
Quadrature Module Contents

Module 11.3: nag quad md

Multi-dimensional Integrals

nag quad md provides procedures for computing the value of multi-dimensional definite
integrals.

Contents

Introduction . 11.3.3

Procedures

nag quad md rect . 11.3.5

Multi-dimensional adaptive quadrature over a hyper-rectangle

nag quad md rect mintg . 11.3.9

Multi-dimensional adaptive quadrature over a hyper-rectangle, multiple integrands

nag quad 2d . 11.3.13

2-d quadrature, finite region

nag quad monte carlo . 11.3.17

Multi-dimensional quadrature over hyper-rectangle, Monte-Carlo method

Examples

Example 1: Evaluation of a Four-dimensional Integral Using nag quad md rect 11.3.21

Example 2: Evaluation of Ten Four-dimensional Integrals . 11.3.23

Example 3: Illustration of the Continuation Facility in nag quad md rect mintg 11.3.25

Example 4: Evaluation of a Two-dimensional Integral . 11.3.29

Example 5: Evaluation of a Four-dimensional Integral Using nag quad monte carlo 11.3.33

Mathematical Background . 11.3.35

References . 11.3.36

[NP3506/4] Module 11.3: nag quad md 11.3.1

Module Contents Quadrature

11.3.2 Module 11.3: nag quad md [NP3506/4]

Quadrature Module Introduction

Introduction

The procedures in this module are designed to estimate the value of a multi-dimensional definite integral
of the form:

∫

Rn

f(x1, x2, . . . , xn) dxn . . . dx2dx1,

where f(x1, x2, . . . , xn) is a function defined by the user, and Rn is the n-rectangle defined by

ai ≤ xi ≤ bi, i = 1, 2, . . . , n,

where ai and bi are constants.

The more general case where ai and bi are functions of xj (j < i) may be dealt with by transforming
the region to the rectangular form (see page 226 of Davis and Rabinowitz [1]).

The module also contains a procedure which computes the value of a two-dimensional integral of the
form:

∫ b

a

∫ φ2(y)

φ1(y)

f(x, y) dxdy.

where f(x, y) is not badly behaved.

[NP3506/4] Module 11.3: nag quad md 11.3.3

Module Introduction Quadrature

11.3.4 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad md rect

Procedure: nag quad md rect

1 Description

nag quad md rect attempts to compute an approximation to a multi-dimensional integral (up to 15
dimensions) over a hyper-rectangle:

I =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn) dxn . . . dx2dx1,

where the limits ai and bi, for i = 1, 2, . . . , n are constant. The procedure returns an estimate of the
above integral, and optionally an estimate of the relative error.

This procedure requires a user-supplied function to evaluate the integrand at a given point.

2 Usage

USE nag quad md

CALL nag quad md rect(f, a, b, result [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

2 ≤ n ≤ 15 — the number of dimensions of the integral

3.1 Mandatory Arguments

f — function

f must return the value of the integrand f at a given point.

function f(x)

real(kind=wp), intent(in) :: x(:)

Shape: x has shape (n).

Input: the co-ordinates of the point at which the integrand f must be evaluated.

real(kind=wp) :: f

Result: f must contain the value of f at the point with co-ordinates x(i), for i = 1, 2, . . . , n.

a(n) — real(kind=wp), intent(in)

b(n) — real(kind=wp), intent(in)

Input: the lower and upper limits of integration, ai and bi respectively, for i = 1, 2, . . . , n.

[NP3506/4] Module 11.3: nag quad md 11.3.5

nag quad md rect Quadrature

result — real(kind=wp), intent(out)

Output: the best approximation obtained to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

rel acc — real(kind=wp), intent(in), optional

Input: the relative accuracy required. When the solution is zero, or very small, relative accuracy
may not be achievable, but you may still set rel acc to a reasonable value and check for the error
exit error%code = 201.

Default: rel acc = (EPSILON(1.0 wp))1/4.

Constraints: rel acc > 0.0.

rel err — real(kind=wp), intent(out), optional

Output: the estimated relative error in result.

max fun eval — integer, intent(in), optional

Input: maximum number of integrand evaluations to be allowed.

Default: max fun eval = 200(2n + 2n2 + 2n+ 1).

Constraints: max fun eval ≥ 2n + 2n2 + 2n+ 1.

num fun eval — integer, intent(out), optional

Output: the actual number of integrand evaluations.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The maximum number of function evaluations allowed has been reached.

max fun eval was too small to obtain the specified relative accuracy. result and
rel err contain estimates of the integral and relative error respectively. However,
rel err will be greater than rel acc.

11.3.6 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad md rect

202 Failure due to insufficient internal workspace.

The amount of storage allocated to internal workspace is too small. result and
rel err contain estimates of the integral and relative error respectively. However,
rel err will be greater than rel acc. The size of this workspace is proportional
to the value of max fun eval. Hence, an increase in the value of max fun eval will
result in the allocation of more storage for this internal workspace.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure is based on the HALF procedure developed by Van Dooren and De Ridder [3]. However,
it uses a different basic rule, described by Genz and Malik [2].

The procedure operates by repeated subdivision of the hyper-rectangular region into smaller hyper-
rectangles. In each subregion, the integral is estimated using a seventh-degree rule, and an error estimate
is obtained by comparison with a fifth-degree rule, which uses a subset of the same points. The fourth
differences of the integrand along each co-ordinate axis are evaluated, and the subregion is marked for
possible future subdivision in half along that co-ordinate axis which has the largest absolute fourth
difference.

