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Module 7.1: nag fft

Discrete Fourier Transforms

nag fft provides procedures for computations involving the one-dimensional discrete
Fourier transform of real, Hermitian or complex data values and the two-dimensional
and three-dimensional discrete Fourier transform of complex data values. It also provides
utility procedures for computations involving Fourier transforms.
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Introduction

1 The Discrete Fourier Transform (DFT)

The one-dimensional DFT of a sequence of n values zj , j = 0, 1, . . . , n − 1, is defined in this module by

ẑk =
1√
n

n−1∑
j=0

zj exp
(
−2πijk

n

)
, (1)

for k = 0, 1, . . . , n − 1. The original values zj and the transformed values ẑk are, in general, complex.

The two-dimensional DFT of a bivariate sequence of data values zj1j2 , for j1 = 0, 1, . . . ,m − 1;
j2 = 0, 1, . . . , n − 1, is defined similarly by

ẑk1k2 =
1√
mn

m−1∑
j1=0

n−1∑
j2=0

zj1j2 exp
(
−2πi

(
j1k1

m
+

j2k2

n

))
, (2)

for k1 = 0, 1, . . . ,m − 1; k2 = 0, 1, . . . , n − 1.

The three-dimensional DFT of a trivariate sequence of data values zj1j2j3 , where j1 = 0, 1, . . . ,m − 1,
j2 = 0, 1, . . . , n − 1, j3 = 0, 1, . . . , p − 1, is defined similarly by

ẑk1k2k3 =
1√
mnp

m−1∑
j1=0

n−1∑
j2=0

p−1∑
j3=0

zj1j2j3 × exp
(
−2πi

(
j1k1

m
+

j2k2

n
+

j3k3

p

))
, (3)

for k1 = 0, 1, . . . ,m − 1, k2 = 0, 1, . . . , n − 1, k3 = 0, 1, . . . , p − 1.

The DFT is sometimes defined using a positive sign in the exponential term, which gives the inverse of
(1), (2) and (3). Note also the scale factors 1/

√
n in (1), 1/

√
mn in (2) and 1/

√
mnp in (3); often the

DFT is defined without these scale factors, but with scale factors 1/n, 1/mn and 1/mnp in the inverses.

The procedures in this module evaluate the DFT by using the fast Fourier transform (FFT) algorithm
(see Gentleman and Sande [5] and Brigham [1]); for general advice on the use of Fourier transforms see
Hamming [4].

2 Types of Sequences

The sequence of data values in (1) can be either real, complex or complex Hermitian. Hermitian
sequences, zj , j = 0, 1, . . . , n− 1, of length n have the property that z0 is always real and zj = zn−j , for
j = 1, . . . , n/2. This means that if n is even zn/2 is real. Hermitian sequences are sometimes also called
half-complex or conjugate symmetric.

The following shows how the transformed sequence depends on the original data.

• A complex data sequence gives a complex transformed sequence.

• A Hermitian sequence gives a real transformed sequence.

• A real data sequence gives a Hermitian transformed sequence.

The FFT procedures in this module are classified as either basic or general . The basic procedures
overwrite the Fourier transform on the original input data, and also represent Hermitian sequences with
the compact real storage scheme outlined in Section 3. The general procedures do not use compact
storage; they are functions which return either the Fourier transform or its inverse.

The general procedures are functions and they are as follows.

• The procedure nag fft 1d computes the transform (1) applied to a single complex sequence or m
complex sequences, all of the same length.
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• The procedure nag fft 1d real computes the transform (1) applied to real or Hermitian sequences.
It can compute the transform of a single sequence or m sequences, all of the same length.

• The procedure nag fft 2d computes the 2-d transform (2) for a complex bivariate sequence of
data values.

• The procedure nag fft 3d computes the 3-d transform (3) for a complex trivariate sequence of
data values.

The basic procedures are as follows.

• The procedure nag fft 1d basic computes the transform (1) applied to complex, real or Hermitian
sequences. It can compute the transform of a single sequence or m sequences, all of the same length.
It is similar to nag fft 1d and nag fft 1d real but it is a subroutine that overwrites the Fourier
transform on the input data.

• The procedure nag fft 2d basic computes the same transform as nag fft 2d but it is a subroutine
that overwrites the Fourier transform on the input data.

• The procedure nag fft 3d basic computes the same transform as nag fft 3d but it is a subroutine
that overwrites the Fourier transform on the input data.

3 Compact Storage of Hermitian Sequences

The basic procedures in this module represent a Hermitian sequence zk of length n by using only n
real data values. Let zk = xk + iyk, xk and yk being the real and imaginary parts. For all Hermitian
sequences, z0 is always real; in addition, if n is even, zn/2 is also real. If these values are stored in an
array z, declared with bounds (0 : n − 1), the storage is arranged as follows.

If n is even:

index 0 1 2 . . . n/2 . . . n − 2 n − 1
Sequence x0 x1 + iy1 x2 + iy2 . . . xn/2 . . . x2 − iy2 x1 − iy1

Stored values x0 x1 x2 . . . xn/2 . . . y2 y1

z(k) = xk, for k = 0, 1, . . . , n/2, and
z(n − k) = yk, for k = 1, 2, . . . , n/2 − 1.

If n = 2s + 1 (i.e., odd):

index 0 1 2 . . . s s + 1 . . . n − 2 n − 1
Sequence x0 x1 + iy1 x2 + iy2 . . . xs + iys xs − iys . . . x2 − iy2 x1 − iy1

Stored values x0 x1 x2 . . . xs ys . . . y2 y1

z(k) = xk, for k = 0, 1, . . . , s, and
z(n − k) = yk, for k = 1, 2, . . . , s.

Procedures nag herm to cmplx and nag cmplx to herm convert Hermitian sequences between this
compact storage scheme and conventional storage as complex sequences.

4 Inverse Transforms

The inverse transform to (1) is defined as:

ẑk =
1√
n

n−1∑
j=0

zj exp
(

+
2πijk

n

)
, k = 0, 1, . . . , n − 1. (4)

The general procedures nag fft 1d, nag fft 1d real, nag fft 2d and nag fft 3d are all capable of
returning either the forward transform (1) or the inverse transform (4).

If you are using one of the basic procedures, and require an inverse transform, you should proceed as
follows.
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1. Form the complex conjugate of the original sequence.

2. Compute the DFT of the conjugated sequence.

3. Form the complex conjugate of the transformed sequence.

For general complex sequences, the Fortran 90 intrinsic function CONJG can be used for steps 1 and 3.
(This also applies to two-dimensional transforms.)

If the original sequence is real, step 1 is redundant and the transformed sequence is Hermitian. Step 3
can be performed using CONJG if nag fft 1d real was used in step 2, or using procedure nag conj herm
if nag fft 1d basic was used in step 2.

If the original sequence is Hermitian, step 3 becomes redundant. Step 1 can be performed using CONJG
or nag conj herm depending on the storage scheme used to store the Hermitian data.

