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Time Series Spectral Analysis
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Introduction

This module is concerned with the calculation of the time series spectral analysis. It contains procedures
that calculate the smoothed sample spectrum of a univariate and bivariate time series.

1 Univariate time series

A standard tool for examining the structure of a time series, x1, x2, . . . , xn, is the auto-covariance
function, Cov(Xt, Xt+k) = Cov(Xt+k, Xt) estimated by the sample auto-covariance function, Cx(k),
with Cx(k) = Cx(0)ρk, where ρk is the sample autocorrelation function (acf) and Ck(0) is the sample
variance. These functions examine the series in terms of the relationship between xt and xx+t, in the
time domain. An alternative approach is in the frequency domain in which the time series is considered
as a the sum of components of different frequencies. The spectral density function or spectrum, f(ω) is
such that f(ω)δω represents the contribution to the variance of the series of components of frequencies
in the range (ω, ω + δω).

The sample spectrum is defined as
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for frequency values ωi =
2πj

n
, j = 0, 1, . . . , [n/2]. Note that different authors may use different scaling

factors. This may also be defined in terms of the sample auto-covariance function given by

f∗(ω) =
1

2π

(

Cx(0) + 2

n−1
∑

k=1

wkCx(k) cos(ωk)

)

.

The sample spectrum is a poor estimator of the theoretical spectrum f(ω) since f ∗(ωi) does not have
variance of order 1/n but of order f 2(ω), and both f∗(ωi) and f

∗(ωj) are independent if ωi and ωj are a
multiple of 2π/n apart. Thus f∗(ω) can fluctuate violently. In order to produce a reasonable estimate,

f̂(ω), the sample spectrum, has to be smoothed. This can be achieved in two ways.

1. Direct smoothing of the sample spectrum.

2. Weighting the auto-covariance function.

When directly smoothing the sample spectrum the smoothed sample spectrum at ωj is given by

f̂(ωj) =

∑

k wkjf
∗(ωk)

∑

k wkj

for a subset of ωj =
πj

l
, j = 0, 1, . . . , l ≤ [n/2]

The weights are given by the trapezium window which is nonzero on (−1/m, 1/m)

wkj = 1, |p| ≤ τ/m

wkj =
1−|p|m

1−τ , τ/m < |p| ≤ 1/m
wkj = 0, otherwise

with

p =
k − j

n/2

where the parameters m and τ define the window width and shape. The value τ = 1 gives a rectangular
window and τ = 0 gives a triangular window. The smaller the value of m the greater the smoothing.
The bandwidth of the window, b depends on p and gives a method of comparing different windows with
the rectangular window for which b = 2π/m. Also, frequencies much greater than b may be considered
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independent. This approach was originally proposed by Daniell and is sometimes known as a Daniell
window.

The second approach involves applying a weights to the auto-covariances to give

f̂(ω) =
1

2π

(

Cx(k) + 2

m−1
∑

k=1

wkCx(k) cos(ωk)

)

.

Again m represents the width of the smoothing window and there are four common windows and
associated weights:

rectangular:

wk = 1, k = 0, 1, . . . ,m

Bartlett:

wk = 1−
(

k

m

)

, k = 0, 1, . . . ,m

Tukey:

wk =
1

2

(

1 + cos

(

k

m

))

, k = 0, 1, . . . ,m

Parzen:

wk = 1− 6
(

k

m

)2

+ 6

(

k

m

)3

, k = 0, 1, . . . ,m/2

wk = 2

(

1−
(

k

m

))3

, k = m/2,m/2 + 1, . . . ,m.

The bandwidth, b, for the above windows are the bandwidth of the corresponding rectangular window
in the direct smoothing approach and is approximately inversely proportional to m.

Using either approach the sampling distribution of f̂(ω) is approximately that of a scaled χ2
d variate,

where the degrees of freedom d depend on the number of observations and the window used. The χ2
d can

be used to compute with multiplying limits γu, γl from which approximate 95% confidence intervals for
the true spectrum f(ω) may be constructed as [γlf̂(ω), γuf̂(ω)]. Alternatively, logf̂(ω) may be returned,
with additive limits.

The choice of m, or equivalently bandwidth, is a key aspect of spectral analysis. As m gets smaller the
spectral density estimate gets smoother and the variance decreases, but the bias gets larger.

2 Bivariate time series

The univariate correlation and covariance functions can be extended to the cross-correlations and cross-
covariances between two series, x and y with sample cross-covariance function Cxy(k). However, for the
cross-covariance function Cov(Xt, Yt+k) 6= Cov(Xt+k, Yt) so both Cxy(k), in which series y leads series x,
and Cyx(k), in which series x leads series y, are needed for a full description of the relationship between
the two series. Similarly the univariate spectrum can also be extended to a cross-spectrum fxy(ω), but
this is now a complex function with real and imaginary parts.