If the estimated errors, totalled over the subregions, exceed the requested relative error, further
subdivision is necessary, and is performed on the subregion with the largest estimated error, that
subregion being halved along the appropriate co-ordinate axis.

The procedure will fail if the requested relative error level has not been attained by the time max fun eval

calls to f have been made, or if the amount of internal working storage is insufficient. The amount of
working storage allocated internally by the procedure is sufficient for most problems. However, if this
amount is exhausted in the course of execution, the procedure switches to a less efficient mode of
operation; the procedure will report an error only if this mode also breaks down. In this case you are
advised to increase the value of max fun eval.

In general, convergence is fast for well behaved integrands and highly accurate results can often be
obtained for n between 2 and 5. The procedure will usually work when the integrand is mildly singular.

6.2 Accuracy

A relative error estimate is available through the optional argument rel err.

6.3 Timing

Execution time will usually be dominated by the time taken to evaluate the integrand f, and hence the
maximum time required will be proportional to max fun eval.

[NP3506/4] Module 11.3: nag quad md 11.3.7

nag quad md rect Quadrature

11.3.8 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad md rect mintg

Procedure: nag quad md rect mintg

1 Description

nag quad md rect mintg computes approximations to the integrals of a vector of similar functions:

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

(f1, f2, . . . , fm) dxn . . . dx2dx1,

where fi = fi(x1, x2, . . . , xn), for i = 1, 2, . . . ,m; that is each function is defined over the same multi-
dimensional hyper-rectangle region.

This procedure requires a vector valued user-supplied function to evaluate the integrand at a given point.

2 Usage

USE nag quad md

CALL nag quad md rect mintg(f, a, b, result [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the number of dimensions of the integral

m ≥ 1 — the number of integrands

3.1 Mandatory Arguments

f — function

f must return the values of the integrands fi, for i = 1, 2, . . . ,m, at a given point.

function f(x,m)

real(kind=wp), intent(in) :: x(:)

Shape: x has shape (n).

Input: the co-ordinates of the point at which the integrands must be evaluated.

integer, intent(in) :: m

Input: the number of integrands, m.

real(kind=wp) :: f(m)

Result: the values of the m integrands at a point with co-ordinates x(i), for i = 1, 2, . . . , n.

a(n) — real(kind=wp), intent(in)

b(n) — real(kind=wp), intent(in)

Input: the lower and upper limits of integration, ai and bi, for i = 1, 2, . . . , n, respectively.

[NP3506/4] Module 11.3: nag quad md 11.3.9

nag quad md rect mintg Quadrature

result(m) — real(kind=wp), intent(out)

Output: result(i) specifies the best estimated result obtained from the ith integral, for
i = 1, 2, . . . ,m.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional

Input: the absolute accuracy required.

Note: both abs acc and rel acc cannot be zero.

Default: abs acc = SQRT(EPSILON(1.0 wp)).

Constraints: abs acc ≥ 0.0.

rel acc — real(kind=wp), intent(in), optional

Input: the relative accuracy required.

Note: both rel acc and abs acc cannot be zero.

Default: rel acc = 10−4.

Constraints: rel acc ≥ 0.0.

abs err(m) — real(kind=wp), intent(out), optional

Output: abs err(i) is the estimated absolute accuracy of result(i), for i = 1, 2, . . . ,m.

min fun eval — integer, intent(in), optional

Input: minimum number of calls to f.

Note: min fun eval has no effect on the computation when continue call = .true..

Default: min fun eval = 0.

Constraints: min fun eval ≥ 0.

max fun eval — integer, intent(in), optional

Input: maximum number of calls to f.

Default:

max fun eval = 50000, if n < 11,

max fun eval = 200n3, if n ≥ 11.
Constraints: max fun eval ≥ max(min fun eval,r) where

r = 2n + 2n2 + 2n+ 1, if n < 11,

r = 1 + n(4n2 − 6n+ 14)/3, if n ≥ 11.

continue call — logical, intent(in), optional

Input: if continue call = .true., the procedure continues the calculation started in a previous
call with the same integrands and integration limits; no arguments other than max fun eval,
abs acc, rel acc or error may be changed between the calls. Otherwise, no action is taken
between the calls.

Default: continue call = .false..

Constraints: if continue call is present as an argument, then the array subrgn info must also
be present as an argument.

11.3.10 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad md rect mintg

num fun eval — integer, intent(out), optional

Output: the actual number of function calls used. In the continuation case this is the number of
new calls to f made on the current call to this procedure.

subrgn info(k) — real(kind=wp), intent(inout), optional

Input: if continue call = .true., subrgn info should be present and must be unchanged from
the previous call to this procedure.

Output: subrgn info contains information about the current subdivision which could be used in
a continuation call.

Default: k = 6n+ 9m+ (n+m+ 2)(1 + p/r). See below.

Recommended Value: k ≥ 6n + 9m + (n + m + 2)(1 + p/r), where p = max fun eval and r is
defined under max fun eval. If k is significantly smaller than this, the procedure will not work as
efficiently and may even fail.

Constraints: k ≥ 8n+ 11m+ 3.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The maximum number of function evaluations allowed has been reached.

max fun eval was too small to obtain the specified relative accuracy. The arrays
result and abs err contain estimates of the integrals and the errors respectively.

202 The amount of storage for the workspace has been exceeded.

If the argument subrgn info is present then its size is too small for the procedure
to continue. The arrays result and and abs err contain current estimates for the
integrals and the errors respectively.

However, if the argument subrgn info is not present then the amount of storage for
this argument has been exceeded. In this case, supply subrgn info as an argument
and increase its size.

