
Operations Research Module Contents

Module 19.1: nag ip

Integer Programming

nag ip contains a procedure for solving ‘zero-one’, ‘general’, ‘mixed’ or ‘all’ integer

linear programming problems.

Contents

Introduction . 19.1.3

Procedures

nag ip sol . 19.1.5

Solves ‘zero-one’, ‘general’, ‘mixed’ or ‘all’ integer linear programming problems

nag ip cntrl init . 19.1.13

Initialization procedure for nag ip cntrl wp

Derived Types

nag ip cntrl wp . 19.1.15

Control parameters for nag ip sol

Examples

Example 1: All General Integer Programming Problem . 19.1.19

Example 2: Zero-one Integer Programming Problem . 19.1.23

References . 19.1.26

[NP3506/4] Module 19.1: nag ip 19.1.1

Module Contents Operations Research

19.1.2 Module 19.1: nag ip [NP3506/4]

Operations Research Module Introduction

Introduction

This module contains two procedures and a derived type as follows.

• nag ip sol computes a constrained minimum of a linear objective function subject to a set of
general linear constraints and/or bounds on the variables when some (or all) of the variables are
restricted to take integer values only. It may also be used to find a feasible integer point, the first
integer solution or the optimal integer solution. It treats all matrices as dense and hence is not
intended for large sparse problems.

• nag ip cntrl init assigns default values to all the components of a structure of the derived type
nag ip cntrl wp.

• nag ip cntrl wp may be used to supply optional parameters to nag ip sol.

[NP3506/4] Module 19.1: nag ip 19.1.3

Module Introduction Operations Research

19.1.4 Module 19.1: nag ip [NP3506/4]

Operations Research nag ip sol

Procedure: nag ip sol

1 Description

nag ip sol is designed to solve a certain type of integer programming (IP) problem — minimizing a
linear function subject to constraints on the variables when some (or all) of the variables are restricted
to take integer values only.

The problem is assumed to be stated in the following form:

minimize
x∈Rn

cTx subject to l ≤

{

x

Ax

}

≤ u, (1)

where the constraints are grouped as follows:

n simple bounds on the variables x;

nL linear constraints, defined by the nL by n constant matrix A.

The vector c may be zero, in which case the objective function is omitted and nag ip sol attempts to
find a feasible point for the set of constraints.

You must supply an initial estimate of the solution to (1).

The simple bounds on the variables and the linear constraints are distinguished from one another for
reasons of computational efficiency (although the simple bounds could have been included in the definition
of the linear constraints). There may be no linear constraints, in which case the matrix A is empty
(nL = 0).

Upper bounds and/or lower bounds can be specified separately for the variables and constraints. An
equality constraint can be specified by setting li = ui. If certain bounds are not present, the associated
elements of l and u can be set to special values that will be treated as −∞ or +∞.

If it is required that some (or all) of the variables in (1) are restricted to take integer values only, then
the integer program is of type mixed (or all) general IP problem. If the integer variables are further
restricted to take only 0−1 values (i.e., lj = 0 and uj = 1), then the integer program is of type (mixed
or all) zero-one IP problem.

The branch and bound method (B&B) used by nag ip sol may be applied directly to such IP problems
as follows. The general idea of B&B (see Dakin [1] or Mitra [2]) is to solve the problem without the
integral restrictions as an LP problem (first node). If an integer variable xk takes a non-integer value x

∗

k

in the optimal LP solution, two LP sub-problems are created by imposing xk ≤ [x
∗

k] and xk ≥ [x
∗

k] + 1
respectively, where [x∗k] denotes the integer part of x

∗

k. This process (known as branching) continues
until the first integer solution (bound) is obtained. The hanging nodes are then solved and investigated
in order to prove the optimality of the solution. At each node an LP problem is solved using lower-level
procedures from nag qp sol.

Several options are available for controlling the operation of nag ip sol, covering facilities such as:

printed output, at the end of each iteration and at the final solution;

algorithmic parameters, such as tolerances and iteration limits.

These options are grouped together in the optional argument control, which is a structure of the derived
type nag ip cntrl wp.

2 Usage

USE nag ip

CALL nag ip sol(x, c, obj f [, optional arguments])

[NP3506/4] Module 19.1: nag ip 19.1.5

nag ip sol Operations Research

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n ≥ 1 — the number of variables

nL ≥ 0 — the number of linear constraints

3.1 Mandatory Arguments

x(n) — real(kind=wp), intent(inout)

Input: an initial estimate of the original LP solution.

