutually orthogonal, unlike the eigenvectors, so they are often more satisfactory to
work with in numerical computation.

The eigenvalues of T −λS are the same as the eigenvalues of A−λB; if x is a right eigenvector of T −λS,
then Zx is a right eigenvector of A−λB; if y is a left eigenvector of T −λS, then Qy is a left eigenvector
of A − λB.

3 Choice of Procedures

Two procedures are provided in this module. They can be used for the following computations:

All eigenvalues of A − λB (nag nsym gen eig all)

All eigenvalues and eigenvectors ofA−λB (right, left or both) (nag nsym gen eig allwith optional
arguments)

Generalized Schur form of A − λB (nag gen schur fac)

Generalized Schur form and vectors (right, left or both) of A − λB (nag gen schur fac
with optional arguments)

6.6.4 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag nsym gen eig all

Procedure: nag nsym gen eig all

1 Description

nag nsym gen eig all is a generic procedure which computes all the eigenvalues, and optionally all the
left or right eigenvectors, of a real or complex generalized eigenvalue problem.

Let A and B be real or complex square matrices of order n. We write:

βiAxi = αiBxi, for i = 1, . . . , n, for the right eigenvectors xi;

βiy
H
i A = αiy

H
i B, for i = 1, . . . , n, for the left eigenvectors yi.

In exact arithmetic:

• βi �= 0 indicates a finite eigenvalue λi = αi/βi;

• βi = 0 and αi �= 0 indicates an infinite eigenvalue;

• αi = βi = 0 indicates that the pencil is singular.

In finite-precision arithmetic, particular care must be taken if αi and βi are both small (compared with
‖A‖ and ‖B‖): this indicates that the pencil is almost singular, and it may be that no reliance can be
placed on the values of any of the other eigenvalues λj = αj/βj (see Wilkinson [4]).

The values αi and the eigenvectors xi or yi may be complex, even when A and B are real. They are
always returned in complex arrays.

By default, only values αi and βi are computed. Optionally, either the right or left eigenvectors, or both,
may be computed.

Each (left or right) eigenvector x is normalized so that ‖x‖2 = 1 and the element of largest absolute
value is real and positive.

2 Usage

USE nag nsym gen eig

CALL nag nsym gen eig all(a, b, alpha, beta [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrices A and B

3.1 Mandatory Arguments

a(n, n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the general matrix A.
Output: overwritten by intermediate results.

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.5

nag nsym gen eig all Eigenvalue and Least-squares Problems

b(n, n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the general matrix B.
Output: overwritten by intermediate results.
Constraints: b must be of the same type as a.

alpha(n) — complex(kind=wp), intent(out)
Output: the values αi.

beta(n) — real(kind=wp), intent(out)
Output: the values βi.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

vr(n, n) — complex(kind=wp), intent(out), optional
Output: the right eigenvectors. The ith column vr(:, i) holds the right eigenvector corresponding
to the eigenvalue λi (= αi/βi).
Constraints: vr must be of the same type as a.

vl(n, n) — complex(kind=wp), intent(out), optional
Output: the left eigenvectors. The ith column vl(:, i) holds the left eigenvector corresponding to
the eigenvalue λi (= αi/βi).
Constraints: vl must be of the same type as a.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

The QZ algorithm failed to compute all the eigenvalues in the permitted number of
iterations.

6.6.6 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag nsym gen eig all

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

In that example, the following call statement is used to compute eigenvalues and right eigenvectors:

CALL nag_gen_nsym_eig_all(a, b, alpha, beta, vr=vr)

To compute eigenvalues only, the call statement should be changed to:

CALL nag_gen_nsym_eig_all(a, b, alpha, beta)

To compute left eigenvectors as well as right eigenvectors, a suitable array vl must be declared, and the
call statement changed to:

CALL nag_nsym_eig_all(a, b, alpha, beta, vr=vr, vl=vl)

6 Further Comments

6.1 Algorithmic Detail

The procedure performs the following steps (see Chapter 7 of Golub and Van Loan [2] for more details).

1. It balances the pencil, using diagonal transformations to try to make the norms of the rows and
columns of A and B as close to 1 as possible.

