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Module 7.2: nag sym fft

Symmetric Discrete Fourier Transforms

nag sym fft provides procedures for computations involving one-dimensional real
symmetric discrete Fourier transforms .
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Introduction

1 The Discrete Fourier Transform (DFT)

The one-dimensional DFT of a sequence of n values xj , j = 0, 1, . . . , n − 1, is defined in this module by

x̂k =
1√
n

n−1∑
j=0

xj exp
(
−2πijk

n

)
, (1)

for k = 0, 1, . . . , n − 1. The original values xj and the transformed values x̂k are, in general, complex.

2 Real Symmetric Transforms

In many applications the sequence xj will not only be real, but may also possess additional symmetries
which we may exploit to reduce further the computing time and storage requirements.

If the sequence xj is odd (xj = −xn−j), then the discrete Fourier transform of xj contains only sine
terms. Rather than compute the transform of an odd sequence, we define the discrete sine transform
(DST) (Van Loan [7]) of a real sequence by

x̂k =

√
2
n




n−1∑
j=1

xj sin
(

πjk

n

)
 , k = 1, 2, . . . , n − 1, (2)

which could have been computed using the Fourier transform of a real odd sequence of length 2n. In
this case the xj are arbitrary, and the symmetry only becomes apparent when the sequence is extended.

Similarly we define the discrete cosine transform (also called DCT; see Van Loan [7]) of a real sequence
by

x̂k =

√
2
n



1
2
x0 +

n−1∑
j=1

xj cos
(

πjk

n

)
+

1
2
(−1)kxn


 , k = 0, . . . , n, (3)

which could have been computed using the Fourier transform of a real even sequence of length 2n.

In addition to these ‘half-wave’ symmetries described above, sequences arise in practice with ‘quarter-
wave’ symmetries. We define the discrete quarter-wave sine transform by

x̂k =
1√
n




n−1∑
j=1

xj sin
(

πj(2k − 1)
2n

)
+

1
2
(−1)k−1xn


 , k = 1, . . . , n. (4)

Similarly we define the discrete quarter-wave cosine transform by

x̂k =
1√
n



1
2
x0 +

n−1∑
j=1

xj cos
(

πj(2k − 1)
2n

)
 , k = 0, . . . , n − 1. (5)

3 Real Symmetric Inverse Transforms

The sine or cosine Fourier transform is its own inverse.

The inverse of the quarter-wave sine transform (also called DST-II; see Van Loan [7]) is:

xk =
2√
n




n∑
j=1

x̂j sin
(

πk(2j − 1)
2n

)
 (6)

and the inverse of the quarter-wave cosine transform (also called DCT-II; see Van Loan [7]):

xk =
2√
n




n−1∑
j=0

x̂j cos
(

πk(2j − 1)
2n

)
 . (7)
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4 Applications to Solving Partial Differential Equations

One application of Fourier transforms of symmetric sequences is in the solution of elliptic partial
differential equations. If an equation is discretised using finite differences, then it is sometimes possible to
reduce the problem of solving the resulting large system of linear equations to that of solving a number of
tridiagonal systems of linear equations. This is accomplished by uncoupling the equations using Fourier
transforms, where the nature of the boundary conditions determines the choice of transforms. This
approach is used for the solution of the 3-d Helmholtz equation in the module nag pde helm (13.1).
Full details of the Fourier method for the solution of partial differential equations may be found in
Swarztrauber [4] and Swarztrauber [6].

5 Trigonometric Coefficients

Computing a DFT involves computation of a number of trigonometric coefficients, which can take a
significant proportion of the total CPU-time. The procedures in this module can either compute the
trigonometric coefficients internally (in which case they are recomputed at each call) or they allow the
coefficients to be pre-computed by the procedure nag fft trig from the module nag fft (7.1) and
supplied in an optional argument (which is more efficient if several calls are made to compute transforms
of the same length).

