
Partial Differential Equations (PDE’s) Module Contents

Module 13.2: nag pde ell mg

Multigrid Solution of

Elliptic Partial Differential Equations

nag pde ell mg provides procedures for generation and multigrid solution of seven-
diagonal systems of linear equations which arise from discretization of two-dimensional
elliptic partial differential equations.

Contents

Introduction . 13.2.3

Procedures

nag pde ell rect . 13.2.7

Generates a seven-diagonal system of linear equations which arises from the
discretization of a two-dimensional elliptic PDE’s on a rectangle

nag pde ell mg sol . 13.2.13

Solves a seven-diagonal system of linear equations using a multigrid iteration

Examples

Example 1: Solves the Laplace Equation With an Exact Discretization 13.2.17

Example 2: Solves an Elliptic Partial Differential Equation With Convection Terms 13.2.21

Example 3: Solves the Poisson Equation . 13.2.27

References . 13.2.31

[NP3506/4] Module 13.2: nag pde ell mg 13.2.1

Module Contents Partial Differential Equations (PDE’s)

13.2.2 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Module Introduction

Introduction

This module contains procedures for discretization and solving elliptic partial differential equations on
rectangular regions using a standard seven-point finite difference discretization and a multigrid solver.

nag pde ell rect discretizes a second order linear elliptic partial differential equation of the form

α(x, y)
∂2U

∂x2
+ β(x, y)

∂2U

∂x∂y
+ γ(x, y)

∂2U

∂y2
+ δ(x, y)

∂U

∂x
+ ε(x, y)

∂U

∂y
+ φ(x, y)U = ψ(x, y) (1)

on a rectangular region

xA ≤ x ≤ xB , yA ≤ y ≤ yB

subject to boundary conditions of the form

a(x, y)U + b(x, y)
∂U

∂n
= c(x, y),

where
∂U

∂n
denotes the outward pointing normal derivative on the boundary. Equation (1) is said to be

elliptic if

4α(x, y)γ(x, y) ≥ β2(x, y)

for all points in the rectangular region. The linear equations produced are in a form suitable for passing
directly to the multigrid procedure nag pde ell mg sol.

The equation is discretized on a rectangular grid, with nx grid points in the x-direction and ny grid
points in the y-direction. The grid spacing used is therefore

hx = (xB − xA)/(nx − 1), hy = (yB − yA)/(ny − 1)

and the coordinates of the grid points (xi, yj) are

xi = xA + (i− 1)hx, yj = yA + (j − 1)hy, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny

at each grid point (xi, yj) six neighbouring grid points are used to approximate the partial differential
equation, so that the equation is discretized on the seven-point stencil:

OW E

SES 1 2

3 4

NW 6 N 7

5

Figure 1. Seven-point stencil

For convenience the approximation ui,j to the exact solution U(xi, yj) is denoted by uO, and the
neighbouring approximations are labelled according to points of the compass as shown. Where numerical
labels for the seven points are required, these are also shown.

[NP3506/4] Module 13.2: nag pde ell mg 13.2.3

Module Introduction Partial Differential Equations (PDE’s)

The following approximations are used for the second derivatives:

∂2U

∂x2
'

1

h2
x

(uE − 2uO + uW),

∂2U

∂y2
'

1

h2
y

(uN − 2uO + uS),

∂2U

∂x∂y
'

1

2hxhy

(uN − uNW + uE − 2uO + uW − uSE + uS).

Two possible schemes may be used to approximate the first derivatives:

Central Differences

∂U

∂x
'

1

2hx

(uE − uW),

∂U

∂y
'

1

2hy

(uN − uS).

Upwind Differences

∂U

∂x
'

1

hx

(uO − uW) if δ(x, y) > 0,

∂U

∂x
'

1

hx

(uE − uO) if δ(x, y) < 0,

∂U

∂y
'

1

hy

(uN − uO) if ε(x, y) > 0,

∂U

∂y
'

1

hy

(uO − uS) if ε(x, y) < 0.

Central differences are more accurate than upwind differences, but upwind differences may lead to a
more diagonally dominant matrix for those problems where the coefficients of the first derivatives are
significantly larger than the coefficients of the second derivatives.

The approximations used for the first derivatives may be written in a more compact form as follows:

∂U

∂x
'

1

2hx

((kx − 1)uW − 2kxuO + (kx + 1)uE) ,

∂U

∂y
'

1

2hy

((ky − 1)uS − 2kyuO + (ky + 1)uN) ,

where kx = sign δ and ky = sign ε for upwind differences, and kx = ky = 0 for central differences.

At all points in the rectangular domain, including the boundary, the coefficients in the partial
differential equation are evaluated by calling the user-supplied subroutine pde coeff, and applying the
approximations. This leads to a seven-diagonal system of linear equations of the form:

A6
ijui−1,j+1 + A7

ijui,j+1

+ A3
ijui−1,j + A4

ijui,j + A5
ijui+1,j

+ A1
ijui,j−1 + A2

ijui+1,j−1 = fij , i = 1, 2, . . . , nx and j = 1, 2, . . . , ny;

13.2.4 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Module Introduction

where the coefficients are given by

A1
ij = β(xi, yj)

1

2hxhy

+ γ(xi, yj)
1

h2
y

+ ε(xi, yj)
1

2hy

(ky − 1),

A2
ij = −β(xi, yj)

1

2hxhy

,

A3
ij = α(xi, yj)

1

h2
x

+ β(xi, yj)
1

2hxhy

+ δ(xi, yj)
1

2hx

(kx − 1),

A4
ij = −α(xi, yj)

2

h2
x

− β(xi, yj)
1

hxhy

− γ(xi, yj)
2

h2
y

− δ(xi, yj)
ky

hx

− ε(xi, yj)
ky

hy

− φ(xi, yj),

A5
ij = α(xi, yj)

1

h2
x

+ β(xi, yj)
1

2hxhy

+ δ(xi, yj)
1

2hx

(kx + 1),

A6
ij = −β(xi, yj)

1

2hxhy

,

A7
ij = β(xi, yj)

1

2hxhy

+ γ(xi, yj)
1

h2
y

+ ε(xi, yj)
1

2hy

(ky + 1),

fij = ψ(xi, yj).

These equations then have to be modified to take account of the boundary conditions. These may be
Dirichlet (where the solution is given), Neumann (where the derivative of the solution is given), or mixed
(where a linear combination of solution and derivative is given).