2. It reduces the balanced pencil Ã − λB̃ by an orthogonal or unitary transformation to a pencil
H−λK, where H is upper Hessenberg and K is upper triangular: Ã = Q1HZH

1 and B̃ = Q1KZH
1 .

H − λK has the same eigenvalues as A− λB. If left eigenvectors are required, it forms the matrix
Q1; if right eigenvectors are required, it forms the matrix Z1.

3. If only eigenvalues are required, it applies the QZ algorithm to compute the values αi and βi.

4. If eigenvectors are required, it applies the QZ algorithm to reduce the upper Hessenberg matrix H
to quasi-triangular form while maintaining K in upper triangular form. This gives the generalized
Schur factorization of H − λK: H = Q2TZH

2 and K = Q2SZH
2 . If left eigenvectors are required,

the matrix Q = Q1Q2 is formed; if right eigenvectors are required, the matrix Z = Z1Z2 is formed.

5. It then computes the required eigenvectors of the pencil T − λS by backward substitution; it pre-
multiplies left eigenvectors by Q and right eigenvectors by Z to give eigenvectors of the balanced
pencil Ã − λB̃. Finally it transforms them to eigenvectors of the original pencil A − λB.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed eigenvalues are always exact for a perturbed problem (A + δA)x = λ(B + δB)x, where
‖δA‖/‖A‖ and ‖δB‖/‖B‖ are of the order of the machine precision, EPSILON(1.0 wp). For a discussion
of the sensitivity of the problem to perturbations in the data, see Stewart and Sun [3].

6.3 Timing

The time taken by the procedure is approximately proportional to n3. Computing both eigenvalues and
eigenvectors is likely to take about twice as long as computing eigenvalues alone.

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.7

nag nsym gen eig all Eigenvalue and Least-squares Problems

6.6.8 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag gen schur fac

Procedure: nag gen schur fac

1 Description

nag gen schur fac is a generic procedure which computes part or all of the generalized Schur
factorization of a matrix pencil A− λB, where A and B are real or complex square matrices of order n.

We write the generalized Schur factorization as follows:

if A and B are real,

A = QTZT and B = QSZT ,

with T real upper quasi-triangular , S real upper triangular, and Q and Z orthogonal;

if A and B are complex,

A = QTZH and B = QSZH ,

with T and S complex upper triangular, and Q and Z unitary.

See the Module Introduction for more details.

By default, only the matrices T and S of the generalized Schur form are computed. Optionally, the
matrix Q of left Schur vectors, or the matrix Z of right Schur vectors, or both, may be computed; and
the values αi and βi may be extracted from T and S and stored in separate arrays. If only the eigenvalues
are required, it is more efficient to call nag nsym gen eig all.

2 Usage

USE nag nsym gen eig

CALL nag gen schur fac(a, b [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrices A and B

3.1 Mandatory Arguments

a(n, n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the general matrix A.
Output: the matrix T of the generalized Schur form.

b(n, n) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the general matrix B.
Output: the matrix S of the generalized Schur form.
Constraints: b must be of the same type as a.

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.9

nag gen schur fac Eigenvalue and Least-squares Problems

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

alpha(n) — complex(kind=wp), intent(out), optional
Output: the values αi.

beta(n) — real(kind=wp), intent(out), optional
Output: the values βi.
Constraints: alpha and beta must both be present or both absent.

q(n, n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the matrix Q of left Schur vectors.
Constraints: q must be of the same type as a.

z(n, n) — real(kind=wp) / complex(kind=wp), intent(out), optional
Output: the matrix Z of right Schur vectors.
Constraints: z must be of the same type as a.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Failure to converge.

The QZ algorithm failed to compute all the eigenvalues in the permitted number of
iterations.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6.6.10 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems nag gen schur fac

6 Further Comments

6.1 Algorithmic Detail

The procedure performs the following steps (see Chapter 7 of Golub and Van Loan [2] for more details).

1. It reduces the pencil A − λB by an orthogonal or unitary transformation to a pencil H − λK,
where H is upper Hessenberg and K is upper triangular: A = Q1HZH

1 and B = Q1KZH
1 . If left

Schur vectors are required, it forms the matrix Q1; if right Schur vectors are required, it forms the
matrix Z1.