If you are using procedures from this module, and wish to pre-compute the trigonometric coefficients by
calling nag fft trig, it is not necessary to add a separate USE statement for the module nag fft (7.1).
The procedure nag fft trig is also available through the USE statement for this module.
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Procedure: nag fft sin

1 Description

nag fft sin returns the discrete Fourier sine transform of order n of either a single sequence or m
sequences (all of the same length n − 1).

The Fourier sine transform is its own inverse and two consecutive calls of this procedure will restore the
original data.

2 Usage

USE nag sym fft

[value =] nag fft sin(x [, optional arguments])

The function result is an array of type real(kind=wp) and the same shape as that of x.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences to be transformed
n ≥ 1 — the order of the transform (one more than the number of data values in each sequence)

3.1 Mandatory Argument

x(n − 1) / x(m, n − 1) — real(kind=wp), intent(in)
Input: if x has rank 1, it must hold the single sequence to be transformed. If x has rank 2, it must
hold the m sequences to be transformed, with each sequence stored in a row of the array.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

trig(2n) — real(kind=wp), intent(in), optional
Input: trigonometric coefficients required for the computation of transforms of order n.
Default: if trig is not present, the coefficients are computed internally.
Constraints: trig must have been set by a prior call to the procedure nag fft trig from the
module nag fft (7.1). This procedure is accessible through the USE statement for this module.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3245/3/pdf] Module 7.2: nag sym fft 7.2.5



nag fft sin Transforms

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham [1]) known as
the Stockham self-sorting algorithm, which is described in Temperton [2] and Temperton [3], together
with pre- and post-processing stages described in Swarztrauber [5]. Special coding is provided for the
cases where n has factors 2, 3, 4, 5, or 6.

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm logn, but also depends on the
factors of n. The procedure is fastest if the only prime factors of n are 2, 3, and 5, and is particularly
slow if n is a large prime, or has large prime factors.

If several calls are made to this procedure to compute transforms of the same order n, supplying
trigonometric coefficients through the optional argument trig results in a saving of CPU-time.

7.2.6 Module 7.2: nag sym fft [NP3245/3/pdf]
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Procedure: nag fft cos

1 Description

nag fft cos returns the discrete Fourier cosine transform of order n of either a single sequence or m
sequences (all of the same length n + 1).

The Fourier cosine transform is its own inverse and two consecutive calls of this procedure will restore
the original data.

2 Usage

USE nag sym fft

[value =] nag fft cos(x [, optional arguments])

The function result is an array of type real(kind=wp) and the same shape as that of x.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences to be transformed
n ≥ 1 — the order of the transform (one less than the number of data values in each sequence)

3.1 Mandatory Argument

x(n + 1) / x(m, n + 1) — real(kind=wp), intent(in)
Input: if x has rank 1, it must hold the single sequence to be transformed. If x has rank 2, it must
hold the m sequences to be transformed, with each sequence stored in a row of the array.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

trig(2n) — real(kind=wp), intent(in), optional
Input: trigonometric coefficients required for the computation of transforms of order n.
Default: if trig is not present, the coefficients are computed internally.
Constraints: trig must have been set by a prior call to the procedure nag fft trig from module
nag fft (7.1). This procedure is accessible through the USE statement for this module.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham [1]) known as
the Stockham self-sorting algorithm, which is described in Temperton [2] and Temperton [3], together
with pre- and post-processing stages described in Swarztrauber [5]. Special coding is provided for the
cases where n has factors 2, 3, 4, 5, or 6.

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm logn, but also depends on the
factors of n. The procedure is fastest if the only prime factors of n are 2, 3, and 5, and is particularly
slow if n is a large prime, or has large prime factors.

If several calls are made to this procedure to compute transforms of the same order n, supplying
trigonometric coefficients through the optional argument trig results in a saving of CPU-time.

7.2.8 Module 7.2: nag sym fft [NP3245/3/pdf]
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Procedure: nag fft qtr sin

1 Description

nag fft qtr sin returns the discrete quarter-wave Fourier sine transform, or its inverse, of either a
single sequence or m sequences (all of the same length n).

