Module 11.3: nag_quad_md Multi-dimensional Integrals

nag_quad_md provides procedures for computing the value of multi-dimensional definite integrals.

Contents

Introduction 11.3.3
Procedures
nag_quad_md_rect 11.3.5
Multi-dimensional adaptive quadrature over a hyper-rectanglenag_quad_md_rect_mintg11.3.9Multi-dimensional adaptive quadrature over a hyper-rectangle, multiple integrands
nag_quad_2d 11.3.132-d quadrature, finite region
nag_quad_monte_carlo 11.3.17
Multi-dimensional quadrature over hyper-rectangle, Monte-Carlo method
Examples
Example 1: Evaluation of a Four-dimensional Integral Using nag_quad_md_rect 11.3.21
Example 2: Evaluation of Ten Four-dimensional Integrals 11.3.23
Example 3: Illustration of the Continuation Facility in nag_quad_md_rect_mintg 11.3.25
Example 4: Evaluation of a Two-dimensional Integral 11.3.29
Example 5: Evaluation of a Four-dimensional Integral Using nag_quad_monte_carlo 11.3.33
Mathematical Background 11.3.35
References 11.3.36

Introduction

The procedures in this module are designed to estimate the value of a multi-dimensional definite integral of the form:

$$
\int_{R_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{n} \ldots d x_{2} d x_{1}
$$

where $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a function defined by the user, and R_{n} is the n-rectangle defined by

$$
a_{i} \leq x_{i} \leq b_{i}, \quad i=1,2, \ldots, n
$$

where a_{i} and b_{i} are constants.
The more general case where a_{i} and b_{i} are functions of $x_{j}(j<i)$ may be dealt with by transforming the region to the rectangular form (see page 226 of Davis and Rabinowitz [1]).

The module also contains a procedure which computes the value of a two-dimensional integral of the form:

$$
\int_{a}^{b} \int_{\phi_{1}(y)}^{\phi_{2}(y)} f(x, y) d x d y .
$$

where $f(x, y)$ is not badly behaved.

Procedure: nag_quad_md_rect

1 Description

nag_quad_md_rect attempts to compute an approximation to a multi-dimensional integral (up to 15 dimensions) over a hyper-rectangle:

$$
I=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{n} \ldots d x_{2} d x_{1}
$$

where the limits a_{i} and b_{i}, for $i=1,2, \ldots, n$ are constant. The procedure returns an estimate of the above integral, and optionally an estimate of the relative error.

This procedure requires a user-supplied function to evaluate the integrand at a given point.

2 Usage

USE nag_quad_md
CALL nag_quad_md_rect (f, a, b, result [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array \mathbf{x} must have exactly n elements.

This procedure derives the value of the following problem parameter from the shape of the supplied arrays.
$2 \leq n \leq 15$ - the number of dimensions of the integral

3.1 Mandatory Arguments

\mathbf{f} - function
f must return the value of the integrand f at a given point.

```
function f(x)
real(kind=wp), intent(in) :: x(:)
```

Shape: x has shape (n).
Input: the co-ordinates of the point at which the integrand f must be evaluated.
real(kind=wp) :: f
Result: f must contain the value of f at the point with co-ordinates $\mathrm{x}(i)$, for $i=1,2, \ldots, n$.
$\mathbf{a}(n)-\operatorname{real}($ kind $=w p)$, intent(in)
$\mathbf{b}(n)-\operatorname{real}($ kind $=w p)$, intent(in)
Input: the lower and upper limits of integration, a_{i} and b_{i} respectively, for $i=1,2, \ldots, n$.
result $-\operatorname{real}($ kind $=w p)$, intent (out)
Output: the best approximation obtained to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list
rel_acc - real(kind $=w p$), intent(in), optional
Input: the relative accuracy required. When the solution is zero, or very small, relative accuracy may not be achievable, but you may still set rel_acc to a reasonable value and check for the error exit error\%code $=201$.
Default: rel_acc $=\left(\operatorname{EPSILON}\left(1.0 _w p\right)\right)^{1 / 4}$.
Constraints: rel_acc > 0.0.
rel_err - real(kind=wp), intent(out), optional
Output: the estimated relative error in result.
max_fun_eval - integer, intent(in), optional
Input: maximum number of integrand evaluations to be allowed.
Default: max_fun_eval $=200\left(2^{n}+2 n^{2}+2 n+1\right)$.
Constraints: max_fun_eval $\geq 2^{n}+2 n^{2}+2 n+1$.
num_fun_eval - integer, intent(out), optional
Output: the actual number of integrand evaluations.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level = 3):

error\%code Description

301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
320 The procedure was unable to allocate enough memory

Failures (error\%level $=2$):
error\%code Description
201 The maximum number of function evaluations allowed has been reached. max_fun_eval was too small to obtain the specified relative accuracy. result and rel_err contain estimates of the integral and relative error respectively. However, rel_err will be greater than rel_acc.

Failure due to insufficient internal workspace.
The amount of storage allocated to internal workspace is too small. result and rel_err contain estimates of the integral and relative error respectively. However, rel_err will be greater than rel_acc. The size of this workspace is proportional to the value of max_fun_eval. Hence, an increase in the value of max_fun_eval will result in the allocation of more storage for this internal workspace.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure is based on the HALF procedure developed by Van Dooren and De Ridder [3]. However, it uses a different basic rule, described by Genz and Malik [2].

The procedure operates by repeated subdivision of the hyper-rectangular region into smaller hyperrectangles. In each subregion, the integral is estimated using a seventh-degree rule, and an error estimate is obtained by comparison with a fifth-degree rule, which uses a subset of the same points. The fourth differences of the integrand along each co-ordinate axis are evaluated, and the subregion is marked for possible future subdivision in half along that co-ordinate axis which has the largest absolute fourth difference.

If the estimated errors, totalled over the subregions, exceed the requested relative error, further subdivision is necessary, and is performed on the subregion with the largest estimated error, that subregion being halved along the appropriate co-ordinate axis.

The procedure will fail if the requested relative error level has not been attained by the time max_fun_eval calls to f have been made, or if the amount of internal working storage is insufficient. The amount of working storage allocated internally by the procedure is sufficient for most problems. However, if this amount is exhausted in the course of execution, the procedure switches to a less efficient mode of operation; the procedure will report an error only if this mode also breaks down. In this case you are advised to increase the value of max_fun_eval.

