
Nonlinear Equations Module Contents

Module 10.1: nag polynom eqn

Roots of Polynomials

nag polynom eqn provides a procedure for computing the roots of a polynomial with real
or complex coefficients.

Contents

Procedures

nag polynom roots . 10.1.3
Calculates the roots of a polynomial

Examples

Example 1: Roots of a polynomial with real coefficients . 10.1.7

Example 2: Roots of a polynomial with complex coefficients . 10.1.9

Mathematical Background . 10.1.11

References . 10.1.12

[NP3245/3/pdf] Module 10.1: nag polynom eqn 10.1.1

Module Contents Nonlinear Equations

10.1.2 Module 10.1: nag polynom eqn [NP3245/3/pdf]

Nonlinear Equations nag polynom roots

Procedure: nag polynom roots

1 Description

nag polynom roots is a procedure for finding all the roots of the nth degree real or complex polynomial
equation

P (z) = anzn + an−1z
n−1 + an−2z

n−2 + · · ·+ a1z + a0 = 0,

using a variant of Laguerre’s Method.

2 Usage

USE nag polynom eqn

CALL nag polynom roots(a, z [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the degree of the polynomial

3.1 Mandatory Arguments

a(n+ 1) — real(kind=wp) / complex(kind=wp), intent(in)
Input: the coefficients of the polynomial. If a is declared with bounds (0 : n), then a(i) must
contain ai (i.e., the coefficient of zi) for i = 0, 1, . . . , n.
Constraints: the coefficient of zn, a(n+ 1) �= 0.0.

z(n) — complex(kind=wp), intent(out)
Output: the roots of the polynomial, stored in z(i), for i = 1, 2, . . . , n.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

scale — logical, intent(in), optional
Input: indicates whether or not the polynomial is to be scaled.
Default: scale = .true..
Note: see Section 6.2 for advice on when it may be preferable to set scale = .false. and for a
description of the scaling strategy.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3245/3/pdf] Module 10.1: nag polynom eqn 10.1.3

nag polynom roots Nonlinear Equations

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

303 Array arguments have inconsistent shapes.

Failures (error%level = 2):

error%code Description

201 The iterative procedure has failed to converge.

For this procedure this failure should not normally occur; please contact NAG.

202 Overflow/underflow prevents the evaluation of P (z) near some of its zeros.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The roots are located using a modified form of Laguerre’s Method, originally proposed by Smith [4].

The method of Laguerre (see Wilkinson [5]) can be described by the iterative scheme

L(zk) = zk+1 − zk =
−nP (zk)

P ′(zk)±
√

H(zk)
,

where H(zk) = (n − 1)[(n − 1)(P ′(zk))2 − nP (zk)P ′′(zk)], and z0 is specified.

The sign in the denominator is chosen so that the modulus of the Laguerre step at zk, namely |L(zk)|,
is as small as possible. The method can be shown to be cubically convergent for isolated roots (real or
complex) and linearly convergent for multiple roots.

The procedure generates a sequence of iterates z1, z2, z3,. . ., such that |P (zk+1)| < |P (zk)| and ensures
that zk+1 +L(zk+1) ‘roughly’ lies inside a circular region of radius |F | about zk known to contain a zero
of P (z); that is, |L(zk+1)| ≤ |F |, where F denotes the Féjer bound (see Marden [2]) at the point zk.
Following Smith [4], F is taken to be min(B, 1.445nR), where B is an upper bound for the magnitude
of the smallest root, given by

B = 1.0001×min(
√

n × L(zk), |r1|, |a0/an|1/n),

where r1 is the zero, X , of smaller magnitude of the quadratic equation

(P ′′(zk)/(n(n − 1)))X2 + 2(P ′(zk)/n)X + P (zk) = 0

and the Cauchy lower bound R for the smallest root is computed (using Newton’s Method) as the positive
root of the polynomial equation

|an|zn + |an−1|zn−1 + |an−2|zn−2 + · · ·+ |a1|z − |a0| = 0.

Starting from the origin, successive iterates are generated according to the rule zk+1 = zk + L(zk) for
k = 1, 2, 3, . . ., and L(zk) is ‘adjusted’ so that |P (zk+1)| < |P (zk)| and |L(zk+1)| ≤ |F |. The iterative
procedure terminates if P (zk+1) is smaller in absolute value than the bound on the rounding error in
P (zk+1) and the current iterate zp = zk+1 is taken to be a root of P (z) (as is its conjugate z̄p if zp is
complex when P (z) has real coefficients). A deflated polynomial, P̃ (z), is then formed as follows.

10.1.4 Module 10.1: nag polynom eqn [NP3245/3/pdf]

Nonlinear Equations nag polynom roots

• P̃ (z) = P (z)/(z − zp), degree (n − 1), if zp is real and P (z) has real coefficients;

• P̃ (z) = P (z)/ ((z − zp)(z − z̄p)), degree (n − 2), if zp is complex and P (z) has real coefficients;

• P̃ (z) = P (z)/(z − zp), degree (n − 1), if P (z) has complex coefficients.