The sample cross spectrum is a complex valued function of frequency ω,

f∗xy(ω) = c(ω) + iq(ω) =
1

2πn

{

n
∑

t=1

yt exp(iωt)

}

×
{

n
∑

t=1

xt exp(−iωt)
}
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for frequency values ωj =
2πj
n , j = 0, 1, . . . , [n/2] with the real part, c(ω) known as the co-spectrum

and the imaginary part, q(ω), known as the quadrature spectrum. The co-spectrum and quadrature
spectrum may also be defined in terms of the cross-covariance function,

c(ω) =
1

2π

∞
∑

k=−∞

Cxy(k) cos(ωk)

and

q(ω) =
1

2π

∞
∑

k=−∞

Cxy(k) sin(ωk).

As in the univariate case the sample spectrum needs to be smoothed to provide a consistent estimator
of fxy(ω) and either direct smoothing or cross-covariance weighting can be used.

There are other representations of fxy(ω) which can be useful in examining the series.

1. Amplitude and phase

Using the polar representation of a complex number gives,

fxy(ω) = αxye
iφxyω,

where αxy(ω) =
√

(c2(ω) + q2(ω)) is the cross-amplitude spectrum and φxy(ω) =
tan−1(−q(ω)/c(ω)) is the phase spectrum.

2. Squared coherency

W (ω) =
c2(ω) + q2(ω)

fx(ω)fy(ω)
=

α2
xy

fx(ω)fy(ω)
.

This gives the linear correlation between the two series and is analogous to the square of the
correlation coefficient between two variables.

3. Gain

The gain spectra given by

Gxy =
√

(fy(ω)C(ω)/fx(ω)) = αxy(ω)/fx(ω).

This is basically the regression coefficients of yt on xt.

To obtain a full picture of the relationship between the two series usually three of the above need to be
examined. The most suitable three will depend on the situation but will generally consist of the squared
coherency along with either the co-spectrum and quadrature spectrum, the cross-amplitude and phase
spectra or the gain and phase spectra. The squared coherency spectrum is most useful when the two
series are considered to be on an equal footing, as in correlation analysis, but it also gives an indication of
the strength of the relationship. The gain and phase spectra are most useful when one series is considered
to be dependent on the other as in linear regression.

The above derived quantities can be computes from the cross-spectrum and the individual spectra in
the obvious way. However, there is a problem with bias in the case of the squared coherency. To reduce
the bias an alignment shift, s, between the two series can be used. This is usually chosen so that the
cross-correlation function has its largest value at lag s. The cross-spectrum is then computed by shifting
either the cross-covariances by an amount s in computing the smoothed cross-spectrum

c(ω) =
1

2π

M−1
∑

k=−M+1

wkCxy(k + S) cos(ωk)
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and

q(ω) =
1

2π

M−1
∑

k=−M+1

wkCxy(k + S) sin(ωk)

or by scaling the weights when directly smoothing the spectrum.

The significance of the squared coherency can be tested by comparing W (ω) with the quantity T derived
form the upper percentage point of the F -distribution on (2, d− 2) degrees of freedom:

T =
2F

d− 2 + 2F
where d is the degrees of freedom associated with the univariate spectrum estimates. Tests at two
frequencies separated by more than the bandwidth may be taken to be independent. Since

√

W (ω) can
be considered as a correlation coefficient, Fisher’s transformation can be used to compute confidence

intervals for W (ω) using the approximation that tanh−1
(

√

W (ω)
)

is Normal with variance 1/d. These

confidence intervals and the confidence intervals given below are only appropriate at values of ω at which
W (ω) is significant.

Confidence limits for the cross amplitude estimate, α̂xy(ω), are computed using the approximately that
log(α̂xy(ω)) has a normal distribution with variance (W (ω)

−1+1)/d. except that a negative lower limit
is reset to 0.0, in which case the approximation is rather poor.

Confidence for both gain and phase are based on the assumption that both log(Ĝ(ω)) and φ̂(ω) are
Normal with variance

1

d

(

1

W (ω)
− 1
)

.

Although the estimate of φ(ω) is always given in the range [0, 2π], no attempt is made to restrict its
confidence limits to this range.

3 Linear Systems

A linear system in continuous time can be written as

y(t) =

∫ ∞

−∞

h(u)x(t− u)du,

where h(u) is known as the impulse response function. In discrete time the model can be written as

yt =

∞
∑

k=−∞

hkxt−k.

Information on the form of the impulse response function can be obtained from the phase and gain
spectra, see Jenkins and Watts [1].

In practice there may be additional noise in the system, so that, in the discrete case, the dependence of
yt on xt can be assumed to be represented by

yt = h0xt + h1xt−1 + . . .+ nt

where the noise, nt, is independent of xt, The spectrum of this noise can be estimated by

fy|x(ω) = fyy(ω)(1−W (ω))

Confidence intervals for fy|x(ω) can be compute as for the univariate spectrum except that there are
d− 2 degrees of freedom.
The impulse response function . . . h−1, h0, h1, h2, . . . may be estimated by

hk =
1

π

∫ π

0

Re

(

exp(ikω)fxy(ω)

fxx(ω)

)

dω
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where Re indicates the real part of the expression.