Output: the point at which nag ip sol terminated.

If x(j) is an integer variable for some j, c 6= 0 and

error%code = 0, x contains an estimate of either the optimal integer solution or first integer
solution (depending on the value of the optional argument first int sol);

error%code = 101, x contains an estimate of the best integer solution found after searching
the number of nodes specified by the optional argument max nodes;

error%code = 102, x contains a point that is an integer solution but which is not optimal.

If x(j) is an integer variable for some j, c = 0 and error%code = 0, x contains a feasible integer
point for the set of constraints.

If x(j) is a non-integer variable, for j = 1, 2, . . . , n, error%code = 0 and

c 6= 0, x contains an estimate of the solution to the original LP problem;

c = 0, x contains a feasible point for the set of constraints.

c(n) — real(kind=wp), intent(in)

Input: the coefficients of the vector c of the objective function. To find a feasible integer point for
the set of constraints, set c to zero. To find a feasible point for the set of constraints with no integer
restrictions on the variables, set c to zero and the optional argument non int var to .true..

obj f — real(kind=wp), intent(out)

Output: the value of the objective function at the point returned in x.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

non int var(n) — logical, intent(in), optional

Input: specifies the non-integer and integer variables in the problem.

If non int var(j) = .true., then x(j) is a non-integer variable;

if non int var(j) = .false. (the default), then x(j) is an integer variable.

Default: non int var = .false..

19.1.6 Module 19.1: nag ip [NP3506/4]

Operations Research nag ip sol

x lower(n) — real(kind=wp), intent(inout), optional

x upper(n) — real(kind=wp), intent(inout), optional

Input: the lower and upper bounds on all the variables. To specify a non-existent lower bound (i.e.,
lj = −∞), set x lower(j) ≤ −control%inf bound; to specify a non-existent upper bound (i.e.,
uj = +∞), set x upper(j) ≥ +control%inf bound (see the type definition for nag ip cntrl wp).

Constraints:

x lower(j) ≤ x upper(j), for j = 1, 2, . . . , n;

| β |<control%inf bound when x lower(j) = x upper(j) = β.

Output: if non int var(j) = .false. for some j and error%code = 0, 101 or 102, x lower and
x upper contain the lower and upper bounds imposed on the IP solution or feasible integer point
returned in x.

Default: x lower = 0; x upper = +control%inf bound.

a(nL, n) — real(kind=wp), intent(in), optional

Input: the ith row of a must contain the coefficients of the ith linear constraint, for i = 1, 2, . . . , nL.

Default: the problem contains no linear constraints.

ax lower(nL) — real(kind=wp), intent(in), optional

ax upper(nL) — real(kind=wp), intent(in), optional

Input: the lower and upper bounds on all the linear constraints. To specify a non-existent lower
bound (i.e., lj = −∞), set ax lower(j) ≤ −control%inf bound; to specify a non-existent upper
bound (i.e., uj = +∞), set ax upper(j) ≥ +control%inf bound (see the type definition for
nag ip cntrl wp).

Constraints:

ax lower and ax upper must not be present unless a is present;

ax lower(j) ≤ ax upper(j), for j = 1, 2, . . . , nL;

| β |<control%inf bound when ax lower(j) = ax upper(j) = β.

Default: ax lower = −control%inf bound; ax upper = +control%inf bound.

x state(n) — integer, intent(out), optional

Output: if non int var(j) = .false. for some j and error%code = 0, 101 or 102, x state contains
the status of the bound constraints in the working set at the IP solution or feasible integer point
returned in x. If non int var = .true., x state contains the status of the bound constraints
at the point returned in x. The significance of each possible value of x state(j) (also used by
ax state) is as follows:

x state(j) Meaning
−2 This constraint violates its lower bound by more than the feasibility tolerance.
−1 This constraint violates its upper bound by more than the feasibility tolerance.
0 This constraint is satisfied to within the feasibility tolerance, but is not in the

working set.
1 This constraint is included in the working set at its lower bound.
2 This constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This can only

occur when the corresponding upper and lower bounds are equal.
4 This corresponds to optimality being declared with x(j) being temporarily

fixed at its current value.