In general, convergence is fast for well behaved integrands and highly accurate results can often be obtained for n between 2 and 5 . The procedure will usually work when the integrand is mildly singular.

6.2 Accuracy

A relative error estimate is available through the optional argument rel_err.

6.3 Timing

Execution time will usually be dominated by the time taken to evaluate the integrand f, and hence the maximum time required will be proportional to max_fun_eval.

Procedure: nag_quad_md_rect_mintg

1 Description

nag_quad_md_rect_mintg computes approximations to the integrals of a vector of similar functions:

$$
\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}}\left(f_{1}, f_{2}, \ldots, f_{m}\right) d x_{n} \ldots d x_{2} d x_{1}
$$

where $f_{i}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, for $i=1,2, \ldots, m$; that is each function is defined over the same multidimensional hyper-rectangle region.

This procedure requires a vector valued user-supplied function to evaluate the integrand at a given point.

2 Usage

USE nag_quad_md
CALL nag_quad_md_rect_mintg(f, a, b, result [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array \mathbf{x} must have exactly n elements.

This procedure derives the values of the following problem parameters from the shape of the supplied arrays.
$n \geq 1$ - the number of dimensions of the integral
$m \geq 1$ - the number of integrands

3.1 Mandatory Arguments

\mathbf{f} - function
f must return the values of the integrands f_{i}, for $i=1,2, \ldots, m$, at a given point.

```
function f(x,m)
real(kind=wp), intent(in) :: x(:)
```

Shape: x has shape (n).
Input: the co-ordinates of the point at which the integrands must be evaluated.

```
integer, intent(in) :: m
```

Input: the number of integrands, m.

```
real(kind=wp) :: f(m)
```

Result: the values of the m integrands at a point with co-ordinates $\mathrm{x}(i)$, for $i=1,2, \ldots, n$.
$\mathbf{a}(n)-\operatorname{real}($ kind $=w p)$, intent(in)
$\mathbf{b}(n)-\operatorname{real}($ kind $=w p)$, intent(in)
Input: the lower and upper limits of integration, a_{i} and b_{i}, for $i=1,2, \ldots, n$, respectively.
$\operatorname{result}(m)-\operatorname{real}(\operatorname{kind}=w p)$, intent (out)
Output: result (i) specifies the best estimated result obtained from the i th integral, for $i=1,2, \ldots, m$.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
abs_acc - real (kind $=w p)$, intent(in), optional
Input: the absolute accuracy required.
Note: both abs_acc and rel_acc cannot be zero.
Default: abs_acc $=\operatorname{SQRT}\left(\operatorname{EPSILON}\left(1.0_{-w p}\right)\right)$.
Constraints: abs_acc ≥ 0.0.
rel_acc - real(kind $=w p$), intent(in), optional
Input: the relative accuracy required.
Note: both rel_acc and abs_acc cannot be zero.
Default: rel_acc $=10^{-4}$.
Constraints: rel_acc ≥ 0.0.
abs_err (m) - real(kind=wp), intent(out), optional
Output: abs_err (i) is the estimated absolute accuracy of result (i), for $i=1,2, \ldots, m$.
min_fun_eval - integer, intent(in), optional
Input: minimum number of calls to f .
Note: min_fun_eval has no effect on the computation when continue_call =.true..
Default: min_fun_eval $=0$.
Constraints: min_fun_eval ≥ 0.
max_fun_eval - integer, intent(in), optional
Input: maximum number of calls to f.
Default:

> max_fun_eval $=50000$, if $n<11$
> max_fun_eval $=200 n^{3}$, if $n \geq 11$

Constraints: max_fun_eval $\geq \max ($ min_fun_eval, r) where

$$
\begin{aligned}
& r=2^{n}+2 n^{2}+2 n+1, \text { if } n<11 \\
& r=1+n\left(4 n^{2}-6 n+14\right) / 3, \text { if } n \geq 11
\end{aligned}
$$

continue_call - logical, intent(in), optional
Input: if continue_call =.true., the procedure continues the calculation started in a previous call with the same integrands and integration limits; no arguments other than max_fun_eval, abs_acc, rel_acc or error may be changed between the calls. Otherwise, no action is taken between the calls.
Default: continue_call = .false..
Constraints: if continue_call is present as an argument, then the array subrgn_info must also be present as an argument.
num_fun_eval - integer, intent(out), optional
Output: the actual number of function calls used. In the continuation case this is the number of new calls to f made on the current call to this procedure.
subrgn_info $(k)-\operatorname{real}($ kind $=w p)$, intent(inout), optional
Input: if continue_call = .true., subrgn_info should be present and must be unchanged from the previous call to this procedure.

Output: subrgn_info contains information about the current subdivision which could be used in a continuation call.

Default: $k=6 n+9 m+(n+m+2)(1+p / r)$. See below
Recommended Value: $k \geq 6 n+9 m+(n+m+2)(1+p / r)$, where $p=$ max_fun_eval and r is defined under max_fun_eval. If k is significantly smaller than this, the procedure will not work as efficiently and may even fail.
Constraints: $k \geq 8 n+11 m+3$.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level $=3$):
error\%code Description
301 An input argument has an invalid value.
302 An array argument has an invalid shape.
303 Array arguments have inconsistent shapes.
305 Invalid absence of an optional argument.
320 The procedure was unable to allocate enough memory.

Failures (error\%level = 2):

error\%code Description
201 The maximum number of function evaluations allowed has been reached. max_fun_eval was too small to obtain the specified relative accuracy. The arrays result and abs_err contain estimates of the integrals and the errors respectively.

The amount of storage for the workspace has been exceeded.
If the argument subrgn_info is present then its size is too small for the procedure to continue. The arrays result and and abs_err contain current estimates for the integrals and the errors respectively.

However, if the argument subrgn_info is not present then the amount of storage for this argument has been exceeded. In this case, supply subrgn_info as an argument and increase its size.

