
Random Number Generation Module Contents

Module 21.3: nag rand discrete

Random Numbers from Discrete Distributions

nag rand discrete provides procedures for generating sequences of independent pseudo-
random numbers from discrete distributions.

Contents

Introduction . 21.3.3

Procedures

nag rand binom . 21.3.5
Generates random integers from a binomial distribution and/or returns a reference
vector for the distribution

nag rand neg binom . 21.3.9
Generates random integers from a negative binomial distribution and/or returns a
reference vector for the distribution

nag rand hypergeo . 21.3.13
Generates random integers from an hypergeometric distribution and/or returns a
reference vector for the distribution

nag rand user dist . 21.3.17
Generates random integers and/or returns a reference vector from a discrete
distribution defined in terms of its PDF or CDF

nag rand ref vec . 21.3.21
Generates random integers from a discrete distribution, using a reference vector

Derived Types

nag ref vec wp . 21.3.23
Stores a reference vector which is used to generate random integers from a discrete
distribution

Examples

Example 1: Generation of random integers from a discrete distribution specified only in
terms of its CDF . 21.3.25

Additional Examples . 21.3.27

References . 21.3.28

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.1

Module Contents Random Number Generation

21.3.2 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation Module Introduction

Introduction

1 Terminology

This module is concerned with the generation of sequences of random numbers from discrete distributions.

Strictly speaking, the generated numbers are pseudo-random rather than true random numbers; however,
their statistical properties — independence, randomness, etc. — are similar to those of true random
numbers. In this module, the term ‘random’ will be used throughout, although strictly we mean ‘pseudo-
random’.

2 Discrete Distributions

This module provides procedures for the following discrete distributions: binomial, negative binomial,
and hypergeometric (see Dagpunar [1], Kendall and Stuart [2], Knuth [3], Morgan [4] and Ripley [5] for
further reading). The generated numbers are integers .

The method used consists of first setting up a reference vector for the required distribution and then
using the reference vector to generate random integers from the distribution. Reference vectors are stored
in structures of the derived type nag ref vec wp.

Most of the procedures are subroutines which offer the options of either generating an array of random
integers, or returning a reference vector or both. The procedure nag rand ref vec uses a reference
vector that has already been set up by one of the other procedures, to generate random integers from
any distribution; it is a function, which may be either scalar valued or array valued .

Thus, random integers from a discrete distribution may be generated in any of the following ways (we
use the procedure nag rand binom for the binomial distribution as an example):

(i) call nag rand binom to generate an array iv of random integers (the number of integers generated
is determined by the size of iv):

call nag_rand_binom(n, p, iv=iv(1:r), seed=seed)

(ii) call nag rand binom to set up a reference vector ref; then make one or more calls to
nag rand ref vec to generate random integers:

call nag_rand_binom(n, p, ref=ref)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

(iii) call nag rand binom to simultaneously generate a stream of random integers and to set up a
reference vector for subsequent use. The reference vector may then be used in one or more calls to
nag rand ref vec to generate new random integers:

call nag_rand_binom(n, p, iv=iv(1:r), ref=ref, seed=seed)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

3 Initialization of the Seed

All the procedures in this module make use of an argument seed, which is a structure of type
nag seed wp. This must be initialized before use by calling the procedure nag rand seed set. Both
the type and its initialization procedure are defined by the module nag rand util (21.1), and described
in its module document. However, they are also accessible via the USE statement for this module.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.3

Module Introduction Random Number Generation

21.3.4 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand binom

Procedure: nag rand binom

1 Description

nag rand binom is concerned with generating random integers from a binomial distribution of the number
of successes, k, in n independent trials, given that each trial has probability of success p. The distribution
has a probability density function (PDF) defined by

P (K = k) =
(

n
k

)
pk(1− p)n−k k = 0, 1, . . . , n.

The procedure may be used either to generate random integers from the specified distribution (if the
optional arguments seed and iv are present), or to return a reference vector (if the optional argument
ref is present), or both. The reference vector may be passed to the procedure nag rand ref vec to
generate further random integers from the same distribution.

Note: all the output arguments of this procedure are optional. However, at least one output argument
must be present in every call statement.