[NP3506/4] Module 19.1: nag ip 19.1.7

nag ip sol Operations Research

ax state(nL) — integer, intent(out), optional

Output: if non int var(j) = .false. for some j and error%code = 0, 101 or 102, ax state

contains the status of the linear constraints in the working set at the IP solution or feasible integer
point returned in x. If non int var = .true., ax state contains the status of the linear constraints
at the point returned in x. The significance of each possible value of ax state(j) (also used by
x state) is as follows:

ax state(j) Meaning
−2 This constraint violates its lower bound by more than the feasibility tolerance.
−1 This constraint violates its upper bound by more than the feasibility tolerance.
0 This constraint is satisfied to within the feasibility tolerance, but is not in the

working set.
1 This constraint is included in the working set at its lower bound.
2 This constraint is included in the working set at its upper bound.
3 This constraint is included in the working set as an equality. This can only

occur when the corresponding upper and lower bounds are equal.
4 This corresponds to optimality being declared with x(j) being temporarily

fixed at its current value.

max depth — integer, intent(in), optional

Input: the maximum depth of the B&B tree to be searched.

Constraints: max depth ≥ 2.

Default: max depth = min(50, 5n).

max nodes — integer, intent(in), optional

Input: the maximum number of nodes of the B&B tree to be searched. If max nodes ≤ 0 and
first int sol = .false., then the B&B tree search is continued until all nodes have been
investigated.

Default: max nodes = 0.

first int sol — logical, intent(in), optional

Input: specifies whether to terminate or continue the B&B tree search after the first integer solution
(if any) has been found.

If first int sol = .true., then the B&B tree search is terminated at node k say, which
contains the first integer solution. For max nodes > 0, this applies only if k ≤ max nodes.

If first int sol = .false., then the B&B tree search is continued after the first integer
solution (if any) has been found.

Default: first int sol = .false..

x lambda(n) — real(kind=wp), intent(out), optional

Output: if
non int var(j) = .false. for some j and error%code = 0, 101 or 102, x lambda contains the
values of the Lagrange multipliers (reduced costs) for the bound constraints on the variables with
respect to the current working set at the IP solution or feasible integer point returned in x. If
non int var = .true., x lambda contains the values of the multipliers for the bound constraints
on the variables with respect to the current working set at the point returned in x.

More precisely, if x state(j) = 0 (i.e., constraint j is not in the working set), x lambda(j) is zero. If
x is optimal, x lambda(j) should be non-negative if x state(j) = 1, non-positive if x state(j) = 2
and zero if x state(j) = 4.

19.1.8 Module 19.1: nag ip [NP3506/4]

Operations Research nag ip sol

ax lambda(nL) — real(kind=wp), intent(out), optional

Output: if non int var(j) = .false. for some j and error%code = 0, 101 or 102, ax lambda

contains the values of the Lagrange multipliers (shadow costs) for the linear constraints with
respect to the current working set at the IP solution or feasible integer point returned in x. If
non int var = .true., ax lambda contains the values of the multipliers for the linear constraints
with respect to the current working set at the point returned in x.

More precisely, if ax state(j) = 0 (i.e., constraint j is not in the working set), ax lambda(j) is
zero. If x is optimal, ax lambda(j) should be non-negative if ax state(j) = 1, non-positive if
ax state(j) = 2 and zero if ax state(j) = 4.

Constraints: ax lambda must not be present unless a is present.

control — type(nag ip cntrl wp), intent(in), optional

Input: a structure containing scalar components; these are used to alter the default values of
those parameters which control the behaviour of the algorithm and level of printed output.
The initialization of this structure and its use is described in the procedure document for
nag ip cntrl init.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The solution to the original LP problem appears to be unbounded, i.e., the objective
function is not bounded below in the feasible region.

This occurs if a step larger than control%inf bound (default value = 1020; see the
type definition for nag ip cntrl wp) would have to be taken in order to continue the
algorithm, or the next step would result in an element of x having magnitude larger
than control%inf step (default value = max(control%inf bound, 1020)).

Relax the integer restrictions in the problem and attempt to find the optimal LP
solution by calling nag qp sol instead.

202 No feasible point was found for the original LP problem, i.e., it was not possible to
satisfy all the constraints to within the feasibility tolerance.