The above procedure is then repeated on the deflated polynomial until n < 3, whereupon the remaining
roots are obtained via the ‘standard’ closed formulae for a linear (n = 1) or quadratic (n = 2) equation.

6.2 Scaling

If scale = .true. (the default), then a scaling factor for the coefficients is chosen as a power of the
base b of the machine so that the largest coefficient in magnitude approaches thresh = bemax−p, where
b = RADIX(1.0 wp), p = DIGITS(1.0 wp), and emax = MAXEXPONENT(1.0 wp).

Note that no scaling is performed if the largest coefficient in magnitude exceeds thresh, even if scale
= .true..

However, with scale= .true., overflowmay be encountered when the input coefficients a0, a1, a2, . . . , an

vary widely in magnitude, particularly on those machines for which b(4p) overflows. In such cases, scale
should be set to .false. and the coefficients scaled so that the largest coefficient in magnitude does
not exceed b(emax−2p).

Even so, the scaling strategy used in this procedure is sometimes insufficient to avoid overflow and/or
underflow conditions. In such cases, you are recommended to scale the independent variable (z) so
that the disparity between the largest and smallest coefficient in magnitude is reduced. That is, use
the procedure to locate the zeros of the polynomial d × P (cz) for some suitable values of c and d. For
example, if the original polynomial was P (z) = 2−100i + 2100z20, then choosing c = 2−10 and d = 2100,
for instance, would yield the scaled polynomial i + z20, which is well behaved relative to overflow and
underflow and has zeros which are 210 times those of P (z).

[NP3245/3/pdf] Module 10.1: nag polynom eqn 10.1.5

nag polynom roots Nonlinear Equations

10.1.6 Module 10.1: nag polynom eqn [NP3245/3/pdf]

Nonlinear Equations Example 1

Example 1: Roots of a polynomial with real coefficients

The following example program can be used to find the roots of an nth degree real polynomial. It is
used to find the roots of the 5th degree polynomial z5 + 2z4 + 3z3 + 4z2 + 5z + 6 = 0.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_polynom_eqn_ex01

! Example Program Text for nag_polynom_eqn

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_polynom_eqn, ONLY : nag_polynom_roots

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:)

COMPLEX (wp), ALLOCATABLE :: z(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_polynom_eqn_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (a(0:n),z(n)) ! Allocate storage

! Read the polynomial coefficients

READ (nag_std_in,*) a

! Find the roots

CALL nag_polynom_roots(a,z)

WRITE (nag_std_out,’(/,1X,A,I4,/)’) ’Degree of Polynomial =’, n

DO i = 1, n

WRITE (nag_std_out,’(1X,A,"(",E12.4,",",E12.4,")")’) ’z = ’, z(i)

END DO

DEALLOCATE (a,z) ! Deallocate storage

END PROGRAM nag_polynom_eqn_ex01

2 Program Data
Example Program Data for nag_polynom_eqn_ex01

5 : n (Degree of Polynomial)

6.0 5.0 4.0 3.0 2.0 1.0 : a (Vector of Coefficients)

[NP3245/3/pdf] Module 10.1: nag polynom eqn 10.1.7

Example 1 Nonlinear Equations

3 Program Results
Example Program Results for nag_polynom_eqn_ex01

Degree of Polynomial = 5

z = (-0.1492E+01, 0.0000E+00)

z = (0.5517E+00, 0.1253E+01)

z = (0.5517E+00, -0.1253E+01)

z = (-0.8058E+00, 0.1223E+01)

z = (-0.8058E+00, -0.1223E+01)

10.1.8 Module 10.1: nag polynom eqn [NP3245/3/pdf]

Nonlinear Equations Example 2

Example 2: Roots of a polynomial with complex coefficients

The following example program can be used to find the roots of an nth degree complex polynomial. It
is used to find the roots of the polynomial a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 = 0, where a5 = 5+ 6i,

a4 = 30 + 20i, a3 = −0.2− 6i, a2 = 50 + 100000i, a1 = −2 + 40i and a0 = 10 + i.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_polynom_eqn_ex02

! Example Program Text for nag_polynom_eqn

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_polynom_eqn, ONLY : nag_polynom_roots

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, n

! .. Local Arrays ..

COMPLEX (wp), ALLOCATABLE :: a(:), z(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_polynom_eqn_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n

ALLOCATE (a(0:n),z(n)) ! Allocate storage

! Read the polynomial coefficients

READ (nag_std_in,*) a

! Find the roots

CALL nag_polynom_roots(a,z)

WRITE (nag_std_out,’(/,1X,A,I4,/)’) ’Degree of Polynomial =’, n

DO i = 1, n

WRITE (nag_std_out,’(1X,A,"(",E12.4,",",E12.4,")")’) ’z = ’, z(i)

END DO

DEALLOCATE (a,z) ! Deallocate storage

END PROGRAM nag_polynom_eqn_ex02

[NP3245/3/pdf] Module 10.1: nag polynom eqn 10.1.9

Example 2 Nonlinear Equations

2 Program Data
Example Program Data for nag_polynom_eqn_ex02

5 : n (Degree of Polynomial)

(10.0 , 1.0)

(-2.0 , 40.0)