5 Trigonometric Coefficients

Computing a DFT involves computation of a number of trigonometric coefficients, which can take a
significant proportion of the total CPU-time. The procedures in this module can either compute the
trigonometric coefficients internally (in which case they are recomputed at each call) or they allow the
coefficients to be pre-computed by nag fft trig and supplied in an optional argument (which is more
efficient if several calls are made to compute transforms of the same length).
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Procedure: nag fft 1d

1 Description

nag fft 1d returns the discrete Fourier transform (DFT), or its inverse, of either a single sequence or
m sequences (all of the same length n) of complex data values.

See Section 1 of the Module Introduction for the definition of the DFT, and Section 4 of the Module
Introduction for the definition of the inverse transform.

2 Usage

USE nag fft

[value =] nag fft 1d(z [, optional arguments])

The function result is an array of type complex(kind=wp) and the same shape as that of z.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences to be transformed
n ≥ 1 — the number of data values in each sequence

3.1 Mandatory Argument

z(n) / z(m,n) — complex(kind=wp), intent(in)
Input: if z has rank 1, it must hold the single sequence to be transformed. If z has rank 2, it must
hold the m sequences to be transformed, with each sequence stored in a row of the array.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

inverse — logical, intent(in), optional
Input: specifies whether the inverse transform is to be calculated.

If inverse = .false., then the forward transform is calculated;
if inverse = .true., then the inverse transform is calculated.

Default: inverse = .false..

trig(2n) — real(kind=wp), intent(in), optional
Input: trigonometric coefficients required for the computation of transforms of length n.
Default: if trig is not present, the coefficients are computed internally.
Constraints: trig must have been set by a prior call to nag fft trig.
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses a variant of the fast Fourier transform (FFT) algorithm (Brigham [1]) known as the
Stockham self-sorting algorithm, which is described in Temperton [2] and Temperton [3]. Special coding
is provided for the cases where n has factors 2, 3, 4, 5, and 6.

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm log n, but also depends on the
factors of n. The procedure is fastest if the only prime factors of n are 2, 3, and 5, and is particularly
slow if n is a large prime, or has large prime factors.

If several calls are made to this procedure to compute transforms of the same length n, supplying
trigonometric coefficients through the optional argument trig results in a saving of CPU-time.
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Procedure: nag fft 1d real

1 Description

nag fft 1d real returns the discrete Fourier transform (DFT), or its inverse, of either a single sequence
or m sequences (all of the same length n) of real or Hermitian data values.

See Section 1 of the Module Introduction for the definition of the DFT, and Section 4 of the Module
Introduction for the definition of the inverse transform.

2 Usage

USE nag fft

[value =] nag fft 1d real(z [, optional arguments])

The function result is an array of the same shape as that of z. If z is of type real(kind=wp) the result
is of type complex(kind=wp). If z is of type complex(kind=wp) the result is of type real(kind=wp).

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases.

Hermitian / real data

Hermitian data: z is of type complex(kind=wp) and the result is of type
real(kind=wp).

Real data: z is of type real(kind=wp) and the result is of type
complex(kind=wp).

Single sequence / multiple sequences
Single sequence: z is a rank-1 array.

Multiple sequences: z is a rank-2 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences to be transformed
n ≥ 1 — the number of data values in each sequence

3.1 Mandatory Argument

z(n) / z(m,n) — real(kind=wp)/complex(kind=wp), intent(in)
Input: if z has rank 1, it must hold the single sequence to be transformed. If z has rank 2, it must
hold the m sequences to be transformed, with each sequence stored in a row of the array.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

inverse — logical, intent(in), optional
Input: specifies whether the inverse transform is to be calculated.

If inverse = .false., then the forward transform is calculated;
if inverse = .true., then the inverse transform is calculated.

Default: inverse = .false..

trig(2n) — real(kind=wp), intent(in), optional
Input: trigonometric coefficients required for the computation of transforms of length n.
Default: if trig is not present, the coefficients are computed internally if needed.
Constraints: trig must have been set by a prior call to nag fft trig.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

For all the different data types, the procedure uses a variant of the fast Fourier transform (FFT) algorithm
(Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2] and
Temperton [3]. Special coding is provided for the cases where n has factors 2, 3, 4, 5, and 6.

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

7.1.10 Module 7.1: nag fft [NP3506/4]



Transforms nag fft 1d real

6.3 Timing

The time taken by the procedure is approximately proportional to nm log n, but also depends on the
factors of n. The procedure is fastest if the only prime factors of n are 2, 3, and 5, and is particularly
slow if n is a large prime, or has large prime factors.

The time taken for real or Hermitian sequences is roughly half the time taken for general complex
sequences.

If several calls are made to this procedure to compute transforms of the same length n, supplying
trigonometric coefficients through the optional argument trig results in a saving of CPU-time.
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Procedure: nag fft 1d basic

1 Description

nag fft 1d basic is a generic procedure which computes the discrete Fourier transform (DFT) of either
a single sequence or m sequences (all of the same length n).

This procedure handles the following types of problem, which are distinguished by the values of the
argument nag key.

• nag key = nag key cmplx: the input sequences and the transformed sequences are general complex
sequences; the argument z must be of type complex(kind=wp).

• nag key = nag key herm: the input sequences are Hermitian, and the transformed sequences are
real; the argument z must be of type real(kind=wp).

• nag key = nag key real: the input sequences are real, and the transformed sequences are
Hermitian; the argument z must be of type real(kind=wp).

See Section 1 of the Module Introduction for the definition of the DFT, and Section 2 and Section 3 of
the Module Introduction for the definition of Hermitian sequences and their storage. See Section 4 of
the Module Introduction for the computation of inverse transforms.

2 Usage

USE nag fft

CALL nag fft 1d basic(nag key, z [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the six combinations of the following cases.

Complex / Hermitian / real data

Complex data: nag key = nag key cmplx and z is of type complex(kind=wp).

Hermitian data: nag key = nag key herm and z is of type real(kind=wp).

Real data: nag key = nag key real and z is of type real(kind=wp).

Single sequence / multiple sequences
Single sequence: z is a rank-1 array.

Multiple sequences: z is a rank-2 array.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences to be transformed
n ≥ 1 — the number of data values in each sequence
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3.1 Mandatory Arguments

nag key — a ‘key’ argument, intent(in)
Input: must have one of the following three values (which are named constants, each of a different
derived type, defined by the Library, and accessible from this module):

nag key cmplx: to transform general complex sequences (z is complex);
nag key herm: to transform Hermitian sequences to real sequences (z is real);
nag key real: to transform real sequences to Hermitian sequences (z is real).

For further explanation of ‘key’ arguments, see the Essential Introduction.

z(n) / z(m,n) — complex(kind=wp)/real(kind=wp), intent(inout)
Input: if z has rank 1, it must hold the single sequence to be transformed. If z has rank 2, it
must hold the m sequences to be transformed, with each sequence stored in a row of the array.
See Section 3 of the Module Introduction for details of the compact storage of Hermitian sequences
(nag key = nag key herm).
Output: the transformed sequence or sequences, each overwriting the corresponding input sequence.
Note that if the input sequences are real (nag key = nag key real), then the output sequences
are Hermitian; if the input sequences are Hermitian (nag key = nag key herm), then the output
sequences are real.
Constraints:

if nag key = nag key cmplx, z must be of type complex(kind=wp);
if nag key = nag key real or nag key herm, z must be of type real(kind=wp).