If the boundary conditions are Dirichlet, there is an infinity of possible equations which may be applied:

µui,j = µfij , µ 6= 0. (2)

If the procedure nag pde ell mg sol is used to solve the discretized equations, it turns out that the
choice of µ can have a dramatic effect on the rate of convergence, and the obvious choice µ = 1 is not
always the best. Some choices may even cause the multigrid method to fail altogether. In practice it has
been found that a value of the same order as the other diagonal elements of the matrix is best, and the
following value has been found to work well in practice:

µ = min
ij

(

−

{

2

h2
x

+
2

h2
y

}

, A4
ij

)

.

If the boundary conditions are either mixed or Neumann (i.e., b 6= 0 on return from the user-supplied
subroutine bound cond), then one of the points in the seven-point stencil lies outside the domain. In this
case the normal derivative in the boundary conditions is used to eliminate the ‘fictitious’ point, uoutside:

∂U

∂n
'
1

2h
(uoutside − uinside). (3)

It should be noted that if the boundary conditions are Neumann and φ(x, y) ≡ 0, then there is no unique
solution. The procedure returns with error%code = 102 in this case, and the seven-diagonal matrix is
singular.

The four corners are treated separately. The user-supplied subroutine bound cond is called twice, once
along each of the edges meeting at the corner. If both boundary conditions at this point are Dirichlet
and the prescribed solution values agree, then this value is used in an equation of the form (2). If
the prescribed solution is discontinuous at the corner, then the average of the two values is used. If
one boundary condition is Dirichlet and the other is mixed, then the value prescribed by the Dirichlet
condition is used in an equation of the form given above. Finally, if both conditions are mixed or
Neumann, then two ‘fictitious’ points are eliminated using two equations of the form (3).

It is possible that equations for which the solution is known at all points on the boundary, have coefficients
which are not defined on the boundary. Since this procedure calls the user-supplied subroutine pde coeff

[NP3506/4] Module 13.2: nag pde ell mg 13.2.5

Module Introduction Partial Differential Equations (PDE’s)

at all points in the domain, including boundary points, arithmetic errors may occur in the user’s
procedure pde coeff which this procedure cannot trap. If the user has an equation with Dirichlet
boundary conditions (i.e., b = 0 at all points on the boundary), but with PDE coefficients which are
singular on the boundary, then the procedure nag pde ell mg sol could be called directly only using
interior grid points with the user’s own discretization.

After the equations have been set up as described above, they are checked for diagonal dominance. That
is to say,

|A4
ij | ≥

∑

k 6=4

|Ak
ij |, i = 1, 2, . . . , nx and j = 1, 2, . . . , ny.

If this condition is not satisfied then the procedure returns with error%code = 103. The multigrid
procedure nag pde ell mg solmay still converge in this case, but if the coefficients of the first derivatives
in the partial differential equation are large compared with the coefficients of the second derivatives, the
user should consider using upwind differences (upwind diff = .true.).

Since this procedure is designed primarily for use with nag pde ell mg sol, this document should be
read in conjunction with the document for that procedure.

13.2.6 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) nag pde ell rect

Procedure: nag pde ell rect

1 Description

nag pde ell rect discretizes a second order linear elliptic partial equation of the form

α(x, y)
∂2U

∂x2
+ β(x, y)

∂2U

∂x∂y
+ γ(x, y)

∂2U

∂y2
+ δ(x, y)

∂U

∂x
+ ε(x, y)

∂U

∂y
+ φ(x, y)U = ψ(x, y) (4)

on a rectangular region

xA ≤ x ≤ xB , yA ≤ y ≤ yB ;

subject to boundary conditions of the form

a(x, y)U + b(x, y)
∂U

∂n
= c(x, y)

where
∂U

∂n
denotes the outward pointing normal derivative on the boundary. Equation 4 is said to be

elliptic if

4α(x, y)γ(x, y) ≥ β2(x, y)

for all points in the rectangular region. The linear equations produced are in a form suitable for passing
directly to the multigrid procedure nag pde ell mg sol.

The equation is discretized on a rectangular grid, with nx grid points in the x-direction and ny grid points
in the y-direction. At all points in the rectangular domain, including the boundary, the coefficients in
the partial differential equation are evaluated by calling the user-supplied procedure pde coeff, and
applying the approximations (see the Module Introduction). This leads to a seven-diagonal system of
linear equations of the form:

A6
ijui−1,j+1 + A7

ijui,j+1

+ A3
ijui−1,j + A4

ijui,j + A5
ijui+1,j

+ A1
ijui,j−1 + A2

ijui+1,j−1 = fij , i = 1, 2, . . . , nx and j = 1, 2, . . . , ny.

These equations then have to be modified to take account of the boundary conditions. These may be
Dirichlet (where the solution is given), Neumann (where the derivative of the solution is given), or mixed
(where a linear combination of solution and derivative is given). Those modifications are evaluated by
calling the user-supplied procedure bound cond. (See the Module Introduction for further details.)

2 Usage

USE nag pde ell mg

CALL nag pde ell rect(pde coeff, bound cond, nx, ny, x min, x max, y min, y max, a, &

rhs [, optional arguments])

[NP3506/4] Module 13.2: nag pde ell mg 13.2.7

nag pde ell rect Partial Differential Equations (PDE’s)

3 Arguments

3.1 Mandatory Arguments

pde coeff — subroutine

The user-supplied procedure pde coeff must evaluate the functions α(x, y), β(x, y), γ(x, y), δ(x, y),
ε(x, y), φ(x, y) and ψ(x, y) which define the equation at a general point (x, y).

Its specification is:

subroutine pde coeff(x, y, coeff, i comm, r comm)

real(kind=wp), intent(in) :: x

real(kind=wp), intent(in) :: y

Input: the x and y co-ordinates of the point at which the coefficients of the partial
differential equation are to be evaluated.

real(kind=wp), intent(out) :: coeff(7)

Output: coeff(1:7) must be set to the value of α(x, y), β(x, y), γ(x, y), δ(x, y), ε(x, y),
φ(x, y) and ψ(x, y) respectively at the point specified by x and y.

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

bound cond — subroutine

The user-supplied procedure bound cond must evaluate the functions a(x, y), b(x, y) and c(x, y)
involved in the boundary conditions.