203 Insufficient value of max fun eval on a continuation call.

On a continuation call, max fun eval was set too small to make any progress. Increase
max fun eval before calling this procedure again.

[NP3506/4] Module 11.3: nag quad md 11.3.11

nag quad md rect mintg Quadrature

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 2 and 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses a globally adaptive method based on the algorithm described by Van Dooren and
De Ridder [3], and Genz and Malik [2]. Upon entry, unless min fun eval has been set to a value equal
to zero, the procedure divides the integration region into a number of subregions with randomly selected
volumes. Inside each subregion the integrals and their errors are estimated. The initial number of
subregions is chosen to be as large as possible without using more than min fun eval calls to f. The
results are stored in a partially ordered list (a heap). The procedure then proceeds in stages. At each
stage the subregion with the largest error (measured using the maximum norm) is halved along the co-
ordinate axis where the integrands have largest absolute fourth differences. The basic rule is applied to
each half of this subregion and the results are stored in the list. The results from the two halves are used
to update the global integral and error estimates (result and abs err) and the procedure continues
unless

‖result‖ ≤ max(abs err, ‖result‖ × rel acc)

where ‖.‖ is the maximum norm, or further subdivision would use more than max fun eval calls to f.
If at some stage there is insufficient working storage to keep the results for the next subdivision, the
procedure switches to a less efficient mode; only if this mode of operation breaks down is insufficient
storage reported.

However, for some integrands, particularly those that are poorly behaved in a small part of the integration
region, this procedure may terminate prematurely with values of abs err that are significantly smaller
than the actual absolute errors. This behaviour should be suspected if the returned value of num fun eval

is small relative to the expected difficulty of the integrals. When this occurs this procedure should be
called again, but with an entry value of min fun eval ≥ 2r (see specification of max fun eval), and the
results compared with those from the previous call.

If the procedure is called with min fun eval ≥ 2r, the exact values of result and abs err on return
will depend (within statistical limits) on the sequence of random numbers generated internally within
this procedure by calls to nag rand uniform. Separate runs will produce identical answers unless the
part of the program executed prior to calling nag quad md rect mintg also calls (directly or indirectly)
procedures from Chapter 21, and, in addition, the series of such calls differs between runs.

Because of moderate instability in the application of the basic integration rule, approximately the last
1 + log10(n

3) decimal digits may be inaccurate when using this procedure for large values of n.

6.2 Accuracy

An absolute error estimate for each integrand is available through the optional array argument abs err.
The procedure exits successfully if

max
i
(abs err(i)) ≤ max(abs acc, rel acc×max

i
| abs err(i) |).

6.3 Timing

Execution time will usually be dominated by the time to evaluate the integrands, and hence the maximum
time required will be proportional to max fun eval.

11.3.12 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad 2d

Procedure: nag quad 2d

1 Description

nag quad 2d evaluates an approximation to the double integral

I =

∫ b

a

∫ φ2(y)

φ1(y)

f(x, y) dxdy

to a specified absolute accuracy by repeated applications of the method described by Patterson [5] and
Patterson [6], where the limits a and b are constants and φ1(y) and φ2(y) are functions of the variable y.

This procedure requires a user-supplied function to evaluate the integrand at a given point. It also
requires two user-supplied functions to evaluate the limits of the inner intergration.

2 Usage

USE nag quad md

CALL nag quad 2d(f, phi1, phi2, a, b, result [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

f — function

f must return the value of the integrand f at a given two-dimensional point.

function f(x,y)

real(kind=wp), intent(in) :: x

real(kind=wp), intent(in) :: y

Input: the co-ordinates of the point (x, y) at which the integrand must be evaluated.

real(kind=wp) :: f

Result: f must contain the value of f at the point with co-ordinates x and y.

phi1 — function

phi1 must return the lower limit of the inner integral for a given value of y.

function phi1(y)

real(kind=wp), intent(in) :: y

Input: the value of y for which the lower limit must be evaluated.

real(kind=wp) :: phi1

Result: phi1 must contain the value of φ1 at the point y.

[NP3506/4] Module 11.3: nag quad md 11.3.13

nag quad 2d Quadrature

phi2 — function

phi2 must return the upper limit of the inner integral for a given value of y.

function phi2(y)

real(kind=wp), intent(in) :: y

Input: the value of y for which the upper limit must be evaluated.

real(kind=wp) :: phi2

Result: phi2 must contain the value of φ2 at the point y.

a — real(kind=wp), intent(in)

b — real(kind=wp), intent(in)

Input: the upper and the lower limits of the integral, a and b. It is not necessary that a < b.

result — real(kind=wp), intent(out)

Output: the value of the computed integral.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

abs acc — real(kind=wp), intent(in), optional

Input: the absolute accuracy requested for the outer integral.

Default: abs acc = 10−4.

abs acc inner — real(kind=wp), intent(in), optional

Input: the absolute accuracy requested for the inner integral.

Note: this argument is provided for expert users. If you are not familiar with the product integration
rule, you are advised to use the default value as in the vast majority of cases this has proved to be
adequate for the overall result of the double integral.

Default: abs acc inner = 0.1×abs acc.

Constraints: abs acc inner ≤ abs acc.
If abs acc inner is present then abs acc must also be present.

num fun eval — integer, intent(out), optional

Output: the total number of integrand evaluations.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

11.3.14 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad 2d

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 Invalid absence of an optional argument.

This indicates that the optional argument abs acc inner is present when the optional
argument abs acc is absent.