2 Usage

USE nag rand discrete

CALL nag rand binom(n, p [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

r — the number of random integers to be generated

3.1 Mandatory Arguments

n — integer, intent(in)
Input: the number of trials of the distribution.
Constraints: n > 0.

p — real(kind=wp), intent(in)
Input: the probability of success in each independent trial.
Constraints: 0.0 < p < 1.0.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

iv(r) — integer, intent(out), optional
Output: the generated random integers.
Constraints: iv must be present, if ref is absent.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.5

nag rand binom Random Number Generation

seed — type(nag seed wp), intent(inout), optional
Input: the seed for generating random numbers (see the Module Introduction).
Output: an updated value of the seed.
Constraints: seed must be present, if iv is present.

ref — type(nag ref vec wp), intent(out), optional
Output: the reference vector, which may be passed to nag rand ref vec in order to generate
additional random integers from the same distribution.
Constraints: ref must be present, if iv is absent.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private.
The procedure allocates approximately 20 + 20

√
np(1− p) real(kind=wp) elements of storage to

the structure. If you wish to deallocate this storage when the structure is no longer required, you
must call the procedure nag deallocate, as illustrated in Example 1.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 Optional argument is present but not needed.

seed is present when iv is not present.

5 Examples of Usage

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. The following examples illustrate
different ways to generate r random integers from a binomial distribution.

In the first example a call to this procedure generates an array iv of random integers (the number of
integers generated is determined by the size of iv):

call nag_rand_binom(n, p, iv=iv(1:r), seed=seed)

The second example calls this procedure to set up a reference vector ref; then one or more calls to
nag rand ref vec generates random integers:

call nag_rand_binom(n, p, ref=ref)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

21.3.6 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand binom

The third example calls this procedure to generate an array of random integers simultaneously, and to
set up a reference vector for subsequent use. The reference vector may then be used in one or more calls
to nag rand ref vec to generate new random integers:

call nag_rand_binom(n, p, iv=iv(1:r), ref=ref, seed=seed)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

6 Further Comments

6.1 Algorithmic Detail

The reference vector is found by a recurrence relation if np(1−p) < 50; otherwise Stirling’s approximation
is used.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.7

nag rand binom Random Number Generation

21.3.8 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand neg binom

Procedure: nag rand neg binom

1 Description

nag rand neg binom returns random integers from a negative binomial distribution of the number of
successes, k, before n failures, given that each trial has probability of success p. The distribution has a
probability density function (PDF) defined by

P (K = k) =
(

n+ k − 1
k

)
pn(1− p)k k = 0, 1,

The procedure may be used either to generate random integers from the specified distribution (if the
optional arguments seed and iv are present), or to return a reference vector (if the optional argument
ref is present), or both. The reference vector may be passed to the procedure nag rand ref vec to
generate further random integers from the same distribution.

Note: all the output arguments of this procedure are optional. However, at least one output argument
must be present in every call statement.

2 Usage

USE nag rand discrete

CALL nag rand neg binom(n, p [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

r — the number of random integers to be generated

3.1 Mandatory Arguments

n — integer, intent(in)
Input: the number of failures of the distribution.
Constraints: n > 0.

p — real(kind=wp), intent(in)
Input: the probability of failure in each independent trial.
Constraints: 0.0 < p < 1.0.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

iv(r) — integer, intent(out), optional
Output: the generated random integers.
Constraints: iv must be present if ref is absent.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.9

nag rand neg binom Random Number Generation

seed — type(nag seed wp), intent(inout), optional
Input: the seed for generating random numbers (see the Module Introduction).
Output: an updated value of the seed.
Constraints: seed must be present if iv is present.

ref — type(nag ref vec wp), intent(out), optional
Output: the reference vector, which may be passed to nag rand ref vec in order to generate
additional random integers from the same distribution.
Constraints: ref must be present if iv is absent.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private.
The procedure allocates approximately 20 + (20

√
np+ 30p)/(1 − p) real(kind=wp) elements of

storage to the structure. If you wish to deallocate this storage when the structure is no longer
required, you must call the procedure nag deallocate, as illustrated in Example 1.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 Optional argument is present but not needed.

seed is present when iv is not present.

5 Examples of Usage

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. The following examples illustrate
different ways to generate r random integers from a negative binomial distribution.

In the first example a call to this procedure generates an array iv of random integers (the number of
integers generated is determined by the size of iv):

call nag_rand_neg_binom(n, p, iv=iv(1:r), seed=seed)

The second example calls this procedure to set up a reference vector ref; then one or more calls to
nag rand ref vec generates random integers:

call nag_rand_neg_binom(n, p, ref=ref)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

21.3.10 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand neg binom

The third example calls this procedure to generate an array of random integers simultaneously, and to
set up a reference vector for subsequent use. The reference vector may then be used in one or more calls
to nag rand ref vec to generate new random integers:

call nag_rand_neg_binom(n, p, iv=iv(1:r), ref=ref, seed=seed)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

6 Further Comments

6.1 Algorithmic Detail

If np < 50, a recurrence relation is used to generate the reference vector; otherwise, Stirling’s
approximation is used.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.11

nag rand neg binom Random Number Generation

21.3.12 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand hypergeo

Procedure: nag rand hypergeo

1 Description

nag rand hypergeo returns random integers from a hypergeometric distribution of the number of
specified items, k, in a sample of size l, taken from a population of size n with m specified items in
it. The distribution has a probability density function (PDF) defined by

P (K = k) =

(
m
k

) (
n − m
l − k

)
(

n
l

) k = max(0, m+ l − n), . . . ,min(l, m).