Insufficient value of max_fun_eval on a continuation call.
On a continuation call, max_fun_eval was set too small to make any progress. Increase max_fun_eval before calling this procedure again.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 2 and 3 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure uses a globally adaptive method based on the algorithm described by Van Dooren and De Ridder [3], and Genz and Malik [2]. Upon entry, unless min_fun_eval has been set to a value equal to zero, the procedure divides the integration region into a number of subregions with randomly selected volumes. Inside each subregion the integrals and their errors are estimated. The initial number of subregions is chosen to be as large as possible without using more than min fun_eval calls to f. The results are stored in a partially ordered list (a heap). The procedure then proceeds in stages. At each stage the subregion with the largest error (measured using the maximum norm) is halved along the coordinate axis where the integrands have largest absolute fourth differences. The basic rule is applied to each half of this subregion and the results are stored in the list. The results from the two halves are used to update the global integral and error estimates (result and abs_err) and the procedure continues unless

$$
\| \text { result } \| \leq \max (\text { abs_err }, \| \text { result } \| \times \text { rel_acc })
$$

where $\|$.$\| is the maximum norm, or further subdivision would use more than max_fun_eval calls to f.$ If at some stage there is insufficient working storage to keep the results for the next subdivision, the procedure switches to a less efficient mode; only if this mode of operation breaks down is insufficient storage reported.

However, for some integrands, particularly those that are poorly behaved in a small part of the integration region, this procedure may terminate prematurely with values of abs err that are significantly smaller than the actual absolute errors. This behaviour should be suspected if the returned value of num.fun_eval is small relative to the expected difficulty of the integrals. When this occurs this procedure should be called again, but with an entry value of min_fun_eval $\geq 2 r$ (see specification of max_fun_eval), and the results compared with those from the previous call.

If the procedure is called with min_fun_eval $\geq 2 r$, the exact values of result and abs_err on return will depend (within statistical limits) on the sequence of random numbers generated internally within this procedure by calls to nag_rand_uniform. Separate runs will produce identical answers unless the part of the program executed prior to calling nag_quad_md_rect_mintg also calls (directly or indirectly) procedures from Chapter 21, and, in addition, the series of such calls differs between runs.

Because of moderate instability in the application of the basic integration rule, approximately the last $1+\log _{10}\left(n^{3}\right)$ decimal digits may be inaccurate when using this procedure for large values of n.

6.2 Accuracy

An absolute error estimate for each integrand is available through the optional array argument abs_err. The procedure exits successfully if

$$
\max _{i}(\text { abs_err }(i)) \leq \max \left(\text { abs_acc, rel_acc } \times \max _{i} \mid \text { abs_err }(i) \mid\right) .
$$

6.3 Timing

Execution time will usually be dominated by the time to evaluate the integrands, and hence the maximum time required will be proportional to max_fun_eval.

Procedure: nag_quad_2d

1 Description

nag_quad_2d evaluates an approximation to the double integral

$$
I=\int_{a}^{b} \int_{\phi_{1}(y)}^{\phi_{2}(y)} f(x, y) d x d y
$$

to a specified absolute accuracy by repeated applications of the method described by Patterson [5] and Patterson [6], where the limits a and b are constants and $\phi_{1}(y)$ and $\phi_{2}(y)$ are functions of the variable y.

This procedure requires a user-supplied function to evaluate the integrand at a given point. It also requires two user-supplied functions to evaluate the limits of the inner intergration.

2 Usage

USE nag_quad_md
CALL nag_quad_2d(f, phi1, phi2, a, b, result [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

f-function
f must return the value of the integrand f at a given two-dimensional point.

```
function f(x,y)
real(kind=wp), intent(in) :: x
real(kind=wp), intent(in) :: y
```

Input: the co-ordinates of the point (x, y) at which the integrand must be evaluated.
real (kind=wp) :: f
Result: f must contain the value of f at the point with co-ordinates x and y .
phi1 - function
phi1 must return the lower limit of the inner integral for a given value of y.
function phi1(y)
real(kind=wp), intent(in) :: y
Input: the value of y for which the lower limit must be evaluated.
real(kind=wp) :: phi1
Result: phi1 must contain the value of ϕ_{1} at the point y.
phi2-function
phi2 must return the upper limit of the inner integral for a given value of y.

```
function phi2(y)
real(kind=wp), intent(in) :: y
```

Input: the value of y for which the upper limit must be evaluated.

```
real(kind=wp) :: phi2
```

Result: phi2 must contain the value of ϕ_{2} at the point y .
$\mathbf{a}-\operatorname{real}(\operatorname{kind}=w p), \operatorname{intent}(i n)$
$\mathbf{b}-\operatorname{real}($ kind $=w p)$, intent (in)
Input: the upper and the lower limits of the integral, a and b. It is not necessary that $a<b$.
result $-\operatorname{real}(\operatorname{kind}=w p)$, intent $($ out $)$
Output: the value of the computed integral.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list.
abs_acc - real(kind=wp), intent(in), optional
Input: the absolute accuracy requested for the outer integral.
Default: abs_acc $=10^{-4}$.
abs_acc_inner - real(kind=wp), intent(in), optional
Input: the absolute accuracy requested for the inner integral.
Note: this argument is provided for expert users. If you are not familiar with the product integration rule, you are advised to use the default value as in the vast majority of cases this has proved to be adequate for the overall result of the double integral.
Default: abs_acc_inner $=0.1 \times$ abs_acc.
Constraints: abs_acc_inner \leq abs_acc.
If abs_acc_inner is present then abs_acc must also be present.
num_fun_eval - integer, intent(out), optional
Output: the total number of integrand evaluations.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

```
Fatal errors (error%level = 3):
error%code Description
301 Invalid absence of an optional argument.
This indicates that the optional argument abs_acc_inner is present when the optional
argument abs_acc is absent.
```

Failures (error\%level $=2$):
error\%code Description

201 Failure due to convergence not being achieved in the outer integral
This indicates that 255 points have been used in the outer integral and convergence has not been obtained. All the inner integrals have, however, converged. In this case result may still contain an approximate estimate of the integral.

Failure due to convergence not being achieved in outer integral and some inner integrals
This indicates that both the outer integral and some inner integrals have failed to converge. result may still contain an approximate estimate of the integral, but its reliability will decrease as the number on non-convergent inner integrals increases. An error message reports the precise number of these inner integrals.