Failures (error%level = 2):

error%code Description

201 Failure due to convergence not being achieved in the outer integral

This indicates that 255 points have been used in the outer integral and convergence
has not been obtained. All the inner integrals have, however, converged. In this case
result may still contain an approximate estimate of the integral.

202 Failure due to convergence not being achieved in outer integral and some inner
integrals

This indicates that both the outer integral and some inner integrals have failed to
converge. result may still contain an approximate estimate of the integral, but its
reliability will decrease as the number on non-convergent inner integrals increases.
An error message reports the precise number of these inner integrals.

Warnings (error%level = 1):

error%code Description

101 Convergence was not achieved in some inner integrals

This indicates that while the outer integral has converged some inner integrals failed
to converge with the use of 255 points. In this case result may still contain an
approximate estimate of the integral, but its reliability will decrease as the the number
of non-convergent integrals increases. The warning reports the precise number of the
inner integrals that failed to converge.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure evaluates a definite integral of the form

I =

∫ b

a

∫ φ2(y)

φ1(y)

f(x, y)dxdy

where a and b are constants and φ1(y) and φ2(y) are functions of the variable y.

The integral is evaluated by expressing it as

I =

∫ b

a

F (y)dy, where F (y) =

∫ φ2(y)

φ1(y)

f(x, y)dx.

Both the outer integral I and the inner integrals F (y) are evaluated by the method, described by
Patterson [5] and Patterson [6], of the optimum addition of points to Gauss quadrature formulae.

[NP3506/4] Module 11.3: nag quad md 11.3.15

nag quad 2d Quadrature

This method uses a family of interlacing common point formulae. Beginning with the 3-point Gauss
rule, formulae using 7, 15, 31, 63, 127 and finally 255 points are derived. Each new formula contains
all the abscissae of the earlier formulae so that no function evaluations are wasted. Each integral is
evaluated by applying these formulae successively until two results are obtained which differ by less than
the specified absolute accuracy.

With Patterson’s method accidental convergence may occasionally occur, when two estimates of an
integral agree to within the requested accuracy, but both estimates differ considerably from the true
result. This could occur in either the outer integral or in one or more of the inner integrals.

If it occurs in the outer integral then apparent convergence is likely to be obtained with considerably
fewer integrand evaluations than may be expected. If it occurs in an inner integral, the incorrect
value could make the function F (y) appear to be badly behaved, in which case a very large number of
abscissae may be needed for the overall evaluation of the integral. Thus both unexpectedly small and
unexpectedly large numbers of integrand evaluations should be considered as indicating possible trouble.
If accidental convergence is suspected, the integral may be recomputed, requesting better accuracy; if
the new request is more stringent than the degree of accidental agreement (which is of course unknown),
improved results should be obtained. This is only possible when the accidental agreement is not better
than machine accuracy.

The procedure is not well suited to non-smooth integrands, i.e., integrands having some kind of analytic
discontinuity (such as a discontinuous or infinite partial derivative of some low order) in, on the boundary
of, or near, the region of integration.

Warning: such singularities may be induced by incautiously presenting an apparently smooth interval
over the positive quadrant of the unit circle, R

I =

∫

R

(x+ y)dxdy.

This may be presented to this procedure as

I =

∫ 1

0

dy

∫

√
1−y2

0

(x+ y)dx =

∫ 1

0

i

(

1

2
(1− y2) + y

√

1− y2

)

dy

but here the outer integral has an induced square-root singularity stemming from the way the region has
been presented to this procedure. This situation should be avoided by re-casting the problem. For the
example given, the use of polar co-ordinates would avoid the difficulty:

I =

∫ 1

0

dr

∫ π/2

0

r2(cos υ + sin υ)dυ.

6.2 Accuracy

If on exit no failure is reported then the result is most likely correct to the requested accuracy abs acc.
Even if a failure is reported on exit, it is still possible that the calculated result could differ from the
true value by less than the given accuracy.

11.3.16 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad monte carlo

Procedure: nag quad monte carlo

1 Description

nag quad monte carlo computes an approximation to a multi-dimensional integral over a hyper-
rectangle region, using a Monte-Carlo method. The integral has the form:

I =

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn) dxn . . . dx2dx1,

where the limits ai and bi, for i = 1, 2, . . . , n are constant. The procedure returns an estimate of the
above integral, and optionally an estimate of the relative error.

This procedure is suitable for low accuracy work and requires a user-supplied function to evaluate the
integrand at a given point.

2 Usage

USE nag quad md

CALL nag quad monte carlo(f, a, b, result [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n ≥ 1 — the number of dimensions of the integral

3.1 Mandatory Arguments

f — function

f must return the value of the integrand f at a given point.

function f(x)

real(kind=wp), intent(in) :: x(:)

Shape: x has shape (n).

Input: the co-ordinates of the point at which the integrand f must be evaluated.

real(kind=wp) :: f

Result: f must contain the value of f at the point with co-ordinates x(i), for i =
1, 2, . . . , SIZE(x).

a(n) — real(kind=wp), intent(in)

b(n) — real(kind=wp), intent(in)

Input: the lower and upper limits of integration, ai and bi respectively, for i = 1, 2, . . . , n.

[NP3506/4] Module 11.3: nag quad md 11.3.17

nag quad monte carlo Quadrature

result — real(kind=wp), intent(out)

Output: the best approximation obtained to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

rel acc — real(kind=wp), intent(in), optional

Input: the relative accuracy required. When the solution is zero, or very small, relative accuracy
may not be achievable, but you may still set rel acc to a reasonable value and check for the error
exit error%code = 201.