Its specification is:

subroutine bound cond(x, y, a, b, c, bnd, i comm, r comm)

real(kind=wp), intent(in) :: x

real(kind=wp), intent(in) :: y

Input: the x and y co-ordinates of the point at which the boundary conditions are to be
evaluated.

real(kind=wp), intent(out) :: a

real(kind=wp), intent(out) :: b

real(kind=wp), intent(out) :: c

Output: a, b and c must be set to the value of a(x, y), b(x, y) and c(x, y) respectively at
the point specified by x and y.

integer, intent(in) :: bnd

Input: bnd specifies on which boundary the point (x,y) lies. bnd = 0, 1, 2 or 3 according
to whether the point lies on the bottom, right, top or left boundary.

13.2.8 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) nag pde ell rect

integer, intent(in), optional :: i comm(:)

real(kind=wp), intent(in), optional :: r comm(:)

Input: you are free to use these arrays to supply information to this procedure from the
calling (sub)program.

nx — integer, intent(in)

ny — integer, intent(in)

Input: the number of interior grid points nx and ny in the x- and y-directions respectively. If the
seven-diagonal equations are to be solved by the procedure nag pde ell mg sol then nx−1 and
ny−1 should preferably be divisible by as high a power of 2 as possible.

Constraints: nx ≥ 3, ny ≥ 3.

x min — real(kind=wp), intent(in)

x max — real(kind=wp), intent(in)

Input: the lower and upper bounds xA and xB of the range of x respectively.

Constraints: x min < x max.

y min — real(kind=wp), intent(in)

y max — real(kind=wp), intent(in)

Input: the lower and upper bounds yA and yB of the range of y, respectively.

Constraints: y min < y max.

a(nx × ny, 7) — real(kind=wp), intent(out)

Output: a(i, j), for i = 1, 2, . . . , nx × ny and j = 1, 2, . . . , 7; contains the seven-diagonal linear
equations produced by the discretization described in the Module Introduction. The array a can
then be passed directly to the procedure nag pde ell mg sol to solve the system.

rhs(nx × ny) — real(kind=wp), intent(out)

Output: the right hand sides of the seven-diagonal linear equations produced by the discretization
described in the Module Introduction, which may be passed directly to the procedure
nag pde ell mg sol to solve the system.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below

may differ from the order in which they occur in the argument list.

upwind diff — logical, intent(in), optional

Input: the type of approximation to be used for the first derivatives which occur in the
partial differential equation (see the Module Introduction for more details about approximation
types).

If upwind diff = .false., then central differences are used;

if upwind diff = .true., then upwind differences are used.

Default: upwind diff = .false..

Note: generally speaking, if at least one of the coefficients multiplying the first derivatives (δ(x, y)
or ε(x, y) returned by pde coeff as coeff(4) and coeff(5) respectively) is large compared
with the coefficients multiplying the second derivatives, then upwind differences may be more
appropriate. Upwind differences are less accurate that central differences, but may result in more
rapid convergence for strongly convective equations. The easiest test is to try both schemes.

[NP3506/4] Module 13.2: nag pde ell mg 13.2.9

nag pde ell rect Partial Differential Equations (PDE’s)

i comm(:) — integer, intent(in), optional

r comm(:) — real(kind=wp), intent(in), optional

Input: these arrays are not used by this procedure, but they are passed directly from the calling
(sub)program to the user-supplied procedures pde coeff and/or bound cond, and hence may be
used to pass information to them.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

Failures (error%level = 2):

error%code Description

201 At some point on the boundary there is a derivative in the boundary conditions and

there is a non-zero coefficient of the mixed derivative
∂2U

∂x∂y
.

b 6= 0 on return from bound cond and β 6= 0 on return from pde coeff.

202 A null boundary has been specified.

That means that at some point both a and b are zero on return from a call to
bound cond.

Warnings (error%level = 1):

error%code Description

101 The equation is not elliptic, i.e., 4αγ < β2 after a call to pde coeff.

The discretization has been completed, but the convergence of the procedure
nag pde ell mg sol cannot be guaranteed.

102 The boundary conditions are purely Neumann.

Only the derivative is specified, and there is in general no unique solution.

103 The equations are not diagonally dominant.

See the Module Introduction.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

13.2.10 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) nag pde ell rect

6 Further Comments

6.1 Algorithmic Detail

If this procedure is used as a pre-processor to the multigrid procedure nag pde ell mg sol it should be
noted that the rate of convergence of that procedure is strongly dependent upon the number of levels in
the multigrid scheme, and thus the choice of nx and ny is very important.

[NP3506/4] Module 13.2: nag pde ell mg 13.2.11

nag pde ell rect Partial Differential Equations (PDE’s)

13.2.12 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) nag pde ell mg sol

Procedure: nag pde ell mg sol

1 Description

nag pde ell mg sol solves, by multigrid iteration, the seven-point scheme

A6
i,jui−1,j+1 + A7

i,jui,j+1 +

A3
i,jui−1,j + A4

i,jui,j + A5
i,jui+1,j

+ A1
i,jui,j−1 + A2

i,jui+1,j−1 = fij , i = 1, 2, . . . , nx and j = 1, 2, . . . , ny,

which arises from the discretization of an elliptic partial differential equation of the form

α(x, y)
∂2U

∂x2
+ β(x, y)

∂2U

∂x∂y
+ γ(x, y)

∂2U

∂y2
+ δ(x, y)

∂U

∂x
+ ε(x, y)

∂U

∂y
+ φ(x, y)U = ψ(x, y)

and its boundary conditions, on a rectangular domain. This may be written in matrix form as Au = f .

The algorithm is described in separate reports by Wesseling [2], Wesseling [3] and McCarthy [1].

Systems of linear equations, matching the seven-point stencil defined above (see also Figure 1 in the
Module Introduction), are solved by a multigrid iteration. An initial estimate of the solution must be
provided by the user. A zero guess may be supplied if no better approximation is available.

A ‘smoother’ based on incomplete LU decomposition is used to eliminate the high frequency components
of the error. A restriction operator is then used to map the system on to a sequence of coarser grids. The
errors are then smoothed and prolongated (mapped onto successively finer grids). When the finest cycle
is reached, the approximation to the solution is corrected. The cycle is repeated for max iter iterations
or until the required accuracy (acc) is reached.

This procedure will automatically determine the number l of possible coarse grids for a particular
problem. In other words, this procedure determines the maximum integer l so that nx and ny can
be expressed in the form

nx = m2l−1 + 1, ny = n2l−1 + 1, with m ≥ 2 and n ≥ 2.

It should be noted that the rate of convergence improves significantly with the number of levels used
(see McCarthy [1]), so that nx and ny should be carefully chosen so that nx − 1 and ny − 1 have factors
of the form 2l, with l as large as possible. For good convergence l should be at least 2.