Warnings (error\%level =1):

error\%code Description
101 Convergence was not achieved in some inner integrals
This indicates that while the outer integral has converged some inner integrals failed to converge with the use of 255 points. In this case result may still contain an approximate estimate of the integral, but its reliability will decrease as the the number of non-convergent integrals increases. The warning reports the precise number of the inner integrals that failed to converge.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 4 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure evaluates a definite integral of the form

$$
I=\int_{a}^{b} \int_{\phi_{1}(y)}^{\phi_{2}(y)} f(x, y) d x d y
$$

where a and b are constants and $\phi_{1}(y)$ and $\phi_{2}(y)$ are functions of the variable y.
The integral is evaluated by expressing it as

$$
I=\int_{a}^{b} F(y) d y, \text { where } F(y)=\int_{\phi_{1}(y)}^{\phi_{2}(y)} f(x, y) d x
$$

Both the outer integral I and the inner integrals $F(y)$ are evaluated by the method, described by Patterson [5] and Patterson [6], of the optimum addition of points to Gauss quadrature formulae.

This method uses a family of interlacing common point formulae. Beginning with the 3 -point Gauss rule, formulae using $7,15,31,63,127$ and finally 255 points are derived. Each new formula contains all the abscissae of the earlier formulae so that no function evaluations are wasted. Each integral is evaluated by applying these formulae successively until two results are obtained which differ by less than the specified absolute accuracy.

With Patterson's method accidental convergence may occasionally occur, when two estimates of an integral agree to within the requested accuracy, but both estimates differ considerably from the true result. This could occur in either the outer integral or in one or more of the inner integrals.

If it occurs in the outer integral then apparent convergence is likely to be obtained with considerably fewer integrand evaluations than may be expected. If it occurs in an inner integral, the incorrect value could make the function $F(y)$ appear to be badly behaved, in which case a very large number of abscissae may be needed for the overall evaluation of the integral. Thus both unexpectedly small and unexpectedly large numbers of integrand evaluations should be considered as indicating possible trouble. If accidental convergence is suspected, the integral may be recomputed, requesting better accuracy; if the new request is more stringent than the degree of accidental agreement (which is of course unknown), improved results should be obtained. This is only possible when the accidental agreement is not better than machine accuracy.

The procedure is not well suited to non-smooth integrands, i.e., integrands having some kind of analytic discontinuity (such as a discontinuous or infinite partial derivative of some low order) in, on the boundary of, or near, the region of integration.

Warning: such singularities may be induced by incautiously presenting an apparently smooth interval over the positive quadrant of the unit circle, R

$$
I=\int_{R}(x+y) d x d y
$$

This may be presented to this procedure as

$$
I=\int_{0}^{1} d y \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x=\int_{0}^{1} i\left(\frac{1}{2}\left(1-y^{2}\right)+y \sqrt{1-y^{2}}\right) d y
$$

but here the outer integral has an induced square-root singularity stemming from the way the region has been presented to this procedure. This situation should be avoided by re-casting the problem. For the example given, the use of polar co-ordinates would avoid the difficulty:

$$
I=\int_{0}^{1} d r \int_{0}^{\pi / 2} r^{2}(\cos v+\sin v) d v
$$

6.2 Accuracy

If on exit no failure is reported then the result is most likely correct to the requested accuracy abs_acc. Even if a failure is reported on exit, it is still possible that the calculated result could differ from the true value by less than the given accuracy.

Procedure: nag_quad_monte_carlo

1 Description

nag_quad_monte_carlo computes an approximation to a multi-dimensional integral over a hyperrectangle region, using a Monte-Carlo method. The integral has the form:

$$
I=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{n} \ldots d x_{2} d x_{1}
$$

where the limits a_{i} and b_{i}, for $i=1,2, \ldots, n$ are constant. The procedure returns an estimate of the above integral, and optionally an estimate of the relative error.

This procedure is suitable for low accuracy work and requires a user-supplied function to evaluate the integrand at a given point.

2 Usage

USE nag_quad_md
CALL nag_quad_monte_carlo(f, a, b, result [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by the problem. Notation such as ' $\mathbf{x}(n)$ ' is used in the argument descriptions to specify that the array x must have exactly n elements.

This procedure derives the value of the following problem parameter from the shape of the supplied arrays.
$n \geq 1$ - the number of dimensions of the integral

3.1 Mandatory Arguments

\mathbf{f} - function
f must return the value of the integrand f at a given point.

```
function f(x)
real(kind=wp), intent(in) :: x(:)
```

Shape: x has shape (n).
Input: the co-ordinates of the point at which the integrand f must be evaluated.
real (kind=wp) :: f
Result: f must contain the value of f at the point with co-ordinates $\mathrm{x}(i)$, for $i=$ $1,2, \ldots, \operatorname{SIZE}(\mathrm{x})$.
$\mathbf{a}(n)-\operatorname{real}($ kind $=w p)$, intent(in)
$\mathbf{b}(n)-\operatorname{real}($ kind $=w p)$, intent(in)
Input: the lower and upper limits of integration, a_{i} and b_{i} respectively, for $i=1,2, \ldots, n$.
result $-\operatorname{real}($ kind $=w p)$, intent (out)
Output: the best approximation obtained to the integral I.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below may differ from the order in which they occur in the argument list
rel_acc $-\operatorname{real}($ kind $=w p)$, intent(in), optional
Input: the relative accuracy required. When the solution is zero, or very small, relative accuracy may not be achievable, but you may still set rel_acc to a reasonable value and check for the error exit error\%code $=201$.
Default: rel_acc $=\operatorname{MAX}\left(0.001,\left(\operatorname{EPSILON}\left(1.0 _w p\right)\right)^{1 / 5}\right)$.
Constraints: rel_acc > 0.0.
rel_err - real(kind=wp), intent(out), optional
Output: the estimated relative error in result.
max_fun_eval - integer, intent(in), optional
Input: maximum number of integrand evaluations to be allowed.
Default: max_fun_eval $=4000(n+1)$.
Constraints: max_fun_eval $\geq 4(n+1)$.
num_fun_eval - integer, intent(out), optional
Output: the actual number of integrand evaluations.
repeat_rand - logical, intent(in), optional
Input: if repeat_rand $=$.true., the initial value of the seed supplied to the random numbers generator used by nag_quad_monte_carlo is reset to create a repeatable sequence of random numbers. This will ensure that separate runs will produce identical answers. Otherwise, the seed is calculated from the system clock, resulting in a non-repeatable sequence hence non-identical answers (for more details see Section 6.1).
Default: repeat_rand $=$.false..
continue_call - logical, intent(in), optional
Input: if continue_call =.true., the procedure continues the calculation started in a previous call with the same integrands and integration limits; no arguments other than max fun_eval, abs_acc, rel_acc or error may be changed between the calls. Otherwise, no action is taken between the calls.