[NP3506/4] Module 19.1: nag ip 19.1.9

nag ip sol Operations Research

If the data for the constraints are accurate only to the absolute precision
σ, you should ensure that the value of control%feas tol (default value =
SQRT(EPSILON(1.0 wp)); see the type definition for nag ip cntrl wp) is greater

than σ. For example, if all the elements of A are of order unity and are accurate only
to three decimal places, then control%feas tol should be at least 10−3. You should
also check that there are no constraint redundancies.

Alternatively, relax the integer restrictions in the problem and attempt to find the
optimal LP solution by calling nag qp sol instead.

203 No feasible integer point was found, i.e., it was not possible to satisfy all the integer
variables to within the integer feasibility tolerance.

The value of control%int feas tol (default value = SQRT(EPSILON(1.0 wp)); see
the type definition for nag ip cntrl wp) is too small. Rerun nag ip sol with a
larger value.

204 No feasible integer point was found for the number of nodes investigated in the B&B
tree.

The values of control%int feas tol (default value = SQRT(EPSILON(1.0 wp)); see
the type definition for nag ip cntrl wp) and/or the optional argument max nodes

may be too small. Either rerun nag ip sol with larger values or use the default
values of max nodes and the optional argument first int sol so that the B&B tree
search is continued until all nodes have been investigated.

Warnings (error%level = 1):

error%code Description

101 The IP solution reported is the best IP solution found for the number of nodes
investigated in the B&B tree.

Rerun nag ip sol with a larger value of the optional argument max nodes if you wish
to attempt to improve upon the best IP solution found from a previous call to solve
the same problem.

102 The IP solution reported is not optimal.

This occurs if the B&B tree search for at least one of the branches had to be
terminated because an LP sub-problem in the branch did not have a solution.

The value of control%iter lim (default value = max(50, 5× (n+ nL)); see the type
definition for nag ip cntrl wp) may be too small. Rerun nag ip sol with a larger
value.

103 The limiting number of iterations was reached before normal termination occurred
for the original LP problem.

The value of control%iter lim (default value = max(50, 5 × (n+nL)); see the type
definition for nag ip cntrl wp) may be too small. Either rerun nag ip sol with a
larger value or relax the integer restrictions in the problem and attempt to find the
optimal LP solution by calling nag qp sol instead.

104 The maximum depth of the B&B tree is too small.

Rerun nag ip sol with a larger value of the optional argument max depth.

5 Examples of Usage

Complete examples of the use of this procedure appear in Examples 1 and 2 of this module document.

19.1.10 Module 19.1: nag ip [NP3506/4]

Operations Research nag ip sol

6 Further Comments

6.1 Scaling

Sensible scaling of the problem is likely to reduce the number of iterations required and make the problem
less sensitive to perturbations in the data, thus improving the condition of the problem. In the absence
of better information it usually sensible to make the Euclidean lengths of each constraint of comparable
magnitude. See the Chapter Introduction and Gill et al. [3] for further information and advice.

6.2 Accuracy

nag ip sol implements a numerically stable active set strategy and returns solutions that are as accurate
as the condition of the problem warrants on the machine.

6.3 Overflow

It may be possible to avoid the difficulty by increasing the magnitude of control%feas tol (default
value = SQRT(EPSILON(1.0 wp)); see the type definition for nag ip cntrl wp) and rerunning the
program. If the message recurs even after this change, you should relax the integer restrictions in
the problem and attempt to find the optimal LP solution by calling nag qp sol instead.

7 Description of Printed Output

This section describes the intermediate and final printout produced by nag ip sol. The level of printed
output can be controlled via the components list and print level of the optional argument control.
For example, a listing of the parameter settings to be used by nag ip sol is output unless control%list
is set to .false.. Note also that the intermediate printout and the final printout are produced only if
control%print level = 10 (the default).

When control%print level = 1 or 10, the final printout (< 80 characters) at the end of execution of
nag ip sol includes a listing of the status of every variable and constraint.

The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j = 1, 2, . . . , n of the variable.
State gives the state of the variable (FR if neither bound is in the working set,

EQ if a fixed variable, LL if on its lower bound, UL if on its upper bound,
TF if temporarily fixed at its current value). If Value lies outside the
upper or lower bounds by more than control%feas tol (default value =
SQRT(EPSILON(1.0 wp)); see the type definition for nag ip cntrl wp),
State will be ++ or -- respectively.

Value is the value of the variable at the final iterate.
Lower Bound is the lower bound specified for the variable. None indicates that

x lower(j) ≤ −control%inf bound (default value = 1020; see the type
definition for nag ip cntrl wp).