The procedure may be used either to generate random integers from the specified distribution (if the
optional arguments seed and iv are present), or to return a reference vector (if the optional argument
ref is present), or both. The reference vector may be passed to the procedure nag rand ref vec to
generate further random integers from the same distribution.

2 Usage

USE nag rand discrete

CALL nag rand hypergeo(l, m, n, iv, seed, ref [, optional arguments])

or
CALL nag rand hypergeo(l, m, n, iv, seed [, optional arguments])

or
CALL nag rand hypergeo(l, m, n, ref [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

r — the number of random integers to be generated

3.1 Mandatory Arguments

l — integer, intent(in)
Input: the sample-size parameter of the distribution.
Constraints: 0 ≤ l ≤ n.

m — integer, intent(in)
Input: the number-of-specified-items parameter of the distribution.
Constraints: 0 ≤ m ≤ n.

n — integer, intent(in)
Input: the population-size parameter of the distribution.
Constraints: n > 0.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.13

nag rand hypergeo Random Number Generation

iv(r) — integer, intent(out)
Output: the generated random integers.
Constraints: iv must be supplied if ref is NOT supplied.

seed — type(nag seed wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).
Output: an updated value of the seed.
Constraints: seed must be supplied if iv is supplied.

ref — type(nag ref vec wp), intent(out)
Output: the reference vector, which may be passed to nag rand ref vec in order to generate
additional random integers from the same distribution.
Constraints: ref must be supplied if iv is NOT supplied.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private.
The procedure allocates approximately 20 +

√
lm(n − m)(n − l)/n3 real(kind=wp) elements of

storage to the structure. If you wish to deallocate this storage when the structure is no longer
required, you must call the procedure nag deallocate, as illustrated in Example 1.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. The following examples illustrate
different ways to generate r random integers from a hypergeometric distribution.

In the first example a call to this procedure generates an array iv of random integers (the number of
integers generated is determined by the size of iv):

call nag_rand_hypergeo(l, m, n, iv(1:r), seed)

The second example calls this procedure to set up a reference vector ref; then one or more calls to
nag rand ref vec generates random integers:

call nag_rand_hypergeo(l, m, n, ref)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

21.3.14 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand hypergeo

The third example calls this procedure to generate an array of random integers simultaneously, and to
set up a reference vector for subsequent use. The reference vector may then be used in one or more calls
to nag rand ref vec to generate new random integers:

call nag_rand_hypergeo(l, m, n, iv(1:r), seed, ref)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

6 Further Comments

6.1 Algorithmic Detail

If lm(n − l)(n − m) < 50n3, a recurrence relation is used to generate the reference vector; otherwise
Stirling’s approximation is used.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.15

nag rand hypergeo Random Number Generation

21.3.16 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand user dist

Procedure: nag rand user dist

1 Description

nag rand user dist returns random integers from any discrete distribution depending on the type of
information contained in the vector p, which may be either a probability density function (PDF) or a
cumulative distribution function (CDF). The procedure may be used either to generate random integers
from the information contained in p (if the optional arguments seed and iv are present), or to return a
reference vector (if the optional argument ref is present), or both. The reference vector may be passed
to the procedure nag rand ref vec to generate further random integers from the same distribution.

The distribution is assumed to cover m consecutive integers a, a + 1, . . . , a +m − 1. You must supply
the initial value a in the argument val, and m probabilities in the argument p.

Note: all the output arguments of this procedure are optional. However, at least one output argument
must be present in every call statement.

2 Usage

USE nag rand discrete

CALL nag rand user dist(p, val [, optional arguments])

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

m > 1 — the number of data points that define the PDF or CDF
r — the number of random integers to be generated

3.1 Mandatory Arguments

p(m) — real(kind=wp), intent(in)
Input: the probabilities which define the discrete distribution. For a PDF, p(i) must hold the
probability of the value a + i − 1, while for a CDF p(i) must hold the probability of any of the
values a, a+ 1, . . . , a+ i − 1.
Constraints: for a PDF, p(i) must satisfy 0.0 ≤ p(i) ≤ 1.0 and must not all be zero; while for a
CDF p(i) ≤ 1.0+m×EPSILON(1.0 wp)and the p(i) must be in non-decreasing order.

val — integer, intent(in)
Input: the value a of the variate to which the probability in p(1) corresponds; that is, p(1) =
Prob (K = a).