Default: rel acc = MAX(0.001, (EPSILON(1.0 wp))1/5).

Constraints: rel acc > 0.0.

rel err — real(kind=wp), intent(out), optional

Output: the estimated relative error in result.

max fun eval — integer, intent(in), optional

Input: maximum number of integrand evaluations to be allowed.

Default: max fun eval = 4000(n+ 1).

Constraints: max fun eval ≥ 4(n+ 1).

num fun eval — integer, intent(out), optional

Output: the actual number of integrand evaluations.

repeat rand — logical, intent(in), optional

Input: if repeat rand = .true., the initial value of the seed supplied to the random numbers
generator used by nag quad monte carlo is reset to create a repeatable sequence of random
numbers. This will ensure that separate runs will produce identical answers. Otherwise, the
seed is calculated from the system clock, resulting in a non-repeatable sequence hence non-identical
answers (for more details see Section 6.1).

Default: repeat rand = .false..

continue call — logical, intent(in), optional

Input: if continue call = .true., the procedure continues the calculation started in a previous
call with the same integrands and integration limits; no arguments other than max fun eval,
abs acc, rel acc or error may be changed between the calls. Otherwise, no action is taken
between the calls.

Default: continue call = .false..

Constraints: if continue call is present as an argument, then the array subrgn info must also
be present as an argument.

subrgn info(k) — real(kind=wp), intent(inout), optional

Input: if continue call = .true., subrgn info should be present and must be unchanged from
the previous call to this procedure.

Output: subrgn info contains information about the current subdivision which could be used in
a continuation call.

Default: k = n+ 3n(max fun eval/4)1/n. See below.

Recommended Value: k ≥ n + 3n(max fun eval/4)1/n. If k is significantly smaller than this, the
procedure will not work as efficiently and may even fail.

Constraints: k ≥ 4n.

11.3.18 Module 11.3: nag quad md [NP3506/4]

Quadrature nag quad monte carlo

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The maximum number of function evaluations allowed has been reached.

max fun eval was too small to obtain the specified relative accuracy. result and
rel err contain estimates of the integral and relative error respectively. However,
rel err will be greater than rel acc.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 5 of this module document.

6 Further Comments

6.1 Algorithmic Detail

nag quad monte carlo uses an adaptive Monte Carlo method based on the algorithm described by
Lautrup [4]. It is implemented for integrals of the form:

∫ b1

a1

∫ b2

a2

. . .

∫ bn

an

f(x1, x2, . . . , xn) dxn . . . dx2 dx1.

Upon entry, the procedure subdivides the integration region into a number of equal volume subregions.
Inside each subregion the integral and the variance are estimated by means of pseudo-random sampling.
All contributions are added together to produce an estimate for the whole integral and total variance.
The variance along each co-ordinate axis is determined and the procedure uses this information to
increase the density and change the widths of the sub-intervals along each axis, so as to reduce the total
variance. The total number of subregions is then increased by a factor of two and the program recycles
for another iteration. The program stops when a desired accuracy has been reached or too many integral
evaluations are needed for the next cycle.

For some integrands, particularly those that are poorly behaved in a small part of the integration region,
nag quad monte carlo may terminate with a value of rel err which is significantly smaller than the
actual relative error. This should be suspected if the value of the optional argument num fun eval is
small relative to the expected difficulty of the integral. Where this occurs, nag quad monte carlo should

[NP3506/4] Module 11.3: nag quad md 11.3.19

nag quad monte carlo Quadrature

be called again, but with a higher entry value of max fun eval (e.g., twice the value used in the previous
call) and the results compared with those from the previous call.

The exact values of result and rel err on return will depend (within statistical limits) on the sequence
of random numbers generated within nag quad monte carlo by calls to nag rand uniform. Separate
runs will produce identical answers unless the optional argument repeat rand is used and set to .false..

6.2 Timing

Execution time will for nag quad monte carlo will usually be dominated by the time used to evaluate the
integrand f , so the maximum time that could be used is approximately proportional to max fun eval.

11.3.20 Module 11.3: nag quad md [NP3506/4]

Quadrature Example 1

Example 1: Evaluation of a Four-dimensional Integral

Using nag quad md rect

The four-dimensional integral

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4x1x
2
3 exp(2x1x3)

(1 + x2 + x4)2
dx4 dx3 dx2 dx1

is computed using the procedure nag quad md rect.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_md_ex01_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EXP

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: f

! .. Executable Statements ..

f = 4.0_wp*x(1)*x(3)*x(3)*EXP(2.0_wp*x(1)*x(3))/(1.0_wp+x(2)+x(4))**2

END FUNCTION f

END MODULE quad_md_ex01_mod

PROGRAM nag_quad_md_ex01

! Example Program Text for nag_quad_md

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_quad_md, ONLY : nag_quad_md_rect

USE quad_md_ex01_mod, ONLY : wp, f

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: n = 4

! .. Local Scalars ..

REAL (wp) :: result

! .. Local Arrays ..

REAL (wp) :: a(n), b(n)

[NP3506/4] Module 11.3: nag quad md 11.3.21

Example 1 Quadrature

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_md_ex01’

a = 0.0_wp

b = 1.0_wp

CALL nag_quad_md_rect(f,a,b,result)

WRITE (nag_std_out,’(/,1X,A,F9.5)’) &

’result - approximation to the integral =’, result

END PROGRAM nag_quad_md_ex01

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex01

result - approximation to the integral = 0.57536

11.3.22 Module 11.3: nag quad md [NP3506/4]

Quadrature Example 2

Example 2: Evaluation of Ten Four-dimensional Integrals

The four-dimensional integrals

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(f1, f2, . . . , f10) dx4 dx3 dx2 dx1,

where

fj = ln(x1 + 2x2 + 3x3 + 4x4) sin(j + x1 + 2x2 + 3x3 + 4x4),

for j = 1, 2, . . . , 10, are computed using the procedure nag quad md rect mintg.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_md_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(x,m)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC LOG, REAL, SIN, SIZE, SUM

! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: m

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: f(m)

! .. Local Scalars ..