2 Usage

USE nag sym fft

[value =] nag fft qtr sin(x [, optional arguments])

The function result is an array of type real(kind=wp) and the same shape as that of x.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences to be transformed
n ≥ 1 — the number of data values in each sequence

3.1 Mandatory Argument

x(n) / x(m, n) — real(kind=wp), intent(in)
Input: if x has rank 1, it must hold the single sequence to be transformed. If x has rank 2, it must
hold the m sequences to be transformed, with each sequence stored in a row of the array.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

inverse — logical, intent(in), optional
Input: specifies whether the inverse transform is to be calculated.

If inverse = .false., then the forward transform is calculated;
if inverse = .true., then the inverse transform is calculated.

See Section 2 and Section 3 of the Module Introduction for definitions of the forward quarter-wave
sine transform and its inverse, respectively.
Default: inverse = .false..

trig(2n) — real(kind=wp), intent(in), optional
Input: trigonometric coefficients required for the computation of transforms of length n.
Default: if trig is not present, the coefficients are computed internally.
Constraints: trig must have been set by a prior call to the procedure nag fft trig from module
nag fft (7.1). This procedure is accessible through the USE statement for this module.
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham [1]) known as
the Stockham self-sorting algorithm, which is described in Temperton [2] and Temperton [3], together
with pre- and post-processing stages described in Swarztrauber [5]. Special coding is provided for the
cases where n has factors 2, 3, 4, 5, or 6.

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm logn, but also depends on the
factors of n. The procedure is fastest if the only prime factors of n are 2, 3, and 5, and is particularly
slow if n is a large prime, or has large prime factors.

If several calls are made to this procedure to compute transforms of the same length n, supplying
trigonometric coefficients through the optional argument trig results in a saving of CPU-time.
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Procedure: nag fft qtr cos

1 Description

nag fft qtr cos returns the discrete quarter-wave Fourier cosine transform, or its inverse, of either a
single sequence or m sequences (all of the same length n).

2 Usage

USE nag sym fft

[value =] nag fft qtr cos(x [, optional arguments])

The function result is an array of type real(kind=wp) and the same shape as that of x.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m ≥ 1 — the number of sequences to be transformed
n ≥ 1 — the number of data values in each sequence

3.1 Mandatory Argument

x(n) / x(m, n) — real(kind=wp), intent(in)
Input: if x has rank 1, it must hold the single sequence to be transformed. If x has rank 2, it must
hold the m sequences to be transformed, with each sequence stored in a row of the array.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

inverse — logical, intent(in), optional
Input: specifies whether the inverse transform is to be calculated.

If inverse = .false., then the forward transform is calculated;
if inverse = .true., then the inverse transform is calculated.

See Section 2 and Section 3 of the Module Introduction for definitions of the forward quarter-wave
cosine transform and its inverse, respectively.
Default: inverse = .false..

trig(2n) — real(kind=wp), intent(in), optional
Input: trigonometric coefficients required for the computation of transforms of length n.
Default: if trig is not present, the coefficients are computed internally.
Constraints: trig must have been set by a prior call to the procedure nag fft trig from module
nag fft (7.1). This procedure is accessible through the USE statement for this module.
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error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham [1]) known as
the Stockham self-sorting algorithm, which is described in Temperton [2] and Temperton [3], together
with pre- and post-processing stages described in Swarztrauber [5]. Special coding is provided for the
cases where n has factors 2, 3, 4, 5, or 6.

6.2 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing
the results with the original sequence (in exact arithmetic they would be identical).

6.3 Timing

The time taken by the procedure is approximately proportional to nm logn, but also depends on the
factors of n. The procedure is fastest if the only prime factors of n are 2, 3, and 5, and is particularly
slow if n is a large prime, or has large prime factors.