2 Usage

USE nag pde ell mg

CALL nag pde ell mg sol(nx, ny, a, rhs, u [, optional arguments])

3 Arguments

3.1 Mandatory Arguments

nx — integer, intent(in)

Input: the number of grid points nx in the x-direction. nx−1 should preferably be divisible by as
high a power of 2 as possible.

Constraints: nx ≥ 3.

[NP3506/4] Module 13.2: nag pde ell mg 13.2.13

nag pde ell mg sol Partial Differential Equations (PDE’s)

ny — integer, intent(in)

Input: the number of grid points ny in the y-direction. ny−1 should preferably be divisible by as
high a power of 2 as possible.

Constraints: ny ≥ 3.

a(nx × ny, 7) — real(kind=wp), intent(inout)

Input: the values of the left-hand side matrix, as follows:

a(i+ (j − 1)nx, k) = Ak
ij , i = 1, 2, . . . , nx, j = 1, 2, . . . , ny and k = 1, . . . , 7.

Output: a is overwritten by the incomplete LU factorization (on the finest mesh).

rhs(nx × ny) — real(kind=wp), intent(in)

Input: the values of the right-hand side f :

rhs(i+ (j − 1)nx) = fij , i = 1, 2, . . . , nx and j = 1, 2, . . . , ny.

u(nx × ny) — real(kind=wp), intent(inout)

Input: the values of the initial estimate u0 for the solution u:

u(i+ (j − 1)nx) = u0
ij , i = 1, 2, . . . , nx and j = 1, 2, . . . , ny.

Output: the computed solution u:

u(i+ (j − 1)nx) = ui,j , i = 1, 2, . . . , nx and j = 1, 2, . . . , ny.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below

may differ from the order in which they occur in the argument list.

resid norm — real(kind=wp), intent(out), optional

Output: the residual 2-norm.

max iter — integer, intent(in), optional

Input: the maximum permitted number of multigrid iterations. If max iter = 0, no multigrid
iterations are performed but the coarse-grid approximations and incomplete LU decompositions
are computed.

Constraints: max iter ≥ 0.

Default: max iter = 100.

acc — real(kind=wp), intent(in), optional

Input: the required tolerance for convergence of the residual 2-norm:

‖r‖2 =

√

√

√

√

nx×ny
∑

k=1

(rk)2

where r = f −Au and u is the computed solution. Note that the norm is not scaled by the number
of equations. The procedure will stop after fewer than max iter iterations if the residual 2-norm
is less than the specified tolerance. (If max iter > 0, at least one iteration is always performed).

Constraints: acc ≥ EPSILON(1.0 wp).

Default: acc = EPSILON(1.0 wp).

13.2.14 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) nag pde ell mg sol

print level — integer, intent(in), optional

Input: controls the amount of output produced by nag pde ell mg sol. The following output is
sent to the Fortran unit number defined by the optional argument unit:

print level = 0, no output;

print level = 1, the solution ui,j , for i = 1, 2, . . . , nx and j = 1, 2, . . . , ny;

print level = 2, the residual 2-norm after each iteration, with the reduction factor over the
previous iteration;

print level = 3, as for print level = 1 and print level = 2;

print level = 4, as for print level = 3, plus the final residual;

print level = 5, as for print level = 4, plus the initial element of a and rhs;

print level = 6, as for print level = 5, plus the coarse grid approximations on all grids;

print level = 7, as for print level = 6, plus the incomplete LU decompositions on all
grids;

print level = 8, as for print level = 7, plus the residual after each iteration.

The element a(p, k), the coarse grid approximations and the incomplete LU decompositions are
output in the format:

Y -index = j

X-index = i a(p, 1) a(p, 2) a(p, 3) a(p, 4) a(p, 5) a(p, 6) a(p, 7)

where p = 1 + (j − 1)× nx, for i = 1, 2, . . . , nx and j = 1, 2, . . . , ny.

The vectors u and rhs are output in matrix form with ny rows and nx columns. Where nx > 10, the
nx values for a given j-value are produced in rows of 10. Values of print level > 4 may therefore
produce considerable amounts of output.

Constraints: 0 ≤ print level ≤ 8.

Default: print level = 0.

unit — integer, intent(in), optional

Input: specifies the Fortran unit number which identifies the file to be written to.

Constraints: unit ≥ 0.

Default: unit = the default output unit number for the implementation.

num iter — integer, intent(out), optional

Output: the number of iterations performed.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

[NP3506/4] Module 13.2: nag pde ell mg 13.2.15

nag pde ell mg sol Partial Differential Equations (PDE’s)

Warnings (error%level = 1):

error%code Description

101 Unable to achieve the required tolerance within max iter iterations.

max iter iterations have been performed with the residual 2-norm decreasing at each
iteration but it has not been reduced to less than the specified tolerance acc. Examine
the progress of the iterations by setting print level ≥ 2. You could try increasing
max iter or acc.

102 Unable to achieve the required tolerance (non-decreasing residuals).

max iter iterations have been performed but the residual 2-norm has not been
reduced to less than the specified tolerance acc. At one or more iterations the residual
2-norm did not decrease. It is likely that the method fails to converge for the given
matrix A.

103 Unused optional input argument.

The optional argument unit is present while no output is required (the optional
argument print level is not present). unit will not be used.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 3 of this module document.
They show that the number of iterations is essentially independent of the size of the problem.

6 Further Comments

6.1 Algorithmic Detail

This procedure has been found to be robust in applications, but being an iterative method the problem
of divergence can arise. For a strictly diagonally dominant matrix A

|A4
ij | ≥

∑

k 6=4

|Ak
ij |, i = 1, 2, . . . , nx and j = 1, 2, . . . , ny;

no such problem is foreseen. The diagonal dominance of A is not a necessary condition, but should this
condition be strongly violated then divergence may occur. The quickest test is to try the procedure.

The rate of convergence of this procedure is strongly dependent upon the number of levels, l, in the
multigrid scheme, and thus the choice of nx and ny is very important. The user is advised to experiment
with different values of nx and ny to see the effect they have on the rate of convergence; e.g., by using a
value such as nx = 65(2

6 + 1) followed by nx = 64 (for which l = 1).

13.2.16 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Example 1

Example 1: Solves the Laplace Equation With an

Exact Discretization

The following program solves the elliptic partial differential equation

−(
∂2U

∂x2
+
∂2U

∂y2
) = 0,

on the unit square 0 ≤ x, y ≤ 1, with boundary conditions

U given on x = 1, x = 0, y = 0 and y = 1.