INTEGER :: j

REAL (wp) :: s

! .. Executable Statements ..

s = SUM((/(REAL(j,kind=wp),j=1,SIZE(x))/)*x)

f = LOG(s)*(/ (SIN(REAL(j,kind=wp)+s),j=1,m) /)

END FUNCTION f

END MODULE quad_md_ex02_mod

PROGRAM nag_quad_md_ex02

! Example Program Text for nag_quad_md

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_quad_md, ONLY : nag_quad_md_rect_mintg

USE quad_md_ex02_mod, ONLY : wp, f

[NP3506/4] Module 11.3: nag quad md 11.3.23

Example 2 Quadrature

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: m = 10, n = 4

! .. Local Scalars ..

INTEGER :: i

! .. Local Arrays ..

REAL (wp) :: a(n), b(n), result(m)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_md_ex02’

a = 0.0_wp

b = 1.0_wp

CALL nag_quad_md_rect_mintg(f,a,b,result)

WRITE (nag_std_out,’(/,1X,A)’) ’ i integral’

DO i = 1, m

WRITE (nag_std_out,’(1X,I4,F14.4)’) i, result(i)

END DO

END PROGRAM nag_quad_md_ex02

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex02

i integral

1 0.0383

2 0.4012

3 0.3952

4 0.0258

5 -0.3672

6 -0.4227

7 -0.0895

8 0.3260

9 0.4417

10 0.1514

11.3.24 Module 11.3: nag quad md [NP3506/4]

Quadrature Example 3

Example 3: Illustration of the Continuation Facility

in nag quad md rect mintg

The four-dimensional integrals

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(f1, f2, . . . , f10) dx4 dx3 dx2 dx1,

where

fj = ln(x1 + 2x2 + 3x3 + 4x4) sin(j + x1 + 2x2 + 3x3 + 4x4),

for j = 1, 2, . . . , 10, are computed using the procedure nag quad md rect mintg. This example
program is intended to illustrate the continuation facility provided by nag quad md rect mintg: the
procedure exits with error%code = 201 (printing an explanatory error message) and is re-entered with
max fun eval reset to a larger value. The program can be used with different numbers of integrands and
dimensions. The program also uses the module nag error handling (1.2) to control the error state.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_md_ex03_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(x,m)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC LOG, REAL, SIN, SIZE, SUM

! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: m

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: f(m)

! .. Local Scalars ..

INTEGER :: j

REAL (wp) :: s

! .. Executable Statements ..

s = SUM((/(REAL(j,kind=wp),j=1,SIZE(x))/)*x)

f = LOG(s)*(/ (SIN(REAL(j,kind=wp)+s),j=1,m) /)

END FUNCTION f

END MODULE quad_md_ex03_mod

PROGRAM nag_quad_md_ex03

! Example Program Text for nag_quad_md

[NP3506/4] Module 11.3: nag quad md 11.3.25

Example 3 Quadrature

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_quad_md, ONLY : nag_quad_md_rect_mintg, nag_set_error, nag_error

USE quad_md_ex03_mod, ONLY : wp, f

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Parameters ..

INTEGER, PARAMETER :: m = 10, n = 4

! .. Local Scalars ..

INTEGER :: i, len_info, max_fun_eval, num_fun_eval, r

REAL (wp) :: abs_acc, rel_acc

LOGICAL :: continue_call

TYPE (nag_error) :: error

! .. Local Arrays ..

REAL (wp) :: a(n), abs_err(m), b(n), result(m)

REAL (wp), ALLOCATABLE :: subrgn_info(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_md_ex03’

WRITE (nag_std_out,*)

r = 2**n + 2*n*n + 2*n + 1

max_fun_eval = 57

len_info = 6*n + 9*m + (n+m+2)*(1+max_fun_eval/r)

ALLOCATE (subrgn_info(len_info)) ! Allocate storage

a = 0.0_wp

b = 1.0_wp

abs_acc = 0.0_wp

rel_acc = 1.0E-3_wp

max_fun_eval = 57

continue_call = .FALSE.

inner: DO

CALL nag_set_error(error,halt_level=3)

CALL nag_quad_md_rect_mintg(f,a,b,result,abs_acc=abs_acc, &

rel_acc=rel_acc,abs_err=abs_err,max_fun_eval=max_fun_eval, &

num_fun_eval=num_fun_eval,continue_call=continue_call, &

subrgn_info=subrgn_info,error=error)

IF (error%code==201 .OR. error%code==203) THEN

WRITE (nag_std_out,’(/,1X,A,I6)’) &

’Number of function calls in the last call = ’, num_fun_eval

WRITE (nag_std_out,’(1X,A)’) &

’ i Integral Estimated error’

DO i = 1, m

WRITE (nag_std_out,’(1X,I4,F12.4,E19.4)’) i, result(i), abs_err(i)

END DO

max_fun_eval = 16*max_fun_eval

continue_call = .TRUE.