(50.0 , 100000.0)

(-0.2 , -6.0)

(30.0 , 20.0)

(5.0 , 6.0) : End of a (Vector of Coefficients)

3 Program Results
Example Program Results for nag_polynom_eqn_ex02

Degree of Polynomial = 5

z = (-0.2433E+02, -0.4855E+01)

z = (0.5249E+01, 0.2274E+02)

z = (0.1465E+02, -0.1657E+02)

z = (-0.6926E-02, -0.7443E-02)

z = (0.6526E-02, 0.7423E-02)

10.1.10 Module 10.1: nag polynom eqn [NP3245/3/pdf]

Nonlinear Equations Mathematical Background

Mathematical Background

1 Introduction

Let

f(z) ≡ anzn + an−1z
n−1 + an−2z

n−2 + · · · + a1z + a0, an �= 0

be a polynomial of degree n with complex coefficients ai. A complex number z1 is called a zero of f(z)
(or equivalently a root of the equation f(z) = 0), if f(z1) = 0.

If z1 is a zero, then f(z) can be divided by a factor (z − z1):

f(z) = (z − z1)f1(z) (1)

where f1(z) is a polynomial of degree n − 1. By the Fundamental Theorem of Algebra, a polynomial
f(z) has at least one zero, and so the process of dividing out factors (z − zi) can be continued until we
have a complete factorization of f(z):

f(z) ≡ an(z − z1)(z − z2) · · · (z − zn).

Here the complex numbers z1, z2, . . . , zn are the zeros of f(z); they may not all be distinct, so it is
sometimes more convenient to write:

f(z) ≡ an(z − z1)m1(z − z2)m2 · · · (z − zk)mk , k ≤ n,

with distinct zeros z1, z2, . . . , zk and multiplicities mi ≥ 1. If mi = 1, zi is called a single zero; if mi >
1, zi is called a multiple or repeated zero; a multiple zero is also a zero of the derivative of f(z).

If the coefficients of f(z) are all real, then the zeros of f(z) are either real or else occur as pairs of
conjugate complex numbers a + ib and a − ib. A pair of complex conjugate zeros are the zeros of a
quadratic factor of f(z), (z2 + rz + s), with real coefficients r and s.

Although polynomials are generally regarded as simple functions, the problem of numerically computing
the zeros of an arbitrary polynomial is far from simple. A great variety of algorithms have been proposed,
of which a number have been widely used in practice; for a fairly comprehensive survey, see Householder
[1]. All general algorithms are iterative. Most converge to one zero at a time; the corresponding factor
can then be divided out as in (1) above (this process is called deflation or, loosely, dividing out the zero)
and the algorithm can be applied again to the polynomial f1(z). A pair of complex conjugate zeros can
be divided out together; this corresponds to dividing f(z) by a quadratic factor.

Whatever the theoretical basis of the algorithm, a number of practical problems arise; for a thorough
discussion of some of them see Peters and Wilkinson [3]. The most elementary point is that, even if z1

is mathematically an exact zero of f(z), because of the fundamental limitations of computer arithmetic
the computed value of f(z1) will not necessarily be exactly 0.0. In practice there is usually a small region
of values of z about the exact zero at which the computed value of f(z) becomes dominated by rounding
errors. Moreover in many algorithms this inaccuracy in the computed value of f(z) results in a similar
inaccuracy in the computed step from one iterate to the next. This limits the precision with which any
zero can be computed. Deflation is another potential cause of trouble, since, in the notation of (1), the
computed coefficients of f1(z) will not be completely accurate, especially if z1 is not an exact zero of
f(z); so the zeros of the computed f1(z) will deviate from the zeros of f(z).

A zero is called ill conditioned if it is sensitive to small changes in the coefficients of the polynomial. An
ill conditioned zero is likewise sensitive to the computational inaccuracies just mentioned. Conversely a
zero is called well conditioned if it is comparatively insensitive to such perturbations. Roughly speaking a
zero which is well separated from other zeros is well conditioned, while zeros which are close together are
ill conditioned, but in talking about ‘closeness’ the decisive factor is not the absolute distance between
neighbouring zeros but their ratio: if the ratio is close to 1 the zeros are ill conditioned. In particular,
multiple zeros are ill conditioned. A multiple zero is usually split into a cluster of zeros by perturbations
in the polynomial or computational inaccuracies.

[NP3245/3/pdf] Module 10.1: nag polynom eqn 10.1.11

References Nonlinear Equations

References

[1] Householder A S (1970) The Numerical Treatment of a Single Nonlinear Equation McGraw-Hill

[2] Marden M (1966) Geometry of polynomials Mathematical Surveys 3 American Mathematical
Society, Providence, RI

[3] Peters G andWilkinson J H (1971) Practical problems arising in the solution of polynomial equations
J. Inst. Maths. Applics. 8 16–35

[4] Smith B T (1967) ZERPOL: A zero finding algorithm for polynomials using Laguerre’s method
Technical Report Department of Computer Science, University of Toronto, Canada

[5] Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, London

10.1.12 Module 10.1: nag polynom eqn [NP3245/3/pdf]