Default: continue_call = .false..
Constraints: if continue_call is present as an argument, then the array subrgn_info must also be present as an argument.
subrgn_info (k) - real(kind=wp), intent(inout), optional
Input: if continue_call = .true., subrgn_info should be present and must be unchanged from the previous call to this procedure.
Output: subrgn_info contains information about the current subdivision which could be used in a continuation call.
Default: $k=n+3 n(\text { max_fun_eval } / 4)^{1 / n}$. See below.
Recommended Value: $k \geq n+3 n(\text { max_fun_eval } / 4)^{1 / n}$. If k is significantly smaller than this, the procedure will not work as efficiently and may even fail.
Constraints: $k \geq 4 n$.
error - type(nag_error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document nag_error_handling (1.2). You are recommended to omit this argument if you are unsure how to use it. If this argument is supplied, it must be initialized by a call to nag_set_error before this procedure is called.

4 Error Codes

Fatal errors (error\%level $=3$):
 error\%code Description
 301 An input argument has an invalid value.
 302 An array argument has an invalid shape.
 303 Array arguments have inconsistent shapes.
 305 Invalid absence of an optional argument.
 320
 The procedure was unable to allocate enough memory.

Failures (error\%level = 2):

error\%code Description
201 The maximum number of function evaluations allowed has been reached. max_fun_eval was too small to obtain the specified relative accuracy. result and rel_err contain estimates of the integral and relative error respectively. However, rel_err will be greater than rel_acc.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 5 of this module document.

6 Further Comments

6.1 Algorithmic Detail

nag_quad_monte_carlo uses an adaptive Monte Carlo method based on the algorithm described by Lautrup [4]. It is implemented for integrals of the form:

$$
\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \ldots \int_{a_{n}}^{b_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{n} \ldots d x_{2} d x_{1}
$$

Upon entry, the procedure subdivides the integration region into a number of equal volume subregions. Inside each subregion the integral and the variance are estimated by means of pseudo-random sampling. All contributions are added together to produce an estimate for the whole integral and total variance. The variance along each co-ordinate axis is determined and the procedure uses this information to increase the density and change the widths of the sub-intervals along each axis, so as to reduce the total variance. The total number of subregions is then increased by a factor of two and the program recycles for another iteration. The program stops when a desired accuracy has been reached or too many integral evaluations are needed for the next cycle.

For some integrands, particularly those that are poorly behaved in a small part of the integration region, nag_quad_monte_carlo may terminate with a value of rel_err which is significantly smaller than the actual relative error. This should be suspected if the value of the optional argument num_fun_eval is small relative to the expected difficulty of the integral. Where this occurs, nag_quad_monte_carlo should
be called again, but with a higher entry value of max_fun_eval (e.g., twice the value used in the previous call) and the results compared with those from the previous call.

The exact values of result and rel_err on return will depend (within statistical limits) on the sequence of random numbers generated within nag_quad_monte_carlo by calls to nag_rand_uniform. Separate runs will produce identical answers unless the optional argument repeat_rand is used and set to .false..

6.2 Timing

Execution time will for nag_quad_monte_carlo will usually be dominated by the time used to evaluate the integrand f, so the maximum time that could be used is approximately proportional to max fun_eval.

Example 1: Evaluation of a Four-dimensional Integral Using nag_quad_md_rect

The four-dimensional integral

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{4 x_{1} x_{3}^{2} \exp \left(2 x_{1} x_{3}\right)}{\left(1+x_{2}+x_{4}\right)^{2}} d x_{4} d x_{3} d x_{2} d x_{1}
$$

is computed using the procedure nag_quad_md_rect.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
MODULE quad_md_ex01_mod
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Default Accessibility ..
    PUBLIC
    ! .. Intrinsic Functions ..
    INTRINSIC KIND
    ! .. Parameters ..
    INTEGER, PARAMETER :: wp = KIND(1.0DO)
CONTAINS
    FUNCTION f(x)
        ! .. Implicit None Statement ..
        IMPLICIT NONE
        ! .. Intrinsic Functions ..
        INTRINSIC EXP
        ! .. Array Arguments ..
        REAL (wp), INTENT (IN) :: x(:)
        ! .. Function Return Value ..
        REAL (wp) :: f
        ! .. Executable Statements ..
        f = 4.0_wp*x(1)*x(3)*x(3)*EXP(2.0_wp*x(1)*x(3))/(1.0_wp+x(2)+x(4))**2
    END FUNCTION f
```

END MODULE quad_md_ex01_mod
PROGRAM nag_quad_md_ex01

```
! Example Program Text for nag_quad_md
! NAG fl90, Release 4. NAG Copyright 2000.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_quad_md, ONLY : nag_quad_md_rect
USE quad_md_ex01_mod, ONLY : wp, f
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Parameters ..
INTEGER, PARAMETER :: n = 4
! .. Local Scalars ..
REAL (wp) :: result
! .. Local Arrays ..
REAL (wp) :: a(n), b(n)
```

! .. Executable Statements ..
WRITE (nag_std_out,*) 'Example Program Results for nag_quad_md_ex01'
$\mathrm{a}=0.0 _\mathrm{wp}$
b $=1.0 _w p$
CALL nag_quad_md_rect (f,a, $b, r e s u l t)$

WRITE (nag_std_out,'(/,1X,A,F9.5)') \&
'result - approximation to the integral =', result

END PROGRAM nag_quad_md_ex01

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex01
result - approximation to the integral $=0.57536$

Example 2: Evaluation of Ten Four-dimensional Integrals

The four-dimensional integrals

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(f_{1}, f_{2}, \ldots, f_{10}\right) d x_{4} d x_{3} d x_{2} d x_{1}
$$

where

$$
f_{j}=\ln \left(x_{1}+2 x_{2}+3 x_{3}+4 x_{4}\right) \sin \left(j+x_{1}+2 x_{2}+3 x_{3}+4 x_{4}\right),
$$

for $j=1,2, \ldots, 10$, are computed using the procedure nag_quad_md_rect_mintg.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
MODULE quad_md_ex02_mod
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Default Accessibility ..
    PUBLIC
    ! .. Intrinsic Functions ..
    INTRINSIC KIND
    ! .. Parameters ..
    INTEGER, PARAMETER :: wp = KIND(1.0D0)
CONTAINS
FUNCTION f(x,m)
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Intrinsic Functions ..
    INTRINSIC LOG, REAL, SIN, SIZE, SUM
    ! .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: m
    ! .. Array Arguments ..
    REAL (wp), INTENT (IN) :: x(:)
    ! .. Function Return Value ..
REAL (wp) :: f(m)
! .. Local Scalars ..
INTEGER :: j
REAL (wp) :: s
! .. Executable Statements ..
s = SUM((/(REAL(j,kind=wp),j=1,SIZE(x))/)*x)
f = LOG(s)*(/ (SIN(REAL(j,kind=wp)+s),j=1,m) /)
```