Clearly since yt cannot depend on future events so the coefficients h−1, h−2, . . ., known as the anticipatory
responses, should be zero. Non-zero values indicates that there is feedback from yt to xt. This will bias
the estimates of h0, h1, . . ..
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Procedure: nag spectral data

1 Description

nag spectral data calculates the smoothed sample spectrum of a univariate time series using one of six
lag windows – rectangular, Bartlett, Tukey, Parzen, Daniell (trapezium frequency) or no window. The
user must supply the time series data points xi, for i = 1, 2, . . . , n.

2 Usage

USE nag tsa spectral

CALL nag spectral data(method, ts, m, f [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n > 1 — the number of values in the time series

1 < l ≤ n — the number of spectral estimates

1 ≤ m ≤ n — the width of the smoothing window

1 ≤ k ≤ n — the number of output covariance elements

3.1 Mandatory Arguments

method — character(len=1), intent(in)

Input: indicates the choice of the lag window.

If method = 'r' or 'R', a rectangular lag window is used;

if method = 'b' or 'B', a Bartlett lag window is used;

if method = 't' or 'T', a Tukey lag window is used;

if method = 'p' or 'P', a Parzen lag window is used;

if method = 'd' or 'D', a Daniell lag window is used;

if method = 'n' or 'N', no lag window is used and the unsmoothed sample spectrum is
returned.

ts(n) — real(kind=wp), intent(in)

Input: ts(i) must contain the ith data point of the time series.

m — integer, intent(in)

Input: specifies the width of the smoothing window, m, relative to any alignment shift that has
been applied.

Constraints:

if method = 'r', 'R', 'b', 'B', 't', 'T', 'p' or 'P', then 1 ≤ m < l;

if method = 'd' or 'D', then 1 ≤ m ≤ n;

if method = 'n' or 'N', m is not used and will be ignored.
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f(l) — real(kind=wp), intent(out)

Output: the spectral estimates, f̂(ωi), for i = 1, 2, . . . , l (logged or unlogged, according to the
optional argument logged).

Note: the number of spectral estimates computed, l, gives the frequency division of the spectral
estimates as π/(l−1). For small and medium sized data sets l will often be chosen to be close to n.
However, for the covariance based methods (method = 'r', 'R', 'b', 'B', 't', 'T' ,'p' or 'P') l
also determines the order of the FFT used to compute the sample spectrum from the covariances.
So for efficiency l should be chosen such that l − 1 is the product of small primes. For the direct
methods (method = 'd', 'D', 'r', 'R', 'n' or 'N') the size of l constrains the order of the FFT
applied to the data, see the optional argument ne.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

shape — real(kind=wp), intent(in), optional

Input: the shape parameter, p, of the trapezium frequency Daniell window. A value of 0.0 gives a
triangular window, and a value of 1.0 a rectangular window.

Constraints: 0.0 ≤ shape ≤ 1.0 and shape can only be supplied if method = 'd' or 'D'.

Default: shape = 1.0.

correc — character(len=1), intent(in), optional

Input: specifies the choice of the data correction:

if correc = 'n' or 'N', no correction is used;

if correc = 'm' or 'M', a mean correction is used;

if correc = 't' or 'T', a trend correction is used.

Default: correc = 'n' or 'N'.

tap — real(kind=wp), intent(in), optional

Input: specifies the proportion of the data, h, (totalled over both ends) to be initially tapered by
the split cosine bell taper. A value of 0.0 implies no tapering.

Constraints: 0.0 ≤ tap ≤ 1.0.
Default: tap = 0.0.

ne — integer, intent(in), optional

Input: the length, ne, of the extended series (data plus zeros) and hence the order of the initial
FFT. For efficiency ne should be a product of small primes.

Constraints:

If cov is present, ne ≥ n+max(k,m);

if method = 'd', 'D', 'n' or 'N', ne ≥ n and ne must be a multiple of (l − 1);
otherwise, ne ≥ n+m.

Default:

If cov is present, ne = n+max(m, k);

if method = 'd', 'D', 'n' or 'N', ne = 2κ(l − 1), where 2(κ− 1)(l − 1) < n ≤ 2κ(l − 1);
otherwise, ne = n+m.

logged — logical, intent(in), optional

Input: indicates whether logged or unlogged spectral estimates and confidence limits are required.

Default: logged = .false..
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stats(4) — real(kind=wp), intent(out), optional

Output: the four associated statistics. These are the degrees of freedom in stats(1), the lower
and upper 95% confidence limit factors in stats(2) and stats(3) respectively (logged if logged =
.true.), and the bandwidth in stats(4).

cov(k) — real(kind=wp), intent(out), optional

Output: the calculated autocovariances for lags 0, 1, . . . , k − 1.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

304 Invalid presence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The calculation of confidence limit factors has failed.

Spectral estimates (logged if requested) are returned in f. The degrees of freedom
and bandwidth are returned in stats (if present).

Warnings (error%level = 1):

error%code Description

101 m will be ignored.

The width of the smoothing window, m, is not required for method for method = 'n'

or 'N'.

102 One or more spectral estimates are negative.

Unlogged spectral estimates are