WRITE (nag_std_out,*)

ELSE

WRITE (nag_std_out,’(/,1X,A,I6)’) &

’Number of function calls in the final call = ’, num_fun_eval

11.3.26 Module 11.3: nag quad md [NP3506/4]

Quadrature Example 3

WRITE (nag_std_out,’(1X,A)’) &

’ i integral Estimated error’

DO i = 1, m

WRITE (nag_std_out,’(1X,I4,F12.4,E19.4)’) i, result(i), abs_err(i)

END DO

EXIT inner

END IF

END DO inner

DEALLOCATE (subrgn_info) ! Deallocate storage

END PROGRAM nag_quad_md_ex03

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex03

****************** Failure reported by NAG Fortran 90 Library *****************

Procedure nag_quad_md_rect_mintg Level = 2 Code = 201

Failure due to insufficient max_fun_eval:

The allowed maximum number of function evaluations has been

reached, without achieving the required accuracy.

(See argument max_fun_eval.)

**************************** Execution continued ******************************

Number of function calls in the last call = 57

i Integral Estimated error

1 0.0422 0.8552E-02

2 0.3998 0.3809E-02

3 0.3898 0.1267E-01

4 0.0214 0.9880E-02

5 -0.3666 0.1991E-02

6 -0.4176 0.1203E-01

7 -0.0846 0.1101E-01

8 0.3261 0.1339E-03

9 0.4371 0.1116E-01

10 0.1461 0.1192E-01

****************** Failure reported by NAG Fortran 90 Library *****************

Procedure nag_quad_md_rect_mintg Level = 2 Code = 201

Failure due to insufficient max_fun_eval:

The allowed maximum number of function evaluations has been

reached, without achieving the required accuracy.

(See argument max_fun_eval.)

**************************** Execution continued ******************************

Number of function calls in the last call = 798

i Integral Estimated error

1 0.0384 0.5837E-03

2 0.4012 0.5609E-03

3 0.3952 0.5853E-03

4 0.0258 0.5928E-03

5 -0.3673 0.5715E-03

6 -0.4227 0.5832E-03

7 -0.0895 0.6107E-03

8 0.3260 0.5797E-03

9 0.4417 0.5694E-03

[NP3506/4] Module 11.3: nag quad md 11.3.27

Example 3 Quadrature

10 0.1514 0.6164E-03

Number of function calls in the final call = 912

i integral Estimated error

1 0.0384 0.3536E-03

2 0.4012 0.3164E-03

3 0.3952 0.3062E-03

4 0.0258 0.3490E-03

5 -0.3672 0.3284E-03

6 -0.4227 0.3136E-03

7 -0.0895 0.3487E-03

8 0.3260 0.3408E-03

9 0.4417 0.3148E-03

10 0.1514 0.3414E-03

11.3.28 Module 11.3: nag quad md [NP3506/4]

Quadrature Example 4

Example 4: Evaluation of a Two-dimensional Integral

The integral

∫ 1

0

∫

√
1−y2

0

(x+ y) dx dy,

is evaluated using nag quad 2d. We then re-cast the problem (see Section 6.2) as:

∫ 1

0

∫ π/2

0

r2(cos v + sin v) dv dr.

and evaluate the re-cast integral using nag quad 2d.
Note the difference in the number of function evaluations.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_md_ex04_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

REAL (wp) :: pi

CONTAINS

FUNCTION fa(x,y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: x, y

! .. Function Return Value ..

REAL (wp) :: fa

! .. Executable Statements ..

fa = x + y

END FUNCTION fa

FUNCTION phi1a(y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: y

! .. Function Return Value ..

REAL (wp) :: phi1a

! .. Executable Statements ..

phi1a = 0.0_wp

END FUNCTION phi1a

FUNCTION phi2a(y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SQRT

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: y

[NP3506/4] Module 11.3: nag quad md 11.3.29

Example 4 Quadrature

! .. Function Return Value ..

REAL (wp) :: phi2a

! .. Executable Statements ..

phi2a = SQRT(1.0_wp-y*y)

END FUNCTION phi2a

! Second formulation

FUNCTION fb(x,y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC COS, SIN

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: x, y

! .. Function Return Value ..

REAL (wp) :: fb

! .. Executable Statements ..

fb = (y*y)*(COS(x)+SIN(x))

END FUNCTION fb

FUNCTION phi1b(y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: y

! .. Function Return Value ..

REAL (wp) :: phi1b

! .. Executable Statements ..

phi1b = 0.0_wp

END FUNCTION phi1b

FUNCTION phi2b(y)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: y

! .. Function Return Value ..

REAL (wp) :: phi2b

! .. Executable Statements ..

phi2b = 0.5_wp*pi

END FUNCTION phi2b

END MODULE quad_md_ex04_mod

PROGRAM nag_quad_md_ex04

! Example Program Text for nag_quad_md

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_quad_md, ONLY : nag_quad_2d

USE quad_md_ex04_mod, ONLY : wp, fa, fb, phi1a, phi2a, phi1b, phi2b, pi

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Local Scalars ..