Upper Bound is the upper bound specified for the variable. None indicates that
x upper(j) ≥ control%inf bound.

Lagr Mult is the Lagrange multiplier for the associated bound. This will be zero if
State is FR or TF. If x is optimal, the multiplier should be non-negative
if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds
x lower(j) and x upper(j).

The meaning of the printout for linear constraints is the same as that given above for variables,
with ‘variable’ replaced by ‘constraint’, x lower and x upper are replaced by ax lower and ax upper

respectively, and with the following change in the heading:

L Con gives the name (L) and index j, for j = 1, 2, . . . , nL of the linear
constraint.

[NP3506/4] Module 19.1: nag ip 19.1.11

nag ip sol Operations Research

Note that if non int var(j) = .false. for some j, then the printed values of Lower Bound and Upper

Bound for the jth variable may not be the same as those originally supplied in x lower(j) and x upper(j).

Note also that movement off a constraint (as opposed to a variable moving away from its bound) can be
interpreted as allowing the entry in the Residual column to become positive.

If non int var(j) = .false. for some j and control%print level = 5 or 10, then the intermediate
printout (< 80 characters) at the end of every node investigated during the execution of nag ip sol is
a listing of the outcome of forcing an integer variable with a non-integer value to take a value within its
specified upper and lower bounds.

The following describes the printout for each node investigated.

Node No is the current node number of the B&B tree being investigated.
Parent Node is the parent node number of the current node.
Obj Value is the final objective value. This will be zero if a feasible integer point

is being sought. If a node does not have a feasible solution, then No

Feas Soln is printed instead of the objective function value. If a node
whose optimal solution exceeds the best integer solution found so far
is encountered (i.e., it does not pay to explore the sub-problem any
further), then its objective function value is printed together with CO

(Cut Off).
Varbl Chosen is the index of the integer variable chosen for branching.
Value Before is the non-integer value of the integer variable chosen for branching.
Lower Bound is the lower bound value that the integer variable is allowed to take.
Upper Bound is the upper bound value that the integer variable is allowed to take.
Value After is the value of the integer variable after the current optimization.
Depth is the depth of the B&B tree at the current node.

Numerical values are output with a fixed number of digits; they are not guaranteed to be accurate to
this precision.

19.1.12 Module 19.1: nag ip [NP3506/4]

Operations Research nag ip cntrl init

Procedure: nag ip cntrl init

1 Description

nag ip cntrl init assigns default values to the components of a structure of the derived type
nag ip cntrl wp.

2 Usage

USE nag ip

CALL nag ip cntrl init(control)

3 Arguments

3.1 Mandatory Argument

control — type(nag ip cntrl wp), intent(out)

Output: a structure containing the default values of those parameters which control the behaviour
of the algorithm and level of printed output. A description of its components is given in the
document for the derived type nag ip cntrl wp.

4 Error Codes

None.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

[NP3506/4] Module 19.1: nag ip 19.1.13

nag ip cntrl init Operations Research

19.1.14 Module 19.1: nag ip [NP3506/4]

Operations Research Type nag ip cntrl wp

Derived Type: nag ip cntrl wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision the
name of this type is nag ip cntrl dp. For single precision the name is nag ip cntrl sp. Please read the Users’ Note for
your implementation to check which precisions are available.

1 Description

A structure of type nag ip cntrl wp is used to supply a number of optional parameters: these govern
the level of printed output and a number of tolerances and limits, which allow you to influence the
behaviour of the algorithm. If this structure is supplied then it must be initialized prior to use by calling
the procedure nag ip cntrl init, which assigns default values to all the structure components. You
may then assign required values to selected components of the structure (as appropriate).

2 Type Definition

The public components are listed below; components are grouped according to their function. A full
description of the purpose of each component is given in Section 3.

type nag ip cntrl wp

! Printing parameters

logical :: list

integer :: unit

integer :: print level

! Algorithm choice and tolerances

real(kind=wp) :: feas tol

real(kind=wp) :: inf bound

real(kind=wp) :: inf step

real(kind=wp) :: int feas tol

integer :: iter lim

end type nag ip cntrl wp

3 Components

3.1 Printing Parameters

list — logical

Controls the printing of the parameter settings in the call to nag ip sol.