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

trig(2n) — real(kind=wp), intent(in), optional
Input: trigonometric coefficients required for the computation of transforms of length n.
Default: if trig is not present, the coefficients are computed internally.
Constraints: trig must have been set by a prior call to nag fft trig.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 2, 4 and 5 of this module document.
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6 Further Comments

6.1 Algorithmic Detail

For all the different data types, the procedure uses a variant of the fast Fourier transform (FFT) algorithm
(Brigham [1]) known as the Stockham self-sorting algorithm, which is described in Temperton [2] and
Temperton [3]. Special coding is provided for the cases where n has factors 2, 3, 4, 5, and 6.

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm log n, but also depends on the
factors of n. The procedure is fastest if the only prime factors of n are 2, 3, and 5, and is particularly
slow if n is a large prime, or has large prime factors.

The time taken for real or Hermitian sequences is roughly half the time taken for general complex
sequences.

If several calls are made to this procedure to compute transforms of the same length n, supplying
trigonometric coefficients through the optional argument trig results in a saving of CPU-time.
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Procedure: nag fft 2d

1 Description

nag fft 2d returns the two-dimensional discrete Fourier transform (DFT), or its inverse, of a bivariate
m × n sequence of complex data values.

See Section 1 of the Module Introduction for the definition of the DFT, and Section 4 of the Module
Introduction for the definition of the inverse transform.

2 Usage

USE nag fft

[value =] nag fft 2d(z [, optional arguments])

The function result is an array of type complex(kind=wp) and the same shape as that of z.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of rows in the sequence
n ≥ 1 — the number of columns in the sequence

3.1 Mandatory Argument

z(m,n) — complex(kind=wp), intent(in)
Input: the bivariate sequence to be transformed.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

inverse — logical, intent(in), optional
Input: specifies whether the inverse transform is to be calculated.

If inverse = .false., then the forward transform is calculated;
if inverse = .true., then the inverse transform is calculated.

Default: inverse = .false..

trig m(2m) — real(kind=wp), intent(in), optional
trig n(2n) — real(kind=wp), intent(in), optional

Input: trigonometric coefficients required for the computation of transforms of lengths m and n
respectively.
Note: if m = n, only one of these arguments need be present.
Default: if either trig m or trig n is not present, the corresponding coefficients are computed
internally if needed.
Constraints: trig m and trig n must have been set by prior calls to nag fft trig.
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 6 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure performs multiple one-dimensional complex discrete Fourier transforms by the fast Fourier
transform (FFT) algorithm in Brigham [1].

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm log(nm), but also depends on the
factorisation of the individual dimensions m and n. The procedure is somewhat faster than average if
their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

If several calls are made to this procedure to compute transforms with the same dimensions m and
n, supplying trigonometric coefficients through the optional arguments trig m and trig n results in a
saving of CPU-time.
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Procedure: nag fft 2d basic

1 Description

nag fft 2d basic computes the two-dimensional discrete Fourier transform (DFT) of a bivariate m×n
sequence of complex data values.

See Section 1 of the Module Introduction for the definition of the DFT, and Section 4 of the Module
Introduction for the computation of an inverse transform.

2 Usage

USE nag fft

CALL nag fft 2d basic(z [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of rows in the sequence
n ≥ 1 — the number of columns in the sequence

3.1 Mandatory Argument

z(m,n) — complex(kind=wp), intent(inout)
Input: the bivariate sequence to be transformed.
Output: the discrete Fourier transform.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

trig m(2m) — real(kind=wp), intent(in), optional
trig n(2n) — real(kind=wp), intent(in), optional

Input: trigonometric coefficients required for the computation of transforms of lengths m and n
respectively.
Note: if m = n, only one of these arguments need be present.
Default: if either trig m or trig n is not present, the corresponding coefficients are computed
internally if needed.
Constraints: trig m and trig n must have been set by prior calls to nag fft trig.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 7 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure performs multiple one-dimensional complex discrete Fourier transforms by the fast Fourier
transform (FFT) algorithm in Brigham [1].

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm log(nm), but also depends on the
factorisation of the individual dimensions m and n. The procedure is somewhat faster than average if
their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

If several calls are made to this procedure to compute transforms with the same dimensions m and
n, supplying trigonometric coefficients through the optional arguments trig m and trig n results in a
saving of CPU-time.
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Procedure: nag fft 3d

1 Description

nag fft 3d returns the three-dimensional discrete Fourier transform (DFT), or its inverse, of a trivariate
m × n × p sequence of complex data values.

See Section 1 of the Module Introduction for the definition of the DFT, and Section 4 of the Module
Introduction for the definition of the inverse transform.

2 Usage

USE nag fft

[value =] nag fft 3d(z [, optional arguments])

The function result is an array of type complex(kind=wp) and the same shape as that of z.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the first dimension of the sequence
n ≥ 1 — the second dimension of the sequence
p ≥ 1 — the third dimension of the sequence

3.1 Mandatory Argument

z(m,n, p) — complex(kind=wp), intent(in)
Input: the sequence to be transformed.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

inverse — logical, intent(in), optional
Input: specifies whether the inverse transform is to be calculated.

If inverse = .false., then the forward transform is calculated;
if inverse = .true., then the inverse transform is calculated.

Default: inverse = .false..

trig 1(2m) — real(kind=wp), intent(in), optional
trig 2(2n) — real(kind=wp), intent(in), optional
trig 3(2p) — real(kind=wp), intent(in), optional

Input: trigonometric coefficients required for the computation of transforms of lengths m, n and p
respectively.
Note:

if m = n = p, only one of these arguments need be present;
if m = n, only one of trig 1 or trig 2 need be present;
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if m = p, only one of trig 1 or trig 3 need be present;
if n = p, only one of trig 2 or trig 3 need be present.

Default: if either trig 1, trig 2 or trig 3 is not present, the corresponding coefficients are
computed internally if needed.
Constraints: trig 1, trig 2 and trig 3 must have been set by prior calls to nag fft trig.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 8 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure performs multiple one-dimensional complex discrete Fourier transforms by the fast Fourier
transform (FFT) algorithm in Brigham [1].

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to mnp log(mnp), but also depends on
the factorisation of the individual dimensions m, n and p. The procedure is somewhat faster than average
if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

If several calls are made to this procedure to compute transforms with the same dimensions m, n and p,
supplying trigonometric coefficients through the optional arguments trig 1, trig 2 and trig 3 results
in a saving of CPU-time.
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Procedure: nag fft 3d basic

1 Description

nag fft 3d basic computes the three-dimensional discrete Fourier transform (DFT) of a trivariate
m × n × p sequence of complex data values.

See Section 1 of the Module Introduction for the definition of the DFT, and Section 4 of the Module
Introduction for the computation of an inverse transform.