INTEGER :: nfun

REAL (wp) :: a, b, result

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_md_ex04’

pi = nag_pi(0.0_wp)

11.3.30 Module 11.3: nag quad md [NP3506/4]

Quadrature Example 4

a = 0.0_wp

b = 1.0_wp

CALL nag_quad_2d(fa,phi1a,phi2a,a,b,result,num_fun_eval=nfun)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Results for first formulation:’

WRITE (nag_std_out,’(5X,A,F11.6)’) ’The integral is:’, result

WRITE (nag_std_out,’(5X,A,I5)’) ’The number of function evaluations:’, &

nfun

! Second formulation of the integral

CALL nag_quad_2d(fb,phi1b,phi2b,a,b,result,num_fun_eval=nfun)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Results for second formulation:’

WRITE (nag_std_out,’(5X,A,F11.6)’) ’The integral is:’, result

WRITE (nag_std_out,’(5X,A,I5)’) ’The number of function evaluations:’, &

nfun

END PROGRAM nag_quad_md_ex04

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex04

Results for first formulation:

The integral is: 0.666667

The number of function evaluations: 93

Results for second formulation:

The integral is: 0.666667

The number of function evaluations: 65

[NP3506/4] Module 11.3: nag quad md 11.3.31

Example 4 Quadrature

11.3.32 Module 11.3: nag quad md [NP3506/4]

Quadrature Example 5

Example 5: Evaluation of a Four-dimensional Integral

Using nag quad monte carlo

The four-dimensional integral

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4x1x
2
3 exp(2x1x3)

(1 + x2 + x4)2
dx4 dx3 dx2 dx1

is computed using the procedure nag quad monte carlo.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

MODULE quad_md_ex05_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

FUNCTION f(x)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EXP

! .. Array Arguments ..

REAL (wp), INTENT (IN) :: x(:)

! .. Function Return Value ..

REAL (wp) :: f

! .. Executable Statements ..

f = 4.0_wp*x(1)*x(3)*x(3)*EXP(2.0_wp*x(1)*x(3))/(1.0_wp+x(2)+x(4))**2

END FUNCTION f

END MODULE quad_md_ex05_mod

PROGRAM nag_quad_md_ex05

! Example Program Text for nag_quad_md

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_quad_md, ONLY : nag_quad_monte_carlo

USE quad_md_ex05_mod, ONLY : wp, f

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, MAX

! .. Parameters ..

INTEGER, PARAMETER :: n = 4

! .. Local Scalars ..

INTEGER :: i, num_fun_eval

[NP3506/4] Module 11.3: nag quad md 11.3.33

Example 5 Quadrature

REAL (wp) :: result

! .. Local Arrays ..

REAL (wp) :: a(n), b(n), rel_acc(2)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_quad_md_ex05’

a = 0.0_wp

b = 1.0_wp

rel_acc(1) = 0.01_wp

rel_acc(2) = MAX(0.001_wp,EPSILON(0.0_wp)**0.2_wp) ! the default

DO i = 1, 2

CALL nag_quad_monte_carlo(f,a,b,result,rel_acc=rel_acc(i), &

num_fun_eval=num_fun_eval,repeat_rand=.TRUE.)

WRITE (nag_std_out,’(/,1X,A,F9.5)’) &

’requested relative accuracy =’, rel_acc(i)

WRITE (nag_std_out,’(1X,A,I9)’) &

’number of function calls =’, num_fun_eval

WRITE (nag_std_out,’(1X,A,1F9.5/)’) &

’result - approximation to the integral =’, result

END DO

END PROGRAM nag_quad_md_ex05

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex05

requested relative accuracy = 0.01000

number of function calls = 1728

result - approximation to the integral = 0.57583

requested relative accuracy = 0.00100

number of function calls = 19248

result - approximation to the integral = 0.57536

11.3.34 Module 11.3: nag quad md [NP3506/4]

Quadrature Mathematical Background

Mathematical Background

1 Dimensionality

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5 dimensions),
and those of higher dimensionality. Where the number of dimensions is limited, a one-dimensional
method may be applied to each dimension, according to some suitable strategy, and high accuracy may
be obtainable (using product rules). However, the number of integrand evaluations rises very rapidly
with the number of dimensions, so the accuracy obtainable with an acceptable amount of computational
labour is limited; for example a product of 3-point rules in 20 dimensions would require more than 109

integrand evaluations. Special techniques such as the Monte Carlo, number theoretic and Sag–Szekeres
methods should be used to deal with high dimensions (see Davis and Rabinowitz [1]).

2 Automatic Adaptive Procedures

An automatic adaptive strategy in several dimensions normally involves division of the region into
subregions, concentrating the divisions in those parts of the region where the integrand is worst behaved.
It is difficult to arrange with any generality for variable limits in the inner integral(s). For this reason,
some methods use a region where all the limits are constants; this is called a hyper-rectangle. Integrals
over regions defined by variable or infinite limits may be handled by transformation to a hyper-rectangle
(see Davis and Rabinowitz [1]).

The method used locally in each subregion produced by the adaptive subdivision process is usually one
of three types: Monte Carlo, number theoretic or deterministic. Deterministic methods are usually the
most rapidly convergent but are often expensive to use for high dimensionality.

[NP3506/4] Module 11.3: nag quad md 11.3.35

References Quadrature

References

[1] Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press

[2] Genz A C and Malik A A (1980) An Adaptive Algorithm for Numerical Integration over an N-
dimensional Rectangular Region J. Comput. Appl. Math. 6 295–302

[3] Van Dooren P and De Ridder L (1976) An Adaptive Algorithm for Numerical Integration Over an
N-dimensional Cube J. Comput. Appl. Math. 2 207–217

[4] Lautrup B (1971) An adaptive multi-dimensional integration procedure Proc. 2nd Coll. Advanced

Methods in Theoretical Physics, Marseille

[5] Patterson T N L (1968) On some Gauss and Lobatto based integration formulae Math. Comput. 22
877–881

[6] Patterson T N L (1968) The Optimum Addition of Points to Quadrature Formulae Math. Comput.

22 847–856

11.3.36 Module 11.3: nag quad md [NP3506/4]