If list = .true., then the parameter settings are printed;

if list = .false., then the parameter settings are not printed.

Default: list = .true..

unit — integer

Specifies the Fortran unit number to which all output produced by nag ip sol is sent.

Default: unit = the default Fortran output unit number for your implementation.

Constraints: a valid output unit.

[NP3506/4] Module 19.1: nag ip 19.1.15

Type nag ip cntrl wp Operations Research

print level — integer

Controls the amount of output produced by nag ip sol, as indicated below. A detailed description
of the printed output is given in Section 7 of the procedure document for nag ip sol.

If non int var(j) = .false. for some j and c(k) 6= 0.0 for some k, then the following output is
sent to the Fortran unit number defined by unit:

0 No output.
1 The final IP solution only.
5 One line of output (< 80 characters) for each node investigated and the final IP solution.
10 The original LP solution (first node), one line of output for each node investigated and

the final IP solution.

If non int var = .true. and c(k) 6= 0.0 for some k, then the following output is sent to the Fortran
unit number defined by unit:

0 No output.
10 The original LP solution (first node) only.

If non int var(j) = .false. for some j and c = 0.0, then the following output is sent to the
Fortran unit number defined by unit:

0 No output.
1 The final feasible integer point only.
5 One line of output (< 80 characters) for each node investigated and the final feasible

integer point.
10 The final feasible point for the original LP problem, one line of output for each node

investigated and the final feasible integer point.

If non int var = .true. and c = 0.0, then the following output is sent to the Fortran unit number
defined by unit:

0 No output.
10 The final feasible point for the original LP problem.

Default: print level = 10.

Constraints: print level = 0, 1, 5 or 10.

3.2 Algorithm choice and tolerances

feas tol — real(kind=wp)

feas tol defines the maximum acceptable absolute violation in each constraint at a ‘feasible’ point.
More precisely, a constraint is considered ‘satisfied’ if its violation does not exceed feas tol.

Default: feas tol = SQRT(EPSILON(1.0 wp)).

Constraints: feas tol ≥ EPSILON(1.0 wp).

inf bound — real(kind=wp)

inf bound defines the ‘infinite’ bound size in the definition of the problem constraints. Any upper
bound greater than or equal to inf bound will be regarded as +∞ (and similarly any lower bound
less than or equal to −inf bound will be regarded as −∞).

Default: inf bound = 1020.

Constraints: inf bound > 0.0.

19.1.16 Module 19.1: nag ip [NP3506/4]

Operations Research Type nag ip cntrl wp

inf step — real(kind=wp)

inf step specifies the magnitude of the change in variables that will be considered a step to an
unbounded solution. If the change in x during an iteration would exceed the value of inf step,
the objective function is considered to be unbounded below in the feasible region.

Default: inf step = max(inf bound, 1020).

Constraints: inf step ≥ inf bound.

int feas tol — real(kind=wp)

int feas tol defines the maximum acceptable absolute violation in each variable at a ‘feasible’
integer point. For example, if the integer variable xj is of order unity, then xj is considered to be
integer only if (1.0− int feas tol) ≤ xj ≤ (1.0 + int feas tol).

Default: int feas tol = SQRT(EPSILON(1.0 wp)).

Constraints: int feas tol ≥ EPSILON(1.0 wp).

iter lim — integer

iter lim specifies the maximum number of iterations allowed before termination for each LP
problem.

Default: iter lim = max(50, 5×(no. of variables + no. of linear constraints)).

Constraints: iter lim ≥ 1.

[NP3506/4] Module 19.1: nag ip 19.1.17

Type nag ip cntrl wp Operations Research

19.1.18 Module 19.1: nag ip [NP3506/4]

Operations Research Example 1

Example 1: All General Integer Programming Problem

To maximize the linear function

F (x) = 3x1 + 4x2

subject to the bounds

x1 ≥ 0
x2 ≥ 0

and to the linear constraints

2x1 + 5x2 ≤ 15
2x1 − 2x2 ≤ 5
3x1 + 2x2 ≥ 5

where x1 and x2 are integer variables.

The initial point, which is feasible, is

x(0) = (1, 1)T .

The optimal solution is

x∗ = (2, 2)T ,

and F (x∗) = 14.

Note that maximizing F (x) is equivalent to minimizing −F (x).