END FUNCTION f

END MODULE quad_md_ex02_mod
PROGRAM nag_quad_md_ex02
! Example Program Text for nag_quad_md
! NAG fl90, Release 4. NAG Copyright 2000.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_quad_md, ONLY : nag_quad_md_rect_mintg
USE quad_md_ex02_mod, ONLY : wp, f

```
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Parameters ..
    INTEGER, PARAMETER : : m = 10, \(\mathrm{n}=4\)
    ! .. Local Scalars ..
    INTEGER :: i
    ! .. Local Arrays ..
    REAL (wp) : : a(n), b(n), result(m)
    ! .. Executable Statements ..
    WRITE (nag_std_out,*) 'Example Program Results for nag_quad_md_ex02'
    a \(=0.0 \_w p\)
    b = 1.0_wp
    CALL nag_quad_md_rect_mintg(f,a,b,result)
    WRITE (nag_std_out,'(/,1X,A)') ' i integral'
    DO i = 1, m
    WRITE (nag_std_out,'(1X,I4,F14.4)') i, result(i)
    END DO
```

END PROGRAM nag_quad_md_ex02

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex02

$$
\begin{gathered}
\text { integral } \\
0.0383 \\
0.4012 \\
0.3952 \\
0.0258 \\
-0.3672 \\
-0.4227 \\
-0.0895 \\
0.3260 \\
0.4417 \\
0.1514
\end{gathered}
$$

Example 3: Illustration of the Continuation Facility in nag_quad_md_rect_mintg

The four-dimensional integrals

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(f_{1}, f_{2}, \ldots, f_{10}\right) d x_{4} d x_{3} d x_{2} d x_{1}
$$

where

$$
f_{j}=\ln \left(x_{1}+2 x_{2}+3 x_{3}+4 x_{4}\right) \sin \left(j+x_{1}+2 x_{2}+3 x_{3}+4 x_{4}\right),
$$

for $j=1,2, \ldots, 10$, are computed using the procedure nag_quad_md_rect_mintg. This example program is intended to illustrate the continuation facility provided by nag_quad_md_rect mintg: the procedure exits with error\%code $=201$ (printing an explanatory error message) and is re-entered with max_fun_eval reset to a larger value. The program can be used with different numbers of integrands and dimensions. The program also uses the module nag_error_handling (1.2) to control the error state.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
MODULE quad_md_ex03_mod
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Default Accessibility ..
    PUBLIC
    ! .. Intrinsic Functions ..
    INTRINSIC KIND
    ! .. Parameters ..
    INTEGER, PARAMETER :: wp = KIND(1.0D0)
CONTAINS
FUNCTION f(x,m)
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Intrinsic Functions ..
    INTRINSIC LOG, REAL, SIN, SIZE, SUM
    ! .. Scalar Arguments ..
    INTEGER, INTENT (IN) :: m
! .. Array Arguments ..
REAL (wp), INTENT (IN) :: x(:)
! .. Function Return Value ..
REAL (wp) :: f(m)
! .. Local Scalars ..
INTEGER :: j
REAL (wp) :: s
! .. Executable Statements ..
s = SUM((/(REAL(j,kind=wp),j=1,SIZE(x))/)*x)
f = LOG(s)*(/ (SIN(REAL(j,kind=wp)+s),j=1,m) /)
```

END FUNCTION f

END MODULE quad_md_ex03_mod
PROGRAM nag_quad_md_ex03
! Example Program Text for nag_quad_md

```
! NAG fl90, Release 4. NAG Copyright 2000.
... Use Statements .
USE nag_examples_io, ONLY : nag_std_out
USE nag_quad_md, ONLY : nag_quad_md_rect_mintg, nag_set_error, nag_error
USE quad_md_ex03_mod, ONLY : wp, f
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Parameters ..
INTEGER, PARAMETER :: m = 10, n = 4
! .. Local Scalars ..
INTEGER :: i, len_info, max_fun_eval, num_fun_eval, r
REAL (wp) :: abs_acc, rel_acc
LOGICAL :: continue_call
TYPE (nag_error) :: error
! .. Local Arrays ..
REAL (wp) :: a(n), abs_err(m), b(n), result(m)
REAL (wp), ALLOCATABLE :: subrgn_info(:)
! .. Executable Statements ..
WRITE (nag_std_out,*) 'Example Program Results for nag_quad_md_ex03'
WRITE (nag_std_out,*)
r = 2**n + 2*n*n + 2*n + 1
max_fun_eval = 57
len_info = 6*n + 9*m + (n+m+2)*(1+max_fun_eval/r)
ALLOCATE (subrgn_info(len_info)) ! Allocate storage
a = 0.0_wp
b = 1.0_wp
abs_acc = 0.0_wp
rel_acc = 1.0E-3_wp
max_fun_eval = 57
continue_call = .FALSE
```

inner: DO
CALL nag_set_error (error,halt_level=3)
CALL nag_quad_md_rect_mintg(f,a,b,result,abs_acc=abs_acc, \&
$r e l_{-} a c c=r e l_{-} a c c, a b s _e r r=a b s _e r r, m a x _f u n_{-} e v a l=m a x _f u n_{-} e v a l, \&$
num_fun_eval=num_fun_eval, continue_call=continue_call, \&
subrgn_info=subrgn_info,error=error)
IF (error\%code==201 .OR. error\%code==203) THEN
WRITE (nag_std_out,' (/,1X,A,I6)') \&
'Number of function calls in the last call = ', num_fun_eval
WRITE (nag_std_out,' (1X,A)') \&
, i Integral Estimated error'
DO $\mathrm{i}=1, \mathrm{~m}$
WRITE (nag_std_out,'(1X,I4,F12.4,E19.4)') i, result(i), abs_err(i)
END DO
max_fun_eval = 16*max_fun_eval
continue_call = .TRUE.
WRITE (nag_std_out,*)
ELSE
WRITE (nag_std_out,' (/,1X,A,I6)') \&
'Number of function calls in the final call = ', num_fun_eval