2 Usage

USE nag fft

CALL nag fft 3d basic(z [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the first dimension of the sequence
n ≥ 1 — the second dimension of the sequence
p ≥ 1 — the third dimension of the sequence

3.1 Mandatory Argument

z(m,n, p) — complex(kind=wp), intent(inout)
Input: the sequence to be transformed.
Output: the discrete Fourier transform.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

trig 1(2m) — real(kind=wp), intent(in), optional
trig 2(2n) — real(kind=wp), intent(in), optional
trig 3(2p) — real(kind=wp), intent(in), optional

Input: trigonometric coefficients required for the computation of transforms of lengths m, n and p
respectively.
Note:

if m = n = p, only one of these arguments need be present;
if m = n, only one of trig 1 or trig 2 need be present;
if m = p, only one of trig 1 or trig 3 need be present;
if n = p, only one of trig 2 or trig 3 need be present.

Default: if either trig 1, trig 2 or trig 3 is not present, the corresponding coefficients are
computed internally if needed.
Constraints: trig 1, trig 2 and trig 3 must have been set by prior calls to nag fft trig.
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 9 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure performs multiple one-dimensional complex discrete Fourier transforms by the fast Fourier
transform (FFT) algorithm in Brigham [1].

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to mnp log(mnp), but also depends on
the factorisation of the individual dimensions m, n and p. The procedure is somewhat faster than average
if their only prime factors are 2, 3 or 5; and fastest of all if they are powers of 2.

If several calls are made to this procedure to compute transforms with the same dimensions m, n and p,
supplying trigonometric coefficients through the optional arguments trig 1, trig 2 and trig 3 results
in a saving of CPU-time.

7.1.24 Module 7.1: nag fft [NP3506/4]



Transforms nag fft trig

Procedure: nag fft trig

1 Description

nag fft trig computes the trigonometric coefficients required in the computation of Fourier transforms
and is designed to be called in conjunction with the procedures nag fft 1d basic, nag fft 1d,
nag fft 2d basic, nag fft 2d, nag fft 3d basic and nag fft 3d. It may also be used in conjunction
with the procedures in the modules nag sym fft (7.2) and nag conv (7.3), and is available through the
USE statements for those modules.

2 Usage

USE nag fft

CALL nag fft trig(trig [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the length of the transforms for which the coefficients are required

3.1 Mandatory Argument

trig(2n) — real(kind=wp), intent(out)
Output: the trigonometric coefficients which may be used in the computation of discrete Fourier
transforms of length n.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document. Further
illustrations can be found in the example programs for the modules nag sym fft (7.2) and nag conv
(7.3).
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Procedure: nag herm to cmplx

1 Description

nag herm to cmplx converts a single Hermitian sequence, or m Hermitian sequences, all of length n, from
compact storage using n real values to storage as general complex sequences using n complex values. See
Section 3 of the Module Introduction.

2 Usage

USE nag fft

CALL nag herm to cmplx(z herm, z cmplx [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences
n ≥ 1 — the length of each sequence

3.1 Mandatory Arguments

z herm(n) / z herm(m,n) — real(kind=wp), intent(in)
Input: if z herm has rank 1, it must hold a single Hermitian sequence. If z herm has rank 2, it
must hold m Hermitian sequences, with each sequence stored in a row of the array. Each sequence
is stored compactly using only n real values, as described in Section 3 of the Module Introduction.

z cmplx(n) / z cmplx(m,n) — complex(kind=wp), intent(out)
Output: the same Hermitian sequences, stored as general sequences, using n complex values for
each sequence.
Constraints: z cmplx must have exactly the same shape as z herm.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.
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Procedure: nag cmplx to herm

1 Description

nag cmplx to herm converts a single Hermitian sequence, or m Hermitian sequences, all of length n,
from storage as general complex sequences using n complex values, to compact storage using n real
values. See Section 3 of the Module Introduction.

2 Usage

USE nag fft

CALL nag cmplx to herm(z cmplx, z herm [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences
n ≥ 1 — the length of each sequence

3.1 Mandatory Arguments

z cmplx(n) / z cmplx(m,n) — complex(kind=wp), intent(in)
Input: if z cmplx has rank 1, it must hold a single Hermitian sequence. If z cmplx has rank 2, it
must hold m Hermitian sequences, with each sequence stored in a row of the array. Each sequence
is stored as a general sequence using n complex values.
Constraints: each sequence in the array z cmplx must be Hermitian.

z herm(n) / z herm(m,n) — real(kind=wp), intent(out)
Output: the same Hermitian sequences, stored compactly using n real values for each sequence.
Constraints: z herm must have exactly the same shape as z cmplx.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 5 of this module document.
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Procedure: nag conj herm

1 Description

nag conj herm forms the complex conjugate of a single Hermitian sequence, or of m Hermitian sequences,
all of length n. Each Hermitian sequence is stored compactly using n real data values, as described in
Section 3 of the Module Introduction.

2 Usage

USE nag fft

CALL nag conj herm(z [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences
n ≥ 1 — the length of each sequence

3.1 Mandatory Argument

z(n) / z(m,n) — real(kind=wp), intent(inout)
Input: if z has rank 1, it must hold a single Hermitian sequence. If z has rank 2, it must hold
m Hermitian sequences, with each sequence stored in a row of the array. Each sequence is stored
compactly using n real data values, as described in Section 3 of the Module Introduction.
Output: each sequence is overwritten by its complex conjugate.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

302 An array argument has an invalid shape.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 4 and 5 of this module document.
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Example 1: Discrete Fourier Transforms

of 1-d Complex Sequences

This program reads in sequences of complex data values and prints their discrete Fourier transforms (as
computed by nag fft 1d). Inverse transforms are then calculated using nag fft 1d and printed out,
showing that the original sequences are restored. This example program also shows the use of procedure
nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex01

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_1d, nag_fft_trig

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig(:)

COMPLEX (wp), ALLOCATABLE :: z(:,:), zhat(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (z(m,n),zhat(m,n),trig(2*n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) z(i,:)

END DO

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data’)

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig)

zhat = nag_fft_1d(z,trig=trig)

CALL nag_write_gen_mat(zhat,format=’f7.4’,int_row_labels=.TRUE., &

title=’Transformed data’)

WRITE (nag_std_out,*)

z = nag_fft_1d(zhat,inverse=.TRUE.,trig=trig)

[NP3506/4] Module 7.1: nag fft 7.1.33



Example 1 Transforms

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)

DEALLOCATE (z,zhat,trig) ! Deallocate storage

END PROGRAM nag_fft_ex01

2 Program Data

Example Program Data for nag_fft_ex01

3 4 : m, n

(0.3854,0.5417) (0.6772,0.2983) (0.1138,0.1181) (0.6751,0.7255) : sequence 1

(0.9172,0.9089) (0.0644,0.3118) (0.6037,0.3465) (0.6430,0.6198) : sequence 2

(0.1156,0.6214) (0.0685,0.8681) (0.2060,0.7060) (0.8630,0.8652) : sequence 3

3 Program Results

Example Program Results for nag_fft_ex01

Original data

1 ( 0.3854, 0.5417) ( 0.6772, 0.2983) ( 0.1138, 0.1181) ( 0.6751, 0.7255)

2 ( 0.9172, 0.9089) ( 0.0644, 0.3118) ( 0.6037, 0.3465) ( 0.6430, 0.6198)