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_ip_ex01

! Example Program Text for nag_ip

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_ip, ONLY : nag_ip_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

REAL (wp) :: obj_f

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), ax_lower(:), ax_upper(:), c(:), x(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_ip_ex01’

READ (nag_std_in,*) ! Skip heading in data file

! Read number of linear constraints (m) and variables (n)

READ (nag_std_in,*) m, n

ALLOCATE (x(n),c(n),a(m,n),ax_lower(m),ax_upper(m)) ! Allocate storage

[NP3506/4] Module 19.1: nag ip 19.1.19

Example 1 Operations Research

! Read in problem data

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) ax_lower

READ (nag_std_in,*) ax_upper

READ (nag_std_in,*) x

READ (nag_std_in,*) c

! Solve the problem

CALL nag_ip_sol(x,c,obj_f,a=a,ax_lower=ax_lower,ax_upper=ax_upper)

DEALLOCATE (x,c,a,ax_lower,ax_upper) ! Deallocate storage

END PROGRAM nag_ip_ex01

2 Program Data

Example Program Data for nag_ip_ex01

3 2 : m and n

2.0 5.0

2.0 -2.0

3.0 2.0 : a

-1.0e+25 -1.0e+25 5.0 : ax_lower

15.0 5.0 1.0e+25 : ax_upper

1.0 1.0 : x

-3.0 -4.0 : c

3 Program Results

Example Program Results for nag_ip_ex01

Parameters

Problem type........... IP (Integer Programming)

linear constraints..... 3 variables.............. 2

integer variables...... 2 non-integer variables.. 0

list................... .true. unit................... 6

print_level............ 10

feas_tol............... 1.49E-08 int_feas_tol........... 1.49E-08

inf_bound.............. 1.00E+20 inf_step............... 1.00E+20

iter_lim............... 50 eps (machine precision) 2.22E-16

max_nodes.............. 0 first_int_sol.......... .false.

max_depth.............. 10

*** Optimal LP solution *** -17.50000

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 FR 3.92857 0.00000 None 0.000 3.929

V 2 FR 1.42857 0.00000 None 0.000 1.429

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

19.1.20 Module 19.1: nag ip [NP3506/4]

Operations Research Example 1

L 1 UL 15.0000 None 15.0000 -1.000 0.000

L 2 UL 5.00000 None 5.00000 -0.5000 -8.8818E-16

L 3 FR 14.6429 5.00000 None 0.000 9.643

*** Start of tree search ***

Node Parent Obj Varbl Value Lower Upper Value Depth

No Node Value Chosen Before Bound Bound After

2 1 No Feas Soln 1 3.93 4.00 None 4.00 1

3 1 -16.2 1 3.93 0.00 3.00 3.00 1

4 3 -15.5 2 1.80 2.00 None 2.00 2

5 3 -13.0 2 1.80 0.00 1.00 1.00 2

*** Integer solution ***

Node Parent Obj Varbl Value Lower Upper Value Depth

No Node Value Chosen Before Bound Bound After

6 4 No Feas Soln 1 2.50 3.00 3.00 3.00 3

7 4 -14.8 1 2.50 0.00 2.00 2.00 3

8 7 -12.0 CO 2 2.20 3.00 None 3.00 4

9 7 -14.0 2 2.20 2.00 2.00 2.00 4

*** Integer solution ***

*** End of tree search ***

Total of 9 nodes investigated.

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 UL 2.00000 0.00000 2.00000 -3.000 0.000

V 2 EQ 2.00000 2.00000 2.00000 -4.000 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 FR 14.0000 None 15.0000 0.000 1.000

L 2 FR 0.00000 None 5.00000 0.000 5.000

L 3 FR 10.0000 5.00000 None 0.000 5.000

Exit nag_ip_sol - Optimal IP solution found.

Final IP objective value = -14.00000

Exit from nag_ip_sol after 6 iterations.

[NP3506/4] Module 19.1: nag ip 19.1.21

Example 1 Operations Research

19.1.22 Module 19.1: nag ip [NP3506/4]

Operations Research Example 2

Example 2: Zero-one Integer Programming Problem

To maximize the linear function

F (x) = 3x1 + 2x2 − 5x3 − 2x4 + 3x5

subject to the bounds

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1
0 ≤ x3 ≤ 1
0 ≤ x4 ≤ 1
0 ≤ x5 ≤ 1

and to the linear constraints

x1 + x2 + x3 + 2x4 + x5 ≤ 4
7x1 + 3x3 − 4x4 + 3x5 ≤ 8
11x1 − 6x2 + 3x4 − 3x5 ≥ 3

where x1, x2, x3, x4 and x5 are zero-one integer variables.