```
    WRITE (nag_std_out,'(1X,A)') &
    , i integral Estimated error'
    DO i = 1, m
        WRITE (nag_std_out,'(1X,I4,F12.4,E19.4)') i, result(i), abs_err(i)
    END DO
    EXIT inner
END IF
END DO inner
DEALLOCATE (subrgn_info) ! Deallocate storage
END PROGRAM nag_quad_md_ex03
```


2 Program Data

None.

3 Program Results

10	0.1514	$0.6164 \mathrm{E}-03$
Number of	function calls in the final call $=$	912
i	integral	Estimated error
1	0.0384	$0.3536 \mathrm{E}-03$
2	0.4012	$0.3164 \mathrm{E}-03$
3	0.3952	$0.3062 \mathrm{E}-03$
4	0.0258	$0.3490 \mathrm{E}-03$
5	-0.3672	$0.3284 \mathrm{E}-03$
6	-0.4227	$0.3136 \mathrm{E}-03$
7	-0.0895	$0.3487 \mathrm{E}-03$
8	0.3260	$0.3408 \mathrm{E}-03$
9	0.4417	$0.3148 \mathrm{E}-03$
10	0.1514	$0.3414 \mathrm{E}-03$

Example 4: Evaluation of a Two-dimensional Integral

The integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}(x+y) d x d y
$$

is evaluated using nag_quad_2d. We then re-cast the problem (see Section 6.2) as:

$$
\int_{0}^{1} \int_{0}^{\pi / 2} r^{2}(\cos v+\sin v) d v d r .
$$

and evaluate the re-cast integral using nag_quad_2d.
Note the difference in the number of function evaluations.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
MODULE quad_md_ex04_mod
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Default Accessibility .
    PUBLIC
    ! .. Intrinsic Functions ..
    INTRINSIC KIND
    ! .. Parameters ..
    INTEGER, PARAMETER :: wp = KIND(1.ODO)
    ! .. Local Scalars ..
    REAL (wp) :: pi
CONTAINS
    FUNCTION fa(x,y)
        ! .. Implicit None Statement ..
        IMPLICIT NONE
        ! .. Scalar Arguments .
        REAL (wp), INTENT (IN) :: x, y
        ! .. Function Return Value ..
        REAL (wp) :: fa
        ! .. Executable Statements ..
        fa = x + y
    END FUNCTION fa
    FUNCTION phi1a(y)
        ! .. Implicit None Statement ..
        IMPLICIT NONE
        ! .. Scalar Arguments ..
        REAL (wp), INTENT (IN) :: y
        ! .. Function Return Value ..
        REAL (wp) :: phi1a
        ! .. Executable Statements ..
        phi1a = 0.0_wp
    END FUNCTION phi1a
    FUNCTION phi2a(y)
        ! .. Implicit None Statement ..
        IMPLICIT NONE
        ! .. Intrinsic Functions ..
        INTRINSIC SQRT
        ! .. Scalar Arguments ..
        REAL (wp), INTENT (IN) :: y
```

```
    ! .. Function Return Value ..
    REAL (wp) :: phi2a
    ! .. Executable Statements ..
    phi2a = SQRT(1.0_wp-y*y)
END FUNCTION phi2a
! Second formulation
FUNCTION fb(x,y)
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Intrinsic Functions ..
    INTRINSIC COS, SIN
    ! .. Scalar Arguments ..
    REAL (wp), INTENT (IN) :: x, y
    ! .. Function Return Value ..
    REAL (wp) :: fb
    ! .. Executable Statements ..
    fb = (y*y)*(COS(x)+SIN(x))
END FUNCTION fb
FUNCTION phi1b(y)
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Scalar Arguments ..
    REAL (wp), INTENT (IN) :: y
    ! .. Function Return Value ..
    REAL (wp) :: phi1b
    ! .. Executable Statements ..
    phi1b = 0.0_wp
END FUNCTION phi1b
FUNCTION phi2b(y)
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Scalar Arguments ..
    REAL (wp), INTENT (IN) :: y
    ! .. Function Return Value ..
    REAL (wp) :: phi2b
    ! .. Executable Statements ..
    phi2b = 0.5_wp*pi
END FUNCTION phi2b
END MODULE quad_md_ex04_mod
PROGRAM nag_quad_md_ex04
```

```
! Example Program Text for nag_quad_md
```

! Example Program Text for nag_quad_md
! NAG fl90, Release 4. NAG Copyright 2000.
! NAG fl90, Release 4. NAG Copyright 2000.
! .. Use Statements ..
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_examples_io, ONLY : nag_std_out
USE nag_math_constants, ONLY : nag_pi
USE nag_math_constants, ONLY : nag_pi
USE nag_quad_md, ONLY : nag_quad_2d
USE nag_quad_md, ONLY : nag_quad_2d
USE quad_md_ex04_mod, ONLY : wp, fa, fb, phi1a, phi2a, phi1b, phi2b, pi
USE quad_md_ex04_mod, ONLY : wp, fa, fb, phi1a, phi2a, phi1b, phi2b, pi
! .. Implicit None Statement ..
! .. Implicit None Statement ..
IMPLICIT NONE
IMPLICIT NONE
! .. Local Scalars ..
! .. Local Scalars ..
INTEGER :: nfun
INTEGER :: nfun
REAL (wp) : : a, b, result
REAL (wp) : : a, b, result
! .. Executable Statements ..
! .. Executable Statements ..
WRITE (nag_std_out,*) 'Example Program Results for nag_quad_md_ex04'
WRITE (nag_std_out,*) 'Example Program Results for nag_quad_md_ex04'
pi = nag_pi(0.0_wp)

```
pi = nag_pi(0.0_wp)
```

```
a = 0.0_wp
b = 1.0_wp
```