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

pdf — logical, intent(in), optional
Input: the type of information contained in p.

If pdf = .true., p contains a probability density function (PDF);
if pdf = .false., p contains a cumulative distribution function (CDF).

Default: pdf = .true..

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.17

nag rand user dist Random Number Generation

iv(r) — integer, intent(out), optional
Output: the generated random integers.
Constraints: iv must be present if ref is absent.

seed — type(nag seed wp), intent(inout), optional
Input: the seed for generating random numbers (see the Module Introduction).
Output: an updated value of the seed.
Constraints: seed must be present if iv is present.

ref — type(nag ref vec wp), intent(out), optional
Output: the reference vector, which may be passed to nag rand ref vec in order to generate
additional random integers from the same distribution.
Constraints: ref must be present if iv is absent.
Note: to reduce the risk of corrupting the data accidentally, the components of this structure are
private.
The procedure allocates approximately 5+1.4m real(kind=wp) elements of storage to the structure.
If you wish to deallocate this storage when the structure is no longer required, you must call the
procedure nag deallocate, as illustrated in Example 1.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 Optional argument is present but not needed.

seed is present when iv is not present.

102 a CDF is supplied in p(i), but p(m) > 1.0+m×EPSILON(1.0 wp).

This may be due to rounding errors. The procedure has scaled the probabilities to
1.0 to ensure that the reference vector is set up correctly.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

Assume that all relevant arguments have been declared correctly as described in Section 3, and that
input and input/output arguments have been appropriately initialized. The following examples illustrate
different ways to generate r random integers from a discrete distribution whose PDF is only known.

In the first example a call to this procedure generates an array iv of random integers (the number of
integers generated is determined by the size of iv):

21.3.18 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand user dist

call nag_rand_user_dist(p, val, iv=iv(1:r), seed=seed)

The second example calls this procedure to set up a reference vector ref; then one or more calls to
nag rand ref vec generate random integers:

call nag_rand_user_dist(p, val, ref=ref)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

The third example calls this procedure to generate an array of random integers simultaneously, and to
set up a reference vector for subsequent use. The reference vector may then be used in one or more calls
to nag rand ref vec to generate new random integers:

call nag_rand_user_dist(p, val, iv=iv(1:r), seed=seed, ref=ref)

. . .

iv(1:r) = nag_rand_ref_vec(seed, ref, r)

. . .

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.19

nag rand user dist Random Number Generation

21.3.20 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation nag rand ref vec

Procedure: nag rand ref vec

1 Description

nag rand ref vec returns random integers from a reference vector that is set up by any discrete
distribution or a distribution that is specified in terms of the PDF (probability density function) or
CDF (cumulative density function). It is a generic function: the result may be scalar or array valued.
It may be used to generate further random integers from the distribution that supplies the reference
vector.

2 Usage

USE nag rand discrete

[value =] nag rand ref vec(seed, ref [, optional arguments])

The function result is a scalar of type integer.
or

[value =] nag rand ref vec(seed, ref, r [, optional arguments])

The function returns an array-valued result of type integer and of dimension (r).

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

r — the number of random integers to be generated

3.1 Mandatory Arguments

seed — type(nag seed wp), intent(inout)
Input: the seed for generating random numbers (see the Module Introduction).
Output: an updated value of the seed.

ref — type(nag ref vec wp), intent(in)
Input: the reference vector.
Constraints: ref must be set up by a call to one of the procedures for generating discrete
distributions.

r — integer, intent(in)
Input: the number of random numbers to be generated, if a vector-valued result is required.
Note: this argument must be omitted if a scalar result is required. For r ≤ 0 an empty array will
be returned.

3.2 Optional Argument

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.21

nag rand ref vec Random Number Generation

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

This procedure first generates a uniform random variate x, and then searches the CDF in the reference
vector ref for the smallest value y such that CDF (y) ≥ x and CDF (y − 1) < x.

21.3.22 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation Type nag ref vec wp

Derived Type: nag ref vec wp

Note. The names of derived types containing real/complex components are precision dependent. For double precision the
name of this type is nag ref vec dp. For single precision the name is nag ref vec sp. Please read the Users’ Note for your
implementation to check which precisions are available.