3 ( 0.1156, 0.6214) ( 0.0685, 0.8681) ( 0.2060, 0.7060) ( 0.8630, 0.8652)

Transformed data

1 ( 0.9258, 0.8418) (-0.0778, 0.2107) (-0.4265,-0.1820) ( 0.3494, 0.2128)

2 ( 1.1141, 1.0935) ( 0.0028, 0.5705) ( 0.4068, 0.1619) ( 0.3107,-0.0081)

3 ( 0.6265, 1.5303) (-0.0437, 0.3549) (-0.3049,-0.2029) (-0.0467,-0.4395)

Original data restored by inverse transform

1 ( 0.3854, 0.5417) ( 0.6772, 0.2983) ( 0.1138, 0.1181) ( 0.6751, 0.7255)

2 ( 0.9172, 0.9089) ( 0.0644, 0.3118) ( 0.6037, 0.3465) ( 0.6430, 0.6198)

3 ( 0.1156, 0.6214) ( 0.0685, 0.8681) ( 0.2060, 0.7060) ( 0.8630, 0.8652)

7.1.34 Module 7.1: nag fft [NP3506/4]



Transforms Example 2

Example 2: Discrete Fourier Transforms of 1-d

Complex Sequences Using Basic Procedures

This program reads in sequences of complex data values and prints their discrete Fourier transforms (as
computed by nag fft 1d basic). Inverse transforms are then calculated using the Fortran 90 intrinsic
function CONJG and nag fft 1d basic and printed out, showing that the original sequences are restored.
This example program also shows the use of procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex02

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_1d_basic, nag_key_cmplx, nag_fft_trig

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC CONJG, KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig(:)

COMPLEX (wp), ALLOCATABLE :: z(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex02’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (z(m,n),trig(2*n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) z(i,:)

END DO

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data values’)

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig)

CALL nag_fft_1d_basic(nag_key_cmplx,z,trig=trig)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Discrete Fourier transforms’)

WRITE (nag_std_out,*)

z = CONJG(z)
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CALL nag_fft_1d_basic(nag_key_cmplx,z,trig=trig)

z = CONJG(z)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)

DEALLOCATE (z,trig) ! Deallocate storage

END PROGRAM nag_fft_ex02

2 Program Data

Example Program Data for nag_fft_ex02

3 4 : m, n

(0.3854,0.5417) (0.6772,0.2983) (0.1138,0.1181) (0.6751,0.7255) : sequence 1

(0.9172,0.9089) (0.0644,0.3118) (0.6037,0.3465) (0.6430,0.6198) : sequence 2

(0.1156,0.6214) (0.0685,0.8681) (0.2060,0.7060) (0.8630,0.8652) : sequence 3

3 Program Results

Example Program Results for nag_fft_ex02

Original data values

1 ( 0.3854, 0.5417) ( 0.6772, 0.2983) ( 0.1138, 0.1181) ( 0.6751, 0.7255)

2 ( 0.9172, 0.9089) ( 0.0644, 0.3118) ( 0.6037, 0.3465) ( 0.6430, 0.6198)

3 ( 0.1156, 0.6214) ( 0.0685, 0.8681) ( 0.2060, 0.7060) ( 0.8630, 0.8652)

Discrete Fourier transforms

1 ( 0.9258, 0.8418) (-0.0778, 0.2107) (-0.4265,-0.1820) ( 0.3494, 0.2128)

2 ( 1.1141, 1.0935) ( 0.0028, 0.5705) ( 0.4068, 0.1619) ( 0.3107,-0.0081)

3 ( 0.6265, 1.5303) (-0.0437, 0.3549) (-0.3049,-0.2029) (-0.0467,-0.4395)

Original data restored by inverse transform

1 ( 0.3854, 0.5417) ( 0.6772, 0.2983) ( 0.1138, 0.1181) ( 0.6751, 0.7255)

2 ( 0.9172, 0.9089) ( 0.0644, 0.3118) ( 0.6037, 0.3465) ( 0.6430, 0.6198)

3 ( 0.1156, 0.6214) ( 0.0685, 0.8681) ( 0.2060, 0.7060) ( 0.8630, 0.8652)
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Example 3: Discrete Fourier Transforms

of 1-d Real Sequences

This program reads in sequences of real data values and prints their discrete Fourier transforms (as
computed by nag fft 1d real ). The original sequences are then restored by using nag fft 1d real to
calculate the inverse transforms. This example program also shows the use of procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex03

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_1d_real, nag_fft_trig

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig(:), z(:,:)

COMPLEX (wp), ALLOCATABLE :: zhat(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (z(m,n),zhat(m,n),trig(2*n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) z(i,:)

END DO

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data’)

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig)

zhat = nag_fft_1d_real(z,trig=trig)

CALL nag_write_gen_mat(zhat,format=’f7.4’,int_row_labels=.TRUE., &

title=’Transformed data’)

WRITE (nag_std_out,*)

z = nag_fft_1d_real(zhat,inverse=.TRUE.,trig=trig)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)
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DEALLOCATE (z,zhat,trig) ! Deallocate storage

END PROGRAM nag_fft_ex03

2 Program Data

Example Program Data for nag_fft_ex03

3 4 : m, n

0.3854 0.6772 0.1138 0.6751 : sequence 1

0.5417 0.2983 0.1181 0.7255 : sequence 2

0.9172 0.0644 0.6037 0.6430 : sequence 3

3 Program Results

Example Program Results for nag_fft_ex03

Original data

1 0.3854 0.6772 0.1138 0.6751

2 0.5417 0.2983 0.1181 0.7255

3 0.9172 0.0644 0.6037 0.6430

Transformed data

1 ( 0.9258, 0.0000) ( 0.1358,-0.0010) (-0.4265, 0.0000) ( 0.1358, 0.0010)

2 ( 0.8418, 0.0000) ( 0.2118, 0.2136) (-0.1820, 0.0000) ( 0.2118,-0.2136)

3 ( 1.1141, 0.0000) ( 0.1568, 0.2893) ( 0.4068, 0.0000) ( 0.1568,-0.2893)

Original data restored by inverse transform

1 0.3854 0.6772 0.1138 0.6751

2 0.5417 0.2983 0.1181 0.7255

3 0.9172 0.0644 0.6037 0.6430
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Example 4: Discrete Fourier Transforms of 1-d

Real Sequences Using Basic Procedures

This program reads in sequences of real data values and prints their discrete Fourier transforms (as
computed by nag fft 1d basic). The Fourier transforms are expanded into full complex form using
nag herm to cmplx. Inverse transforms are then calculated by calling nag conj herm followed by
nag fft 1d basic, showing that the original sequences are restored. This example program also shows
the use of procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex04

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_1d_basic, nag_key_real, nag_key_herm, &

nag_fft_trig, nag_conj_herm, nag_herm_to_cmplx

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig(:), z(:,:)

COMPLEX (wp), ALLOCATABLE :: z_cmplx(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex04’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (z(m,n),z_cmplx(m,n),trig(2*n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) z(i,:)