CALL nag_quad_2d(fa,phi1a,phi2a,a,b,result,num_fun_eval=nfun)
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) 'Results for first formulation:'
WRITE (nag_std_out,'(5X,A,F11.6)') 'The integral is:', result
WRITE (nag_std_out,'(5X,A,I5)') 'The number of function evaluations:', \&
nfun
! Second formulation of the integral
CALL nag_quad_2d(fb,phi1b,phi2b,a, $\left.b, r e s u l t, n u m _f u n _e v a l=n f u n\right)$
WRITE (nag_std_out,*)
WRITE (nag_std_out,*) 'Results for second formulation:'
WRITE (nag_std_out,'(5X,A,F11.6)') 'The integral is:', result
WRITE (nag_std_out,'(5X,A,I5)') 'The number of function evaluations:', \&
nfun
END PROGRAM nag_quad_md_ex04

2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex04

Results for first formulation:
The integral is: 0.666667
The number of function evaluations: 93

Results for second formulation:
The integral is: 0.666667
The number of function evaluations: 65

Example 5: Evaluation of a Four-dimensional Integral Using nag_quad_monte_carlo

The four-dimensional integral

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{4 x_{1} x_{3}^{2} \exp \left(2 x_{1} x_{3}\right)}{\left(1+x_{2}+x_{4}\right)^{2}} d x_{4} d x_{3} d x_{2} d x_{1}
$$

is computed using the procedure nag_quad_monte_carlo.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to Section 5.2 of the Essential Introduction for further information.

```
MODULE quad_md_ex05_mod
    ! .. Implicit None Statement ..
    IMPLICIT NONE
    ! .. Default Accessibility ..
    PUBLIC
    ! .. Intrinsic Functions ..
    INTRINSIC KIND
    ! .. Parameters ..
    INTEGER, PARAMETER :: wp = KIND(1.0DO)
CONTAINS
    FUNCTION f(x)
        ! .. Implicit None Statement ..
        IMPLICIT NONE
        ! .. Intrinsic Functions ..
        INTRINSIC EXP
        ! .. Array Arguments ..
        REAL (wp), INTENT (IN) :: x(:)
        ! .. Function Return Value ..
        REAL (wp) :: f
        ! .. Executable Statements ..
        f = 4.0_wp*x(1)*x(3)*x(3)*EXP(2.0_wp*x(1)*x(3))/(1.0_wp+x(2)+x(4))**2
    END FUNCTION f
```

END MODULE quad_md_ex05_mod
PROGRAM nag_quad_md_ex05

```
! Example Program Text for nag_quad_md
! NAG fl90, Release 4. NAG Copyright 2000.
! .. Use Statements ..
USE nag_examples_io, ONLY : nag_std_out
USE nag_quad_md, ONLY : nag_quad_monte_carlo
USE quad_md_ex05_mod, ONLY : wp, f
! .. Implicit None Statement ..
IMPLICIT NONE
! .. Intrinsic Functions ..
INTRINSIC EPSILON, MAX
! .. Parameters ..
INTEGER, PARAMETER :: n = 4
! .. Local Scalars ..
INTEGER :: i, num_fun_eval
```

```
    REAL (wp) :: result
    ! .. Local Arrays ..
    REAL (wp) :: a(n), b(n), rel_acc(2)
    ! .. Executable Statements ..
    WRITE (nag_std_out,*) 'Example Program Results for nag_quad_md_ex05'
    a = 0.0_wp
    b = 1.0_wp
rel_acc(1) = 0.01_wp
rel_acc(2) = MAX(0.001_wp,EPSILON(0.0_wp)**0.2_wp) ! the default
DO i = 1, 2
    CALL nag_quad_monte_carlo(f,a,b,result,rel_acc=rel_acc(i), &
        num_fun_eval=num_fun_eval,repeat_rand=.TRUE.)
    WRITE (nag_std_out,'(/,1X,A,F9.5)') &
        'requested relative accuracy . . . . . =', rel_acc(i)
    WRITE (nag_std_out,'(1X,A,I9)') &
        'number of function calls . . . . . . . =', num_fun_eval
    WRITE (nag_std_out,'(1X,A,1F9.5/)') &
        'result - approximation to the integral =', result
END DO
END PROGRAM nag_quad_md_ex05
```


2 Program Data

None.

3 Program Results

Example Program Results for nag_quad_md_ex05
requested relative accuracy = 0.01000
number of function calls = 1728
result - approximation to the integral $=0.57583$
requested relative accuracy $=0.00100$
number of function calls $=19248$
result - approximation to the integral $=0.57536$

Mathematical Background

1 Dimensionality

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5 dimensions), and those of higher dimensionality. Where the number of dimensions is limited, a one-dimensional method may be applied to each dimension, according to some suitable strategy, and high accuracy may be obtainable (using product rules). However, the number of integrand evaluations rises very rapidly with the number of dimensions, so the accuracy obtainable with an acceptable amount of computational labour is limited; for example a product of 3 -point rules in 20 dimensions would require more than 10^{9} integrand evaluations. Special techniques such as the Monte Carlo, number theoretic and Sag-Szekeres methods should be used to deal with high dimensions (see Davis and Rabinowitz [1]).

2 Automatic Adaptive Procedures

An automatic adaptive strategy in several dimensions normally involves division of the region into subregions, concentrating the divisions in those parts of the region where the integrand is worst behaved. It is difficult to arrange with any generality for variable limits in the inner integral(s). For this reason, some methods use a region where all the limits are constants; this is called a hyper-rectangle. Integrals over regions defined by variable or infinite limits may be handled by transformation to a hyper-rectangle (see Davis and Rabinowitz [1]).
The method used locally in each subregion produced by the adaptive subdivision process is usually one of three types: Monte Carlo, number theoretic or deterministic. Deterministic methods are usually the most rapidly convergent but are often expensive to use for high dimensionality.

References

[1] Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press
[2] Genz A C and Malik A A (1980) An Adaptive Algorithm for Numerical Integration over an Ndimensional Rectangular Region J. Comput. Appl. Math. 6 295-302
[3] Van Dooren P and De Ridder L (1976) An Adaptive Algorithm for Numerical Integration Over an N-dimensional Cube J. Comput. Appl. Math. 2 207-217
[4] Lautrup B (1971) An adaptive multi-dimensional integration procedure Proc. 2nd Coll. Advanced Methods in Theoretical Physics, Marseille
[5] Patterson T N L (1968) On some Gauss and Lobatto based integration formulae Math. Comput. 22 877-881
[6] Patterson T N L (1968) The Optimum Addition of Points to Quadrature Formulae Math. Comput. 22 847-856