Dirichlet boundary conditions derived from the exact solution U(x, y) = x2 − y2 are applied.

As expected the results show that the multigrid method is achieving grid-independent convergence rates.

For some machines the largest problem solved in this example may exhaust the available memory. In
this case, reduce the value of the parameter level up accordingly.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to

Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_pde_ell_mg_ex01

! Example Program Text for nag_pde_ell_mg

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_pde_ell_mg, ONLY : nag_pde_ell_mg_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, KIND, MAX, MIN, PRECISION, REAL, SQRT, SUM

! .. Parameters ..

INTEGER, PARAMETER :: level_low = 3

INTEGER, PARAMETER :: wp = KIND(1.0D0)

INTEGER, PARAMETER :: level_up = MIN(8,PRECISION(0.0_wp))

INTEGER, PARAMETER :: maxsize = (2**level_up+1)**2

REAL (wp), PARAMETER :: one = 1.0_wp

REAL (wp), PARAMETER :: two = 2.0_wp

REAL (wp), PARAMETER :: zero = 0.0_wp

REAL (wp), PARAMETER :: mone = -one

! .. Local Scalars ..

INTEGER :: i, ix, iy, j, k, level, max_iter, num_iter, nx, nxy, ny

REAL (wp) :: acc, hx, hx2, hy, hy2, mu, resid_norm, rms_err, xi, xj, xj2

! .. Local Arrays ..

REAL (wp) :: a(maxsize,7), rhs(maxsize), sol(maxsize), u(maxsize)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_pde_ell_mg_ex01’

max_iter = 1000

! Do-loop on the level

DO level = level_low, level_up

nx = 2**level + 1

ny = nx

nxy = nx*ny

acc = MAX(1.0E-6_wp,SQRT(nx*EPSILON(zero)))

[NP3506/4] Module 13.2: nag pde ell mg 13.2.17

Example 1 Partial Differential Equations (PDE’s)

! Set-up operator, right-hand side and initial guess

hx = one/REAL(nx-1,kind=wp)

hx2 = hx*hx

hy = one/REAL(ny-1,kind=wp)

hy2 = hy*hy

mu = two/hx2 + two/hy2

a(1:nxy,1) = mone/hy2

a(1:nxy,2) = zero

a(1:nxy,3) = mone/hx2

a(1:nxy,4) = mu

a(1:nxy,5) = mone/hx2

a(1:nxy,6) = zero

a(1:nxy,7) = mone/hy2

u(1:nxy) = zero

rhs(1:nxy) = zero

! Exact solution "sol"

DO j = 1, ny

xj = REAL(j-1,kind=wp)*hy

xj2 = xj*xj

DO i = 1, nx

xi = REAL(i-1,kind=wp)*hx

k = i + (j-1)*nx

sol(k) = xi*xi - xj2

END DO

END DO

! Correction for the boundary conditions

! Horizontal boundaries

DO i = 1, nx

! Boundary condition Y = 0

ix = i

u(ix) = sol(ix)

rhs(ix) = mu*sol(ix)

a(ix,1:7:2) = zero

! Boundary condition Y = 1

ix = i + (ny-1)*nx

u(ix) = sol(ix)

rhs(ix) = mu*sol(ix)

a(ix,1:7:2) = zero

END DO

! Vertical boundaries

DO j = 1, ny

! Boundary condition X = 0

iy = (j-1)*nx + 1

u(iy) = sol(iy)

rhs(iy) = mu*sol(iy)

a(iy,1:7:2) = zero

! Boundary condition X = 1

iy = j*nx

u(iy) = sol(iy)

rhs(iy) = mu*sol(iy)

a(iy,1:7:2) = zero

END DO

! Solve the equation

CALL nag_pde_ell_mg_sol(nx,ny,a(1:nxy,1:7),rhs(1:nxy),u(1:nxy), &

resid_norm=resid_norm,acc=acc,num_iter=num_iter,max_iter=max_iter)

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,999) ’ Level ’, level

WRITE (nag_std_out,999) ’ Order of the matrix ’, nxy

13.2.18 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Example 1

WRITE (nag_std_out,998) ’ Accuracy ’, acc

WRITE (nag_std_out,999) ’ Number of iteration ’, num_iter

WRITE (nag_std_out,998) ’ Residual norm ’, resid_norm

rms_err = SUM((u(:nxy)-sol(:nxy))**2)

rms_err = SQRT(rms_err/REAL(nxy,kind=wp))

WRITE (nag_std_out,998) ’ RMS Error ’, rms_err

END DO

999 FORMAT (1X,A,I7)

998 FORMAT (1X,A,1P,E10.4)

END PROGRAM nag_pde_ell_mg_ex01

2 Program Data

None.

3 Program Results

Example Program Results for nag_pde_ell_mg_ex01

Level 3

Order of the matrix 81

Accuracy 1.0000E-06

Number of iteration 7

Residual norm 1.2358E-07

RMS Error 1.1239E-10

Level 4

Order of the matrix 289

Accuracy 1.0000E-06

Number of iteration 8

Residual norm 3.3638E-07

RMS Error 4.1703E-11

Level 5

Order of the matrix 1089

Accuracy 1.0000E-06

Number of iteration 9

Residual norm 2.2809E-07

RMS Error 3.9178E-12

Level 6

Order of the matrix 4225

Accuracy 1.0000E-06

Number of iteration 10

Residual norm 1.5476E-07

RMS Error 3.3047E-13

Level 7

Order of the matrix 16641

Accuracy 1.0000E-06

Number of iteration 10

Residual norm 8.8075E-07

RMS Error 3.0404E-13

Level 8

Order of the matrix 66049

Accuracy 1.0000E-06

[NP3506/4] Module 13.2: nag pde ell mg 13.2.19

Example 1 Partial Differential Equations (PDE’s)

Number of iteration 11

Residual norm 5.8939E-07

RMS Error 8.5490E-14

13.2.20 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Example 2

Example 2: Solves an Elliptic Partial Differential

Equation With Convection Terms

The following program solves the elliptic partial differential equation

∂2U

∂x2
+
∂2U

∂y2
+ 50

{

∂U

∂x
+
∂U

∂y

}

= f(x, y)

on the unit square 0 ≤ x, y ≤ 1, with boundary conditions

∂U

∂n
given on x = 0 and y = 0,

U given on x = 1 and y = 1.