2. It applies the QZ algorithm to reduce the upper Hessenberg matrix H to quasi-triangular form
while maintaining K in upper triangular form. This gives the generalized Schur factorization of
H −λK: H = Q2TZH

2 and K = Q2SZH
2 . If left Schur vectors are required, the matrix Q = Q1Q2

is formed; if right Schur vectors are required, the matrix Z = Z1Z2 is formed.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed decomposition is the exact decomposition of a perturbed pencil (A + δA) −
λ(B + δB), where ‖δA‖/‖A‖ and ‖δB‖/‖B‖ are of the order of the machine precision,
EPSILON(1.0 wp). For a discussion of the sensitivity of the problem to perturbations in the data,
see Stewart and Sun [3].

6.3 Timing

The time taken by the procedure is approximately proportional to n3. Computing both eigenvalues and
Schur vectors is likely to take about twice as long as computing eigenvalues alone.

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.11

nag gen schur fac Eigenvalue and Least-squares Problems

6.6.12 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Example 1

Example 1: Eigenvalues and eigenvectors of a real
nonsymmetric generalized eigenvalue problem

Compute all the eigenvalues and the right eigenvectors of a real nonsymmetric generalized eigenvalue
problem Az = λBz.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_nsym_gen_eig_ex01

! Example Program Text for nag_nsym_gen_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_nsym_gen_eig, ONLY : nag_nsym_gen_eig_all

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:,:), beta(:)

COMPLEX (wp), ALLOCATABLE :: alpha(:), vr(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_nsym_gen_eig_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (a(n,n),b(n,n),alpha(n),beta(n),vr(n,n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,n)

READ (nag_std_in,*) (b(i,:),i=1,n)

! Compute the right eigenvectors

CALL nag_nsym_gen_eig_all(a,b,alpha,beta,vr=vr)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Eigenvalues’

WRITE (nag_std_out,’(1X,"(",F7.4,",",F7.4,")")’) alpha/beta

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(vr,int_col_labels=.TRUE.,format=’(F7.4)’, &

title=’Matrix of right eigenvectors (one vector per column)’)

DEALLOCATE (a,b,alpha,beta,vr) ! Deallocate storage

END PROGRAM nag_nsym_gen_eig_ex01

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.13

Example 1 Eigenvalue and Least-squares Problems

2 Program Data
Example Program Data for nag_nsym_gen_eig_ex01

4 :Value of n

3.9 12.5 -34.5 -0.5

4.3 21.5 -47.5 7.5

4.3 21.5 -43.5 3.5

4.4 26.0 -46.0 6.0 :End of matrix A

1.0 2.0 -3.0 1.0

1.0 3.0 -5.0 4.0

1.0 3.0 -4.0 3.0

1.0 3.0 -4.0 4.0 :End of matrix B

3 Program Results
Example Program Results for nag_nsym_gen_eig_ex01

Eigenvalues

(2.0000, 0.0000)

(3.0000, 4.0000)

(3.0000,-4.0000)

(4.0000, 0.0000)

Matrix of right eigenvectors (one vector per column)

1 2 3 4

(0.9961, 0.0000) (0.9449, 0.0000) (0.9449, 0.0000) (0.9875, 0.0000)

(0.0057, 0.0000) (0.1890, 0.0000) (0.1890, 0.0000) (0.0110, 0.0000)

(0.0626, 0.0000) (0.1134,-0.1512) (0.1134, 0.1512) (-0.0329, 0.0000)

(0.0626, 0.0000) (0.1134,-0.1512) (0.1134, 0.1512) (0.1536, 0.0000)

6.6.14 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Example 2

Example 2: Generalized Schur factorization
of a real matrix pencil

Compute the generalized Schur factorization of a real matrix pencil A − λB.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_nsym_gen_eig_ex02

! Example Program Text for nag_nsym_gen_eig

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_nsym_gen_eig, ONLY : nag_gen_schur_fac

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:,:), beta(:), q(:,:), z(:,:)