If several calls are made to this procedure to compute transforms of the same length n, supplying
trigonometric coefficients through the optional argument trig results in a saving of CPU-time.
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Example 1: Discrete Fourier sine transform
of a single 1-d sequence

This program reads a sequence of real data values and prints its discrete Fourier sine transform. The
inverse transform is then calculated and printed out, showing that the original sequence is restored. This
example program also shows the use of the procedure nag fft trig from module nag fft (7.1). Note
that nag fft trig is accessed through the USE statement for this module.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_fft_ex01

! Example Program Text for nag_sym_fft

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_fft, ONLY : nag_fft_sin, nag_fft_trig

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig(:), x(:), xhat(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_fft_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (x(n-1),xhat(n-1),trig(2*n)) ! Allocate storage

READ (nag_std_in,*) x

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Original data’

WRITE (nag_std_out,’(7f10.4)’) x

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig)

xhat = nag_fft_sin(x,trig=trig)

WRITE (nag_std_out,*) ’Transformed data’

WRITE (nag_std_out,’(7f10.4)’) xhat

WRITE (nag_std_out,*)

x = nag_fft_sin(xhat,trig=trig)

WRITE (nag_std_out,*) ’Original data restored by inverse transform’

WRITE (nag_std_out,’(7f10.4)’) x

WRITE (nag_std_out,*)

DEALLOCATE (x,xhat,trig) ! Deallocate storage
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END PROGRAM nag_sym_fft_ex01

2 Program Data
Example Program Data for nag_sym_fft_ex01

8 : n

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562 : (z(i),i=1,n-1)

3 Program Results
Example Program Results for nag_sym_fft_ex01

Original data

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562

Transformed data

1.2305 -0.1191 0.4285 -0.0242 0.5240 -0.6539 -0.0242

Original data restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562
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Example 2: Discrete Fourier cosine transforms
of multiple 1-d sequences

This program reads sequences of real data values and prints their discrete Fourier cosine transforms. The
inverse transforms are then calculated and printed out, showing that the original sequences are restored.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_fft_ex02

! Example Program Text for nag_sym_fft

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_fft, ONLY : nag_fft_cos

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: x(:,:), xhat(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_fft_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (x(m,n+1),xhat(m,n+1)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) x(i,:)

END DO

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(x,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data’)

WRITE (nag_std_out,*)

xhat = nag_fft_cos(x)

CALL nag_write_gen_mat(xhat,format=’f10.4’,int_row_labels=.TRUE., &

title=’Transformed data’)

WRITE (nag_std_out,*)

x = nag_fft_cos(xhat)

CALL nag_write_gen_mat(x,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)

DEALLOCATE (x,xhat) ! Deallocate storage
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END PROGRAM nag_sym_fft_ex02

2 Program Data
Example Program Data for nag_sym_fft_ex02

3 6 : m, n

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562 : (z(1,i),i=1,n+1)

0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936 : (z(2,i),i=1,n+1)

0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057 : (z(3,i),i=1,n+1)

3 Program Results
Example Program Results for nag_sym_fft_ex02

Original data

1 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562

2 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936

3 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057

Transformed data

1 1.6833 -0.0482 0.0176 0.1368 0.3240 -0.5830 -0.0427

2 1.9605 -0.4884 -0.0655 0.4444 0.0964 0.0856 -0.2289

3 1.3838 0.1588 -0.0761 -0.1184 0.3512 0.5759 0.0110

Original data restored by inverse transform

1 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 0.9562

2 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 0.4936

3 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 0.2057
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Example 3: Discrete quarter-wave Fourier sine transforms
of multiple 1-d sequences

This program reads sequences of real data values and prints their discrete quarter-wave Fourier sine
transforms. The inverse transforms are then calculated and printed out, showing that the original
sequences are restored.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_fft_ex03

! Example Program Text for nag_sym_fft

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_fft, ONLY : nag_fft_qtr_sin

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: x(:,:), xhat(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_fft_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) m, n

ALLOCATE (x(m,n),xhat(m,n)) ! Allocate storage

DO i = 1, m

READ (nag_std_in,*) x(i,:)

END DO

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(x,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data’)

WRITE (nag_std_out,*)

xhat = nag_fft_qtr_sin(x)

CALL nag_write_gen_mat(xhat,format=’f10.4’,int_row_labels=.TRUE., &

title=’Transformed data’)

WRITE (nag_std_out,*)

x = nag_fft_qtr_sin(xhat,inverse=.TRUE.)