END DO

CALL nag_write_gen_mat(z,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data values’)

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig)

CALL nag_fft_1d_basic(nag_key_real,z,trig=trig)

CALL nag_write_gen_mat(z,format=’f10.4’,int_row_labels=.TRUE., &

title=’Discrete Fourier transforms in Hermitian form’)

WRITE (nag_std_out,*)

[NP3506/4] Module 7.1: nag fft 7.1.39



Example 4 Transforms

CALL nag_herm_to_cmplx(z,z_cmplx)

CALL nag_write_gen_mat(z_cmplx,format=’f7.4’,int_row_labels=.TRUE., &

title=’Fourier transforms in full complex form’)

WRITE (nag_std_out,*)

CALL nag_conj_herm(z)

CALL nag_fft_1d_basic(nag_key_herm,z,trig=trig)

CALL nag_write_gen_mat(z,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)

DEALLOCATE (z,z_cmplx,trig) ! Deallocate storage

END PROGRAM nag_fft_ex04

2 Program Data

Example Program Data for nag_fft_ex04

3 4 : m, n

0.3854 0.6772 0.1138 0.6751 : first sequence

0.5417 0.2983 0.1181 0.7255 : second sequence

0.9172 0.0644 0.6037 0.6430 : third sequence

3 Program Results

Example Program Results for nag_fft_ex04

Original data values

1 0.3854 0.6772 0.1138 0.6751

2 0.5417 0.2983 0.1181 0.7255

3 0.9172 0.0644 0.6037 0.6430

Discrete Fourier transforms in Hermitian form

1 0.9258 0.1358 -0.4265 -0.0010

2 0.8418 0.2118 -0.1820 0.2136

3 1.1141 0.1568 0.4068 0.2893

Fourier transforms in full complex form

1 ( 0.9258, 0.0000) ( 0.1358,-0.0010) (-0.4265, 0.0000) ( 0.1358, 0.0010)

2 ( 0.8418, 0.0000) ( 0.2118, 0.2136) (-0.1820, 0.0000) ( 0.2118,-0.2136)

3 ( 1.1141, 0.0000) ( 0.1568, 0.2893) ( 0.4068, 0.0000) ( 0.1568,-0.2893)

Original data restored by inverse transform

1 0.3854 0.6772 0.1138 0.6751

2 0.5417 0.2983 0.1181 0.7255

3 0.9172 0.0644 0.6037 0.6430
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Example 5: Discrete Fourier Transforms

of 1-d Hermitian Sequences

This program reads in sequences of Hermitian data values stored as general complex sequences. The
sequences are converted to compact storage in a real array using nag cmplx to herm and printed. The
discrete Fourier transforms are then computed (using nag fft 1d basic) and printed. Inverse Fourier
transforms are then calculated by calling nag fft 1d basic followed by nag conj herm, showing that
the original sequences are restored. This example program also shows the use of procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex05

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_1d_basic, nag_key_real, nag_key_herm, &

nag_fft_trig, nag_conj_herm, nag_cmplx_to_herm

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig(:), z(:,:)

COMPLEX (wp), ALLOCATABLE :: z_cmplx(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex05’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (z(m,n),z_cmplx(m,n),trig(2*n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) z_cmplx(i,:)

END DO

CALL nag_write_gen_mat(z_cmplx,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data’)

WRITE (nag_std_out,*)

CALL nag_cmplx_to_herm(z_cmplx,z)

CALL nag_write_gen_mat(z,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data in compact storage’)

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig)
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CALL nag_fft_1d_basic(nag_key_herm,z,trig=trig)

CALL nag_write_gen_mat(z,format=’f10.4’,int_row_labels=.TRUE., &

title=’Discrete Fourier transforms (real values)’)

WRITE (nag_std_out,*)

CALL nag_fft_1d_basic(nag_key_real,z,trig=trig)

CALL nag_conj_herm(z)

CALL nag_write_gen_mat(z,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data in compact storage, restored by inverse transform’ &

)

DEALLOCATE (z,z_cmplx,trig) ! Deallocate storage

END PROGRAM nag_fft_ex05

2 Program Data

Example Program Data for nag_fft_ex05

3 4 : m, n

( 0.3854, 0.0000) ( 0.6772, 0.6751) ( 0.1138, 0.0000)

( 0.6772,-0.6751) : first sequence

( 0.5417, 0.0000) ( 0.2983, 0.7255) ( 0.1181, 0.0000)

( 0.2983,-0.7255) : second sequence

( 0.9172, 0.0000) ( 0.0644, 0.6430) ( 0.6037, 0.0000)

( 0.0644,-0.6430) : third sequence

3 Program Results

Example Program Results for nag_fft_ex05

Original data

1 ( 0.3854, 0.0000) ( 0.6772, 0.6751) ( 0.1138, 0.0000) ( 0.6772,-0.6751)

2 ( 0.5417, 0.0000) ( 0.2983, 0.7255) ( 0.1181, 0.0000) ( 0.2983,-0.7255)

3 ( 0.9172, 0.0000) ( 0.0644, 0.6430) ( 0.6037, 0.0000) ( 0.0644,-0.6430)

Original data in compact storage

1 0.3854 0.6772 0.1138 0.6751

2 0.5417 0.2983 0.1181 0.7255

3 0.9172 0.0644 0.6037 0.6430

Discrete Fourier transforms (real values)

1 0.9268 0.8109 -0.4276 -0.5393

2 0.6282 0.9373 0.0316 -0.5137

3 0.8249 0.7997 0.6961 -0.4863

Original data in compact storage, restored by inverse transform

1 0.3854 0.6772 0.1138 0.6751

2 0.5417 0.2983 0.1181 0.7255

3 0.9172 0.0644 0.6037 0.6430

7.1.42 Module 7.1: nag fft [NP3506/4]



Transforms Example 6

Example 6: Discrete Fourier Transforms

of 2-d Complex Sequences

This program reads in a bivariate sequence of complex data values and prints the 2-d Fourier transform (as
computed by nag fft 2d). It then performs an inverse transform and prints the sequence so obtained,
which may be compared to the original data values. This example program also shows the use of
procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex06

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_2d, nag_fft_trig

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trigm(:), trign(:)

COMPLEX (wp), ALLOCATABLE :: z(:,:), zhat(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex06’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (z(m,n),zhat(m,n),trigm(2*m),trign(2*n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) z(i,:)

END DO

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data’)

WRITE (nag_std_out,*)

CALL nag_fft_trig(trigm)

CALL nag_fft_trig(trign)

zhat = nag_fft_2d(z,trig_m=trigm,trig_n=trign)

CALL nag_write_gen_mat(zhat,format=’f7.4’,int_row_labels=.TRUE., &

title=’Transformed data’)

WRITE (nag_std_out,*)
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z = nag_fft_2d(zhat,inverse=.TRUE.,trig_m=trigm,trig_n=trign)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)

DEALLOCATE (z,zhat,trigm,trign) ! Deallocate storage

END PROGRAM nag_fft_ex06

2 Program Data

Example Program Data for nag_fft_ex06

3 4 : m,n

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) : sequence 1

(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) : sequence 2

(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) : sequence 3

3 Program Results

Example Program Results for nag_fft_ex06

Original data

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)