COMPLEX (wp), ALLOCATABLE :: alpha(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_nsym_gen_eig_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (a(n,n),b(n,n),alpha(n),beta(n),q(n,n), &

z(n,n)) ! Allocate storage

READ (nag_std_in,*) (a(i,:),i=1,n)

READ (nag_std_in,*) (b(i,:),i=1,n)

! Compute the generalized Schur factorization

CALL nag_gen_schur_fac(a,b,alpha=alpha,beta=beta,q=q,z=z)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Eigenvalues’

WRITE (nag_std_out,’(1X,"(",F7.4,",",F7.4,")")’) alpha/beta

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(a,int_col_labels=.TRUE.,format=’(F11.4)’, &

title=’generalized Schur form of A’)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(b,int_col_labels=.TRUE.,format=’(F11.4)’, &

title=’generalized Schur form of B’)

WRITE (nag_std_out,*)

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.15

Example 2 Eigenvalue and Least-squares Problems

CALL nag_write_gen_mat(q,int_col_labels=.TRUE.,format=’(F11.4)’, &

title=’Matrix of left Schur vectors (one vector per column)’)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,int_col_labels=.TRUE.,format=’(F11.4)’, &

title=’Matrix of right Schur vectors (one vector per column)’)

DEALLOCATE (a,b,alpha,beta,q,z) ! Deallocate storage

END PROGRAM nag_nsym_gen_eig_ex02

2 Program Data
Example Program Data for nag_nsym_gen_eig_ex02

4 :Value of n

3.9 12.5 -34.5 -0.5

4.3 21.5 -47.5 7.5

4.3 21.5 -43.5 3.5

4.4 26.0 -46.0 6.0 :End of matrix A

1.0 2.0 -3.0 1.0

1.0 3.0 -5.0 4.0

1.0 3.0 -4.0 3.0

1.0 3.0 -4.0 4.0 :End of matrix B

3 Program Results
Example Program Results for nag_nsym_gen_eig_ex02

Eigenvalues

(2.0000, 0.0000)

(3.0000, 4.0000)

(3.0000,-4.0000)

(4.0000, 0.0000)

generalized Schur form of A

1 2 3 4

3.8009 -31.3260 61.4846 -66.8359

0.0000 3.3505 7.0744 -6.6922

0.0000 -1.1918 1.4098 -4.3790

0.0000 0.0000 0.0000 4.0000

generalized Schur form of B

1 2 3 4

1.9005 1.0777 5.6252 -9.9873

0.0000 1.1761 0.0000 -1.7511

0.0000 0.0000 0.4474 -1.0901

0.0000 0.0000 0.0000 1.0000

Matrix of left Schur vectors (one vector per column)

1 2 3 4

0.4642 -0.8116 -0.3547 0.0000

0.5002 0.0697 0.4950 -0.7071

0.5002 0.0697 0.4950 0.7071

0.5331 0.5758 -0.6198 0.0000

Matrix of right Schur vectors (one vector per column)

1 2 3 4

0.9961 -0.0818 0.0343 0.0000

0.0057 0.4445 0.8957 0.0000

6.6.16 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Example 2

0.0626 0.6307 -0.3134 0.7071

0.0626 0.6307 -0.3134 -0.7071

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.17

Example 2 Eigenvalue and Least-squares Problems

6.6.18 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

Eigenvalue and Least-squares Problems Additional Examples

Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag nsym gen eig ex03

Computes the generalized Schur factorization of a complex matrix pencil.

nag nsym gen eig ex04

Computes all the eigenvalues and both the right and the left eigenvectors of a complex
nonsymmetric generalized eigenvalue problem Az = λBz.

[NP3245/3/pdf] Module 6.6: nag nsym gen eig 6.6.19

References Eigenvalue and Least-squares Problems

References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Ostrouchov S and Sorensen D (1995) LAPACK Users’ Guide (2nd Edition) SIAM,
Philadelphia

[2] Golub G H and Van Loan C F (1989) Matrix Computations Johns Hopkins University Press (2nd
Edition)

[3] Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press

[4] Wilkinson J H (1979) Kronecker’s canonical form and the QZ algorithm Linear Algebra Appl. 28
285–303

6.6.20 Module 6.6: nag nsym gen eig [NP3245/3/pdf]