CALL nag_write_gen_mat(x,format=’f10.4’,int_row_labels=.TRUE., &

title=’Original data restored by inverse transform’)
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DEALLOCATE (x,xhat) ! Deallocate storage

END PROGRAM nag_sym_fft_ex03

2 Program Data
Example Program Data for nag_sym_fft_ex03

3 6 : m, n

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 : (z(1,i),i=1,n)

0.5417 0.2983 0.1181 0.7255 0.8638 0.8723 : (z(2,i),i=1,n)

0.9172 0.0644 0.6037 0.6430 0.0428 0.4815 : (z(3,i),i=1,n)

3 Program Results
Example Program Results for nag_sym_fft_ex03

Original data

1 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424

2 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723

3 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815

Transformed data

1 0.7304 0.2078 0.1150 0.2577 -0.2869 -0.0815

2 0.9274 -0.1152 0.2532 0.2883 -0.0026 -0.0635

3 0.6268 0.3547 0.0760 0.3078 0.4987 -0.0507

Original data restored by inverse transform

1 0.3854 0.6772 0.1138 0.6751 0.6362 0.1424

2 0.5417 0.2983 0.1181 0.7255 0.8638 0.8723

3 0.9172 0.0644 0.6037 0.6430 0.0428 0.4815
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Example 4: Discrete quarter-wave Fourier cosine transform
of a single 1-d sequence

This program reads a sequence of real data values and prints its discrete quarter-wave Fourier cosine
transform. The inverse transform is then calculated and printed out, showing that the original sequence
is restored. This example program also shows the use of the procedure nag fft trig from module
nag fft (7.1). Note that nag fft trig is accessed through the USE statement for nag sym fft.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_fft_ex04

! Example Program Text for nag_sym_fft

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_fft, ONLY : nag_fft_qtr_cos, nag_fft_trig

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: trig(:), x(:), xhat(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_fft_ex04’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (x(n),xhat(n),trig(2*n)) ! Allocate storage

READ (nag_std_in,*) x

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Original data’

WRITE (nag_std_out,’(7f10.4)’) x

WRITE (nag_std_out,*)

CALL nag_fft_trig(trig)

xhat = nag_fft_qtr_cos(x,trig=trig)

WRITE (nag_std_out,*) ’Transformed data’

WRITE (nag_std_out,’(7f10.4)’) xhat

WRITE (nag_std_out,*)

x = nag_fft_qtr_cos(xhat,inverse=.TRUE.,trig=trig)

WRITE (nag_std_out,*) ’Original data restored by inverse transform’

WRITE (nag_std_out,’(7f10.4)’) x

WRITE (nag_std_out,*)

DEALLOCATE (x,xhat,trig) ! Deallocate storage
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END PROGRAM nag_sym_fft_ex04

2 Program Data
Example Program Data for nag_sym_fft_ex04

6 : n

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424 : (z(i),i=1,n)

3 Program Results
Example Program Results for nag_sym_fft_ex04

Original data

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424

Transformed data

0.7257 -0.2216 0.1011 0.2355 -0.1406 -0.2282

Original data restored by inverse transform

0.3854 0.6772 0.1138 0.6751 0.6362 0.1424
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Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag sym fft ex05

Discrete Fourier sine transforms of multiple 1-d sequences

nag sym fft ex06

Discrete Fourier cosine transform of a single 1-d sequence

nag sym fft ex07

Discrete quarter-wave Fourier sine transform of a single 1-d sequence

nag sym fft ex08

Discrete quarter-wave Fourier cosine transforms of multiple 1-d sequences
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