Transformed data

1 ( 3.1939,-1.0736) ( 0.2867, 0.0294) ( 0.0797, 0.1868) (-0.2151, 0.2327)

2 ( 0.4013, 0.1652) ( 0.0254, 0.0268) (-0.0078, 0.0250) (-0.0404, 0.0043)

3 (-0.1987, 0.4312) (-0.0306, 0.0268) (-0.0268,-0.0100) (-0.0034,-0.0447)

Original data restored by inverse transform

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)
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Example 7: Discrete Fourier Transforms of 2-d

Complex Sequences Using Basic Procedures

This program reads in a bivariate sequence of complex data values and prints the 2-d Fourier transform
(as computed by nag fft 2d basic). It then performs an inverse transform and prints the sequence so
obtained, which may be compared to the original data values. This example program also shows the use
of procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex07

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_2d_basic, nag_fft_trig

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC CONJG, KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig_m(:), trig_n(:)

COMPLEX (wp), ALLOCATABLE :: z(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex07’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (z(m,n),trig_m(2*m),trig_n(2*n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) z(i,:)

END DO

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data values’)

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig_m)

CALL nag_fft_trig(trig_n)

CALL nag_fft_2d_basic(z,trig_m=trig_m,trig_n=trig_n)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Components of discrete Fourier transform’)

WRITE (nag_std_out,*)
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z = CONJG(z)

CALL nag_fft_2d_basic(z,trig_m=trig_m,trig_n=trig_n)

z = CONJG(z)

CALL nag_write_gen_mat(z,format=’f7.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)

DEALLOCATE (z,trig_m,trig_n) ! Deallocate storage

END PROGRAM nag_fft_ex07

2 Program Data

Example Program Data for nag_fft_ex07

3 4 : Number of rows, m, and columns, n, in z

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352)

(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454)

(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) : z

3 Program Results

Example Program Results for nag_fft_ex07

Original data values

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)

Components of discrete Fourier transform

1 ( 3.1939,-1.0736) ( 0.2867, 0.0294) ( 0.0797, 0.1868) (-0.2151, 0.2327)

2 ( 0.4013, 0.1652) ( 0.0254, 0.0268) (-0.0078, 0.0250) (-0.0404, 0.0043)

3 (-0.1987, 0.4312) (-0.0306, 0.0268) (-0.0268,-0.0100) (-0.0034,-0.0447)

Original data restored by inverse transform

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)
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Example 8: Discrete Fourier Transforms

of 3-d Complex Sequences

This program reads in a trivariate sequence of complex data values and prints the 3-d Fourier transform
(as computed by nag fft 3d). It then performs an inverse transform and prints the sequence so obtained,
which may be compared to the original data values. This example program also shows the use of
procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex08

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_3d, nag_fft_trig

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, m, n, p

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig_1(:), trig_2(:), trig_3(:)

COMPLEX (wp), ALLOCATABLE :: z(:,:,:), z_hat(:,:,:)

CHARACTER (20), ALLOCATABLE :: title(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex08’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n, p

ALLOCATE (z(m,n,p),trig_1(2*m),trig_2(2*n),trig_3(2*p),title(m), &

z_hat(m,n,p)) ! Allocate storage

DO i = 1, m

DO j = 1, n

READ (nag_std_in,*) z(i,j,:)

END DO

END DO

title(1) = ’Sequence z(1,:,:)’

title(2) = ’Sequence z(2,:,:)’

WRITE (nag_std_out,*) ’Original data’

DO i = 1, m

CALL nag_write_gen_mat(z(i,:,:),format=’f7.4’,int_row_labels=.TRUE., &

title=title(i))

END DO

WRITE (nag_std_out,*)
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CALL nag_fft_trig(trig_1)

CALL nag_fft_trig(trig_2)

CALL nag_fft_trig(trig_3)

z_hat = nag_fft_3d(z,trig_1=trig_1,trig_2=trig_2,trig_3=trig_3)

WRITE (nag_std_out,*) ’Components of discrete Fourier transform’

DO i = 1, m

CALL nag_write_gen_mat(z_hat(i,:,:),format=’f7.4’, &

int_row_labels=.TRUE.,title=title(i))

END DO

WRITE (nag_std_out,*)

z = nag_fft_3d(z_hat,inverse=.TRUE.,trig_1=trig_1,trig_2=trig_2, &

trig_3=trig_3)

WRITE (nag_std_out,*) ’Original data restored by inverse transform’

DO i = 1, m

CALL nag_write_gen_mat(z(i,:,:),format=’f7.4’,int_row_labels=.TRUE., &

title=title(i))

END DO

DEALLOCATE (z,z_hat,trig_1,trig_2,trig_3) ! Deallocate storage

END PROGRAM nag_fft_ex08

2 Program Data

Example Program Data for nag_fft_ex08

2 3 4 : m, n, p where z is of shape (m,n,p)

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) : z(1,1,:)

(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) : z(1,2,:)

(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) : z(1,3,:)

(0.500, 0.500) (0.499, 0.040) (0.487, 0.159) (0.436, 0.352) : z(2,1,:)

(0.494, 0.111) (0.489, 0.151) (0.463, 0.268) (0.391, 0.454) : z(2,2,:)

(0.403, 0.430) (0.385, 0.466) (0.323, 0.568) (0.194, 0.720) : z(2,3,:)

3 Program Results

Example Program Results for nag_fft_ex08

Original data

Sequence z(1,:,:)

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)

Sequence z(2,:,:)

1 ( 0.5000, 0.5000) ( 0.4990, 0.0400) ( 0.4870, 0.1590) ( 0.4360, 0.3520)

2 ( 0.4940, 0.1110) ( 0.4890, 0.1510) ( 0.4630, 0.2680) ( 0.3910, 0.4540)

3 ( 0.4030, 0.4300) ( 0.3850, 0.4660) ( 0.3230, 0.5680) ( 0.1940, 0.7200)

Components of discrete Fourier transform

Sequence z(1,:,:)

1 ( 3.2921, 0.1021) ( 0.0506,-0.0416) ( 0.1127, 0.1021) ( 0.0506, 0.2458)

2 ( 0.1433,-0.0860) ( 0.0155, 0.1527) (-0.0245, 0.1268) (-0.0502, 0.0861)
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3 ( 0.1433, 0.2902) (-0.0502, 0.1180) (-0.0245, 0.0773) ( 0.0155, 0.0515)

Sequence z(2,:,:)

1 ( 1.2247,-1.6203) ( 0.3548, 0.0833) ( 0.0000, 0.1621) (-0.3548, 0.0833)

2 ( 0.4243, 0.3197) ( 0.0204,-0.1147) ( 0.0134,-0.0914) (-0.0070,-0.0800)

3 (-0.4243, 0.3197) ( 0.0070,-0.0800) (-0.0134,-0.0914) (-0.0204,-0.1147)

Original data restored by inverse transform

Sequence z(1,:,:)

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)

Sequence z(2,:,:)