The function f(x, y) and the exact form of the boundary conditions are derived from the exact solution
U(x, y) = sinx sin y.

The equation is first solved using central differences. Because of the first derivative terms, the linear
equations are not diagonally dominant, and (as expected) convergence is slow. The equation is solved
a second time with upwind differences, showing that convergence is more rapid, but the solution is less
accurate.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to

Section 5.2 of the Essential Introduction for further information.

MODULE nag_pde_ell_mg_ex02_mod

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Default Accessibility ..

PUBLIC

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CONTAINS

SUBROUTINE pde_coeff(x,y,coeff,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC COS, SIN

! .. Scalar Arguments ..

REAL (wp), INTENT (IN) :: x, y

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), INTENT (OUT) :: coeff(7)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:)

! .. Executable Statements ..

coeff(1:6) = r_comm(1:6)

! PSI = (-ALPHA-GAMMA+PHI)*SIN(X)*SIN(Y) + BETA*COS(X)*COS(Y) +

! . + DELTA*COS(X)*SIN(Y) + EPSLON*SIN(X)*COS(Y)

coeff(7) = (-coeff(1)-coeff(3)+coeff(6))*SIN(x)*SIN(y) + &

coeff(2)*COS(x)*COS(y) + coeff(4)*COS(x)*SIN(y) + &

coeff(5)*SIN(x)*COS(y)

END SUBROUTINE pde_coeff

[NP3506/4] Module 13.2: nag pde ell mg 13.2.21

Example 2 Partial Differential Equations (PDE’s)

SUBROUTINE bound_cond(x,y,a,b,c,bnd,i_comm,r_comm)

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC SIN

! .. Parameters ..

INTEGER, PARAMETER :: bottom = 0, left = 3, right = 1, top = 2

REAL (wp), PARAMETER :: one = 1.0_wp

REAL (wp), PARAMETER :: zero = 0.0_wp

! .. Scalar Arguments ..

INTEGER, INTENT (IN) :: bnd

REAL (wp), INTENT (OUT) :: a, b, c

REAL (wp), INTENT (IN) :: x, y

! .. Array Arguments ..

INTEGER, OPTIONAL, INTENT (IN) :: i_comm(:)

REAL (wp), OPTIONAL, INTENT (IN) :: r_comm(:)

! .. Executable Statements ..

IF (bnd==top .OR. bnd==right) THEN

! Solution prescribed

a = one

b = zero

c = SIN(x)*SIN(y)

ELSE IF (bnd==bottom) THEN

! Derivative prescribed

a = zero

b = one

c = -SIN(x)

ELSE IF (bnd==left) THEN

! Derivative prescribed

a = zero

b = one

c = -SIN(y)

END IF

END SUBROUTINE bound_cond

END MODULE nag_pde_ell_mg_ex02_mod

PROGRAM nag_pde_ell_mg_ex02

! Example Program Text for nag_pde_ell_mg

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_math_constants, ONLY : nag_pi

USE nag_pde_ell_mg, ONLY : nag_pde_ell_mg_sol, nag_pde_ell_rect

USE nag_pde_ell_mg_ex02_mod, ONLY : pde_coeff, bound_cond, wp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, MAX, REAL, SIN, SQRT

! .. Parameters ..

INTEGER, PARAMETER :: levels = 3

INTEGER, PARAMETER :: nx = 2**levels + 1

INTEGER, PARAMETER :: ny = nx

INTEGER, PARAMETER :: nxy = nx*ny

REAL (wp), PARAMETER :: fifty = 50.0_wp

REAL (wp), PARAMETER :: one = 1.0_wp

REAL (wp), PARAMETER :: zero = 0.0_wp

! .. Local Scalars ..

13.2.22 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Example 2

INTEGER :: i, j, k1, k2, max_iter, num_iter

REAL (wp) :: acc, hx, hy, pi, rms_err, x_max, x_min, y_max, y_min

LOGICAL :: upwind_diff

! .. Local Arrays ..

REAL (wp) :: a(nxy,7), rhs(nxy), r_comm(6), u(nxy), x(nxy), y(nxy)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_pde_ell_mg_sol’

WRITE (nag_std_out,*) ’ ’

pi = nag_pi(0.0_wp)

! r_comm(1:6) contains the coefficient alpha, beta, gamma, delta,

! epsilon and phi appearing in the example PDE.

! They are stored for the use in subroutine pde_coeff

r_comm(1) = one

r_comm(2) = zero

r_comm(3) = one

r_comm(4) = fifty

r_comm(5) = fifty

r_comm(6) = zero

x_min = zero

x_max = one

y_min = zero

y_max = one

hx = (x_max-x_min)/REAL(nx-1,kind=wp)

hy = (y_max-y_min)/REAL(ny-1,kind=wp)

y(1:nx) = y_min

x(1:nx) = x_min + hx*(/ (REAL(i-1,kind=wp),i=1,nx) /)

x(nx) = x_max

y(nxy+1-nx:nxy) = y_max

x(nxy+1-nx:nxy) = x(1:nx)

DO j = 2, ny - 1

k2 = j*nx

k1 = k2 + 1 - nx

y(k1:k2) = y_min + REAL(j-1,kind=wp)*hy

x(k1:k2) = x(1:nx)

END DO

! Discretize the equations :

! Set-up operator, right-hand side

CALL nag_pde_ell_rect(pde_coeff,bound_cond,nx,ny,x_min,x_max,y_min, &

y_max,a,rhs,r_comm=r_comm)

! Set-up initial guess

u(1:nxy) = zero

! Solve the equation

acc = MAX(1.0E-6_wp,SQRT(nx*EPSILON(zero)))

max_iter = 50

CALL nag_pde_ell_mg_sol(nx,ny,a,rhs,u,acc=acc,max_iter=max_iter, &

num_iter=num_iter)

! Print out the Solution

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,*) ’ Exact solution above computed solution’

WRITE (nag_std_out,*) ’ ’

[NP3506/4] Module 13.2: nag pde ell mg 13.2.23

Example 2 Partial Differential Equations (PDE’s)

WRITE (nag_std_out,999) ’ I/J’, (i,i=1,nx)

rms_err = zero

DO j = ny, 1, -1

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,998) j, (SIN(x(i+(j-1)*nx))*SIN(y(i+(j-1)*nx)),i=1, &

nx)

WRITE (nag_std_out,998) j, (u(i+(j-1)*nx),i=1,nx)

DO i = 1, nx

rms_err = rms_err + (SIN(x(i+(j-1)*nx))*SIN(y(i+ &

(j-1)*nx))-u(i+(j-1)*nx))**2

END DO

END DO

rms_err = SQRT(rms_err/REAL(nx*ny,kind=wp))

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,997) ’ Number of Iteration ’, num_iter

WRITE (nag_std_out,996) ’ RMS Error ’, rms_err

! Now discretize and solve the equations using upwinding differences

! Set-up operator, right-hand side

upwind_diff = .TRUE.