The initial point, which is infeasible, is

x(0) = (1, 1, 1, 1, 1)T .

The optimal solution is

x∗ = (1, 1, 0, 0, 0)T ,

and F (x∗) = 5.

Note that maximizing F (x) is equivalent to minimizing −F (x).

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_ip_ex02

! Example Program Text for nag_ip

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_ip, ONLY : nag_ip_sol, nag_ip_cntrl_init, &

nag_ip_cntrl_wp => nag_ip_cntrl_dp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, m, n

REAL (wp) :: obj_f

TYPE (nag_ip_cntrl_wp) :: control

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), ax_lower(:), ax_upper(:), c(:), x(:), &

x_upper(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_ip_ex02’

[NP3506/4] Module 19.1: nag ip 19.1.23

Example 2 Operations Research

READ (nag_std_in,*) ! Skip heading in data file

! Read number of linear constraints (m) and variables (n)

READ (nag_std_in,*) m, n

ALLOCATE (x(n),c(n),x_upper(n),a(m,n),ax_lower(m), &

ax_upper(m)) ! Allocate storage

! Read in problem data

READ (nag_std_in,*) (a(i,:),i=1,m)

READ (nag_std_in,*) ax_lower

READ (nag_std_in,*) ax_upper

READ (nag_std_in,*) x

READ (nag_std_in,*) x_upper

READ (nag_std_in,*) c

! Initialize control structure and set required control parameters

CALL nag_ip_cntrl_init(control)

control%print_level = 1

control%iter_lim = 99

! Solve the problem

CALL nag_ip_sol(x,c,obj_f,x_upper=x_upper,a=a,ax_lower=ax_lower, &

ax_upper=ax_upper,control=control)

DEALLOCATE (x,c,x_upper,a,ax_lower,ax_upper) ! Deallocate storage

END PROGRAM nag_ip_ex02

2 Program Data

Example Program Data for nag_ip_ex02

3 5 : m and n

1.0 1.0 1.0 2.0 1.0

7.0 0.0 3.0 -4.0 3.0

11.0 -6.0 0.0 3.0 -3.0 : a

-1.0e+25 -1.0e+25 3.0 : ax_lower

4.0 8.0 1.0e+25 : ax_upper

1.0 1.0 1.0 1.0 1.0 : x

1.0 1.0 1.0 1.0 1.0 : x_upper

-3.0 -2.0 5.0 2.0 -3.0 : c

3 Program Results

Example Program Results for nag_ip_ex02

Parameters

Problem type........... IP (Integer Programming)

linear constraints..... 3 variables.............. 5

integer variables...... 5 non-integer variables.. 0

list................... .true. unit................... 6

print_level............ 1

19.1.24 Module 19.1: nag ip [NP3506/4]

Operations Research Example 2

feas_tol............... 1.49E-08 int_feas_tol........... 1.49E-08

inf_bound.............. 1.00E+20 inf_step............... 1.00E+20

iter_lim............... 99 eps (machine precision) 2.22E-16

max_nodes.............. 0 first_int_sol.......... .false.

max_depth.............. 25

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 EQ 1.00000 1.00000 1.00000 -3.000 0.000

V 2 UL 1.00000 0.00000 1.00000 -2.000 0.000

V 3 LL 0.00000 0.00000 1.00000 5.000 0.000

V 4 EQ 0.00000 0.00000 0.00000 2.000 0.000

V 5 EQ 0.00000 0.00000 0.00000 -3.000 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 FR 2.00000 None 4.00000 0.000 2.000

L 2 FR 7.00000 None 8.00000 0.000 1.000

L 3 FR 5.00000 3.00000 None 0.000 2.000

Exit nag_ip_sol - Optimal IP solution found.

Final IP objective value = -5.000000

Exit from nag_ip_sol after 15 iterations.

[NP3506/4] Module 19.1: nag ip 19.1.25

References Operations Research

References

[1] Dakin R J (1965) A tree search algorithm for mixed integer programming problems Comput. J. 8
250–255

[2] Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer
linear programs Math. Programming 4 155–170

[3] Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

19.1.26 Module 19.1: nag ip [NP3506/4]