1 ( 0.5000, 0.5000) ( 0.4990, 0.0400) ( 0.4870, 0.1590) ( 0.4360, 0.3520)

2 ( 0.4940, 0.1110) ( 0.4890, 0.1510) ( 0.4630, 0.2680) ( 0.3910, 0.4540)

3 ( 0.4030, 0.4300) ( 0.3850, 0.4660) ( 0.3230, 0.5680) ( 0.1940, 0.7200)
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Example 9: Discrete Fourier Transforms of 3-d

Complex Sequences Using Basic Procedures

This program reads in a trivariate sequence of complex data values and prints the 3-d Fourier transform
(as computed by nag fft 3d basic). It then performs an inverse transform and prints the sequence so
obtained, which may be compared to the original data values. This example program also shows the use
of procedure nag fft trig.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_fft_ex09

! Example Program Text for nag_fft

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_fft, ONLY : nag_fft_3d_basic, nag_fft_trig

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC CONJG, KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, m, n, p

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig_1(:), trig_2(:), trig_3(:)

COMPLEX (wp), ALLOCATABLE :: z(:,:,:)

CHARACTER (20), ALLOCATABLE :: title(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_fft_ex09’

WRITE (nag_std_out,*)

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n, p

ALLOCATE (z(m,n,p),trig_1(2*m),trig_2(2*n),trig_3(2*p),title(m)) ! Allocate

! storage

DO i = 1, m

DO j = 1, n

READ (nag_std_in,*) z(i,j,:)

END DO

END DO

title(1) = ’Sequence z(1,:,:)’

title(2) = ’Sequence z(2,:,:)’

WRITE (nag_std_out,*) ’Original data’

DO i = 1, m

CALL nag_write_gen_mat(z(i,:,:),format=’f7.4’,int_row_labels=.TRUE., &

title=title(i))

END DO

WRITE (nag_std_out,*)

[NP3506/4] Module 7.1: nag fft 7.1.51



Example 9 Transforms

CALL nag_fft_trig(trig_1)

CALL nag_fft_trig(trig_2)

CALL nag_fft_trig(trig_3)

CALL nag_fft_3d_basic(z,trig_1=trig_1,trig_2=trig_2,trig_3=trig_3)

WRITE (nag_std_out,*) ’Components of discrete Fourier transform’

DO i = 1, m

CALL nag_write_gen_mat(z(i,:,:),format=’f7.4’,int_row_labels=.TRUE., &

title=title(i))

END DO

WRITE (nag_std_out,*)

z = CONJG(z)

CALL nag_fft_3d_basic(z,trig_1=trig_1,trig_2=trig_2,trig_3=trig_3)

z = CONJG(z)

WRITE (nag_std_out,*) ’Original data restored by inverse transform’

DO i = 1, m

CALL nag_write_gen_mat(z(i,:,:),format=’f7.4’,int_row_labels=.TRUE., &

title=title(i))

END DO

DEALLOCATE (z,trig_1,trig_2,trig_3) ! Deallocate storage

END PROGRAM nag_fft_ex09

2 Program Data

Example Program Data for nag_fft_ex09

2 3 4 : m, n, p where z is of shape (m,n,p)

(1.000, 0.000) (0.999,-0.040) (0.987,-0.159) (0.936,-0.352) : z(1,1,:)

(0.994,-0.111) (0.989,-0.151) (0.963,-0.268) (0.891,-0.454) : z(1,2,:)

(0.903,-0.430) (0.885,-0.466) (0.823,-0.568) (0.694,-0.720) : z(1,3,:)

(0.500, 0.500) (0.499, 0.040) (0.487, 0.159) (0.436, 0.352) : z(2,1,:)

(0.494, 0.111) (0.489, 0.151) (0.463, 0.268) (0.391, 0.454) : z(2,2,:)

(0.403, 0.430) (0.385, 0.466) (0.323, 0.568) (0.194, 0.720) : z(2,3,:)

3 Program Results

Example Program Results for nag_fft_ex09

Original data

Sequence z(1,:,:)

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)

Sequence z(2,:,:)

1 ( 0.5000, 0.5000) ( 0.4990, 0.0400) ( 0.4870, 0.1590) ( 0.4360, 0.3520)

2 ( 0.4940, 0.1110) ( 0.4890, 0.1510) ( 0.4630, 0.2680) ( 0.3910, 0.4540)

3 ( 0.4030, 0.4300) ( 0.3850, 0.4660) ( 0.3230, 0.5680) ( 0.1940, 0.7200)

Components of discrete Fourier transform
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Sequence z(1,:,:)

1 ( 3.2921, 0.1021) ( 0.0506,-0.0416) ( 0.1127, 0.1021) ( 0.0506, 0.2458)

2 ( 0.1433,-0.0860) ( 0.0155, 0.1527) (-0.0245, 0.1268) (-0.0502, 0.0861)

3 ( 0.1433, 0.2902) (-0.0502, 0.1180) (-0.0245, 0.0773) ( 0.0155, 0.0515)

Sequence z(2,:,:)

1 ( 1.2247,-1.6203) ( 0.3548, 0.0833) ( 0.0000, 0.1621) (-0.3548, 0.0833)

2 ( 0.4243, 0.3197) ( 0.0204,-0.1147) ( 0.0134,-0.0914) (-0.0070,-0.0800)

3 (-0.4243, 0.3197) ( 0.0070,-0.0800) (-0.0134,-0.0914) (-0.0204,-0.1147)

Original data restored by inverse transform

Sequence z(1,:,:)

1 ( 1.0000, 0.0000) ( 0.9990,-0.0400) ( 0.9870,-0.1590) ( 0.9360,-0.3520)

2 ( 0.9940,-0.1110) ( 0.9890,-0.1510) ( 0.9630,-0.2680) ( 0.8910,-0.4540)

3 ( 0.9030,-0.4300) ( 0.8850,-0.4660) ( 0.8230,-0.5680) ( 0.6940,-0.7200)

Sequence z(2,:,:)

1 ( 0.5000, 0.5000) ( 0.4990, 0.0400) ( 0.4870, 0.1590) ( 0.4360, 0.3520)

2 ( 0.4940, 0.1110) ( 0.4890, 0.1510) ( 0.4630, 0.2680) ( 0.3910, 0.4540)

3 ( 0.4030, 0.4300) ( 0.3850, 0.4660) ( 0.3230, 0.5680) ( 0.1940, 0.7200)
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Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag fft ex10

Discrete Fourier transform of 1-d Hermitian sequences (using nag fft 1d real).

nag fft ex11

Discrete Fourier transform of a single 1-d complex sequence (using nag fft 1d basic).

nag fft ex12

Discrete Fourier transform of a single 1-d complex sequence (using nag fft 1d).

nag fft ex13

Discrete Fourier transform of single 1-d real sequence (using nag fft 1d real).

nag fft ex14

Discrete Fourier transform of a single 1-d Hermitian sequence (using nag fft 1d real).

nag fft ex15

Discrete Fourier transform of a single 1-d real sequence (using nag fft 1d basic).

nag fft ex16

Discrete Fourier transform of a single 1-d Hermitian sequence (using nag fft 1d basic).
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