CALL nag_pde_ell_rect(pde_coeff,bound_cond,nx,ny,x_min,x_max,y_min, &

y_max,a,rhs,r_comm=r_comm,upwind_diff=upwind_diff)

! Set-up initial guess

u(1:nxy) = zero

! Solve the equation

CALL nag_pde_ell_mg_sol(nx,ny,a,rhs,u,acc=acc,max_iter=max_iter, &

num_iter=num_iter)

! Print out the Solution

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,*) ’ Exact solution above computed solution’

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,999) ’ I/J’, (i,i=1,nx)

rms_err = zero

DO j = ny, 1, -1

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,998) j, (SIN(x(i+(j-1)*nx))*SIN(y(i+(j-1)*nx)),i=1, &

nx)

WRITE (nag_std_out,998) j, (u(i+(j-1)*nx),i=1,nx)

DO i = 1, nx

rms_err = rms_err + (SIN(x(i+(j-1)*nx))*SIN(y(i+ &

(j-1)*nx))-u(i+(j-1)*nx))**2

END DO

END DO

rms_err = SQRT(rms_err/REAL(nx*ny,kind=wp))

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,997) ’ Number of Iteration ’, num_iter

WRITE (nag_std_out,996) ’ RMS Error ’, rms_err

999 FORMAT (1X,A,10I7:/(6X,10I7))

998 FORMAT (1X,I3,2X,10F7.3:/(6X,10F7.3))

997 FORMAT (1X,A,I3)

996 FORMAT (1X,A,1P,E10.2)

END PROGRAM nag_pde_ell_mg_ex02

13.2.24 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Example 2

2 Program Data

None.

3 Program Results

Example Program Results for nag_pde_ell_mg_sol

****************** Warning reported by NAG Fortran 90 Library *****************

Procedure nag_pde_ell_rect Level = 1 Code = 103

The equations are not diagonally dominant.

See the description section of the procedure document.

**************************** Execution continued ******************************

Exact solution above computed solution

I/J 1 2 3 4 5 6 7 8 9

9 0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

9 -0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

8 0.000 0.096 0.190 0.281 0.368 0.449 0.523 0.589 0.646

8 -0.000 0.095 0.190 0.281 0.368 0.449 0.523 0.589 0.646

7 0.000 0.085 0.169 0.250 0.327 0.399 0.465 0.523 0.574

7 -0.000 0.084 0.168 0.249 0.326 0.398 0.464 0.523 0.574

6 0.000 0.073 0.145 0.214 0.281 0.342 0.399 0.449 0.492

6 -0.001 0.072 0.144 0.213 0.280 0.342 0.398 0.449 0.492

5 0.000 0.060 0.119 0.176 0.230 0.281 0.327 0.368 0.403

5 -0.001 0.059 0.118 0.174 0.229 0.280 0.326 0.368 0.403

4 0.000 0.046 0.091 0.134 0.176 0.214 0.250 0.281 0.308

4 -0.001 0.044 0.089 0.133 0.174 0.213 0.249 0.281 0.308

3 0.000 0.031 0.061 0.091 0.119 0.145 0.169 0.190 0.208

3 -0.001 0.029 0.060 0.089 0.118 0.144 0.168 0.190 0.208

2 0.000 0.016 0.031 0.046 0.060 0.073 0.085 0.096 0.105

2 -0.001 0.014 0.029 0.044 0.059 0.072 0.084 0.095 0.105

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000 -0.000 -0.000

Number of Iteration 10

RMS Error 7.92E-04

Exact solution above computed solution

I/J 1 2 3 4 5 6 7 8 9

9 0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

9 -0.000 0.105 0.208 0.308 0.403 0.492 0.574 0.646 0.708

8 0.000 0.096 0.190 0.281 0.368 0.449 0.523 0.589 0.646

8 -0.002 0.093 0.186 0.276 0.362 0.443 0.517 0.585 0.646

7 0.000 0.085 0.169 0.250 0.327 0.399 0.465 0.523 0.574

7 -0.005 0.078 0.160 0.239 0.316 0.388 0.455 0.517 0.574

6 0.000 0.073 0.145 0.214 0.281 0.342 0.399 0.449 0.492

[NP3506/4] Module 13.2: nag pde ell mg 13.2.25

Example 2 Partial Differential Equations (PDE’s)

6 -0.008 0.063 0.132 0.200 0.266 0.329 0.388 0.443 0.492

5 0.000 0.060 0.119 0.176 0.230 0.281 0.327 0.368 0.403

5 -0.011 0.047 0.103 0.159 0.214 0.266 0.316 0.362 0.403

4 0.000 0.046 0.091 0.134 0.176 0.214 0.250 0.281 0.308

4 -0.013 0.030 0.074 0.117 0.159 0.200 0.239 0.276 0.308

3 0.000 0.031 0.061 0.091 0.119 0.145 0.169 0.190 0.208

3 -0.015 0.014 0.044 0.074 0.103 0.132 0.160 0.186 0.208

2 0.000 0.016 0.031 0.046 0.060 0.073 0.085 0.096 0.105

2 -0.016 -0.001 0.014 0.030 0.047 0.063 0.078 0.093 0.105

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 -0.016 -0.016 -0.015 -0.013 -0.011 -0.008 -0.005 -0.002 -0.000

Number of Iteration 4

RMS Error 1.05E-02

13.2.26 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Example 3

Example 3: Solves the Poisson Equation

The following program solves the elliptic partial differential equation

−(
∂2U

∂x2
+
∂2U

∂y2
) = f(x, y)

on the unit square 0 ≤ x, y ≤ 1, with boundary conditions

U given on x = 1, x = 0, y = 0 and y = 1.

The function f(x, y) and the boundary conditions are derived from the exact solution U(x, y) =
sin(πx) sin(πy).

As expected the results show that the multigrid method is achieving grid-independent convergence rates
and that the accuracy is quadratic (decreases by a factor of 4 for each mesh refinement).