1 Description

The derived type nag ref vec wp stores a reference vector which contains information about the PDF
(probability density function) or CDF (cumulative density function) of a discrete distribution, and which
may be passed to the procedure nag rand ref vec to generate random numbers from that distribution.

The components of this type are private.

The procedures which output structures of this type allocate storage to the pointer components of the
structure. The amount of storage depends on the particular distribution and its parameters.

If you wish to deallocate the storage when the structure is no longer required, you must call the generic
deallocation procedure which is described in the module document nag lib support (1.1).

2 Type Definition

type nag ref vec wp
private
.
.
.

end type nag ref vec wp

3 Components

In order to reduce the risk of accidental data corruption the components of this type are private and
may not be accessed directly.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.23

Type nag ref vec wp Random Number Generation

21.3.24 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation Example 1

Example 1: Generation of random integers from a discrete
distribution specified only in terms of its CDF

This example shows two methods of using nag rand user dist to return random integers from a user-
specified distribution where only the CDF is given. The first method involves one step while the second
method uses two steps to generate random integers, but both methods return the same results.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_rand_discrete_ex01

! Example Program Text for nag_rand_discrete

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_rand_discrete, ONLY : nag_rand_seed_set, nag_rand_user_dist, &

nag_rand_ref_vec, nag_deallocate, nag_seed_wp => nag_seed_dp, &

nag_ref_vec_wp => nag_ref_vec_dp

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

CHARACTER (*), PARAMETER :: fmt = ’(/1x,a/,(1X, 8i5))’

! .. Local Scalars ..

INTEGER :: k, n, r, val

LOGICAL :: pdf

TYPE (nag_ref_vec_wp) :: ref

TYPE (nag_seed_wp) :: seed

! .. Local Arrays ..

INTEGER, ALLOCATABLE :: iv(:)

REAL (wp), ALLOCATABLE :: p(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_rand_discrete_ex01’

READ (nag_std_in,*) ! skip heading in data file

READ (nag_std_in,*) n ! distribution size

READ (nag_std_in,*) r ! number of random numbers

ALLOCATE (p(n),iv(r)) ! Allocate storage

READ (nag_std_in,*) p ! cdf

! Generating random integers in one step

k = 0

CALL nag_rand_seed_set(seed,k)

val = 0

pdf = .FALSE.

CALL nag_rand_user_dist(p,val,pdf,iv=iv,seed=seed)

WRITE (nag_std_out,fmt) ’User supplied CDF; one step approach’, iv

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.25

Example 1 Random Number Generation

! Generating random integers in two steps

CALL nag_rand_user_dist(p,val,pdf,ref=ref) ! Create reference vector

k = 0

CALL nag_rand_seed_set(seed,k)

iv = nag_rand_ref_vec(seed,ref,r)

WRITE (nag_std_out,fmt) ’User supplied CDF; two steps approach’, iv

DEALLOCATE (iv,p) ! Deallocate storage

CALL nag_deallocate(ref) ! Free structure allocated by NAG fl90

END PROGRAM nag_rand_discrete_ex01

2 Program Data
Example Program Data for nag_rand_discrete_ex01

10 : Number of values in CDF

5 : Number of random numbers

0.0 0.1 0.2 0.4 0.5 0.6 0.8 0.9 1.0 1.0 : CDF

3 Program Results
Example Program Results for nag_rand_discrete_ex01

User supplied CDF; one step approach

6 3 3 3 7

User supplied CDF; two steps approach

6 3 3 3 7

21.3.26 Module 21.3: nag rand discrete [NP3245/3/pdf]

Random Number Generation Additional Examples

Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag rand discrete ex02

Generation of integer random numbers from a hypergeometric distribution with known parameters
and/or setting up a reference vector.

nag rand discrete ex03

Generation of integer random numbers from a binomial distribution with known parameters and/or
setting up a reference vector.

nag rand discrete ex04

Generation of integer random numbers from a negative binomial distribution with known
parameters and/or setting up a reference vector.

[NP3245/3/pdf] Module 21.3: nag rand discrete 21.3.27

References Random Number Generation

References

[1] Dagpunar J (1988) Principles of Random Variate Generation Oxford University Press

[2] Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) Griffin (3rd
Edition)

[3] Knuth D E (1981) The Art of Computer Programming (Volume 2) Addison-Wesley (2nd Edition)

[4] Morgan B J T (1984) Elements of Simulation Chapman and Hall

[5] Ripley B D (1987) Stochastic Simulation Wiley

21.3.28 Module 21.3: nag rand discrete [NP3245/3/pdf]