For some machines the largest problem solved in this example may exhaust the available memory. In
this case, reduce the value of the parameter level up accordingly.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to

Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_pde_ell_mg_ex03

! Example Program Text for nag_pde_ell_mg

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_out

USE nag_pde_ell_mg, ONLY : nag_pde_ell_mg_sol

USE nag_math_constants, ONLY : nag_pi

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, KIND, MAX, MIN, PRECISION, REAL, SIN, SQRT, SUM

! .. Parameters ..

INTEGER, PARAMETER :: level_low = 3

INTEGER, PARAMETER :: wp = KIND(1.0D0)

INTEGER, PARAMETER :: level_up = MIN(8,PRECISION(0.0_wp))

INTEGER, PARAMETER :: maxsize = (2**level_up+1)**2

REAL (wp), PARAMETER :: one = 1.0_wp

REAL (wp), PARAMETER :: two = 2.0_wp

REAL (wp), PARAMETER :: zero = 0.0_wp

REAL (wp), PARAMETER :: mone = -one

! .. Local Scalars ..

INTEGER :: i, ix, iy, j, k1, k2, level, num_iter, nx, nxy, ny

REAL (wp) :: acc, hx, hx2, hy, hy2, mu, pi, resid_norm, rms_err, tpi2, &

xj

! .. Local Arrays ..

REAL (wp) :: a(maxsize,7), rhs(maxsize), sol(maxsize), u(maxsize)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_pde_ell_mg_ex03’

pi = nag_pi(zero)

tpi2 = two*pi*pi

! Do-loop on the level

DO level = level_low, level_up

nx = 2**level + 1

[NP3506/4] Module 13.2: nag pde ell mg 13.2.27

Example 3 Partial Differential Equations (PDE’s)

ny = nx

nxy = nx*ny

acc = MAX(1.0E-6_wp,SQRT(nx*EPSILON(zero)))

! Set-up operator, right-hand side and

! initial guess

hx = one/REAL(nx-1,kind=wp)

hx2 = hx*hx

hy = one/REAL(ny-1,kind=wp)

hy2 = hy*hy

mu = two/hx2 + two/hy2

a(1:nxy,1) = mone/hy2

a(1:nxy,2) = zero

a(1:nxy,3) = mone/hx2

a(1:nxy,4) = mu

a(1:nxy,5) = mone/hx2

a(1:nxy,6) = zero

a(1:nxy,7) = mone/hy2

u(1:nxy) = zero

! Exact solution "sol"

DO j = 1, ny

xj = REAL(j-1,kind=wp)*hy

k2 = j*nx

k1 = k2 + 1 - nx

sol(k1:k2) = SIN(pi*xj)*SIN(pi*hx*(/(REAL(i-1,kind=wp),i=1,nx)/))

END DO

rhs(1:nxy) = tpi2*sol(1:nxy)

! Correction for the boundary conditions

! Horizontal boundaries

DO i = 1, nx

! Boundary condition Y = 0

ix = i

u(ix) = sol(ix)

rhs(ix) = mu*sol(ix)

a(ix,1:7:2) = zero

! Boundary condition Y = 1

ix = i + (ny-1)*nx

u(ix) = sol(ix)

rhs(ix) = mu*sol(ix)

a(ix,1:7:2) = zero

END DO

! Vertical boundaries

DO j = 1, ny

! Boundary condition X = 0

iy = (j-1)*nx + 1

u(iy) = sol(iy)

rhs(iy) = mu*sol(iy)

a(iy,1:7:2) = zero

! Boundary condition X = 1

iy = j*nx

u(iy) = sol(iy)

rhs(iy) = mu*sol(iy)

a(iy,1:7:2) = zero

END DO

! Solve the equation

CALL nag_pde_ell_mg_sol(nx,ny,a(1:nxy,1:7),rhs(1:nxy),u(1:nxy), &

13.2.28 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) Example 3

resid_norm=resid_norm,acc=acc,num_iter=num_iter)

WRITE (nag_std_out,*) ’ ’

WRITE (nag_std_out,999) ’ Level ’, level

WRITE (nag_std_out,999) ’ Order of the matrix ’, nxy

WRITE (nag_std_out,998) ’ Accuracy ’, acc

WRITE (nag_std_out,999) ’ Number of iteration ’, num_iter

WRITE (nag_std_out,998) ’ Residual norm ’, resid_norm

rms_err = SUM((u(:nxy)-sol(:nxy))**2)

rms_err = SQRT(rms_err/REAL(nxy,kind=wp))

WRITE (nag_std_out,998) ’ RMS Error ’, rms_err

END DO

999 FORMAT (1X,A,I7)

998 FORMAT (1X,A,1P,E10.4)

END PROGRAM nag_pde_ell_mg_ex03

2 Program Data

None.

3 Program Results

Example Program Results for nag_pde_ell_mg_ex03

Level 3

Order of the matrix 81

Accuracy 1.0000E-06

Number of iteration 6

Residual norm 2.6324E-07

RMS Error 5.7559E-03

Level 4

Order of the matrix 289

Accuracy 1.0000E-06

Number of iteration 7

Residual norm 1.9001E-07

RMS Error 1.5148E-03

Level 5

Order of the matrix 1089

Accuracy 1.0000E-06

Number of iteration 8

Residual norm 8.1103E-08

RMS Error 3.8961E-04

Level 6

Order of the matrix 4225

Accuracy 1.0000E-06

Number of iteration 8

Residual norm 2.6200E-07

RMS Error 9.8866E-05

Level 7

Order of the matrix 16641

Accuracy 1.0000E-06

Number of iteration 8

Residual norm 6.5546E-07

RMS Error 2.4906E-05

[NP3506/4] Module 13.2: nag pde ell mg 13.2.29

Example 3 Partial Differential Equations (PDE’s)

Level 8

Order of the matrix 66049

Accuracy 1.0000E-06

Number of iteration 9

Residual norm 1.0175E-07

RMS Error 6.2506E-06

13.2.30 Module 13.2: nag pde ell mg [NP3506/4]

Partial Differential Equations (PDE’s) References

References

[1] McCarthy G J (1983) Investigation into the multigrid code MGD1 Report AERE-R 10889 Harwell

[2] Wesseling P (1982) MGD1 – A robust and efficient multigrid method Multigrid Methods. Lecture

Notes in Mathematics 960 Springer-Verlag 614–630

[3] Wesseling P (1982) Theoretical aspects of a multigrid method SIAM J. Sci. Statist. Comput. 3
387–407

[NP3506/4] Module 13.2: nag pde ell mg 13.2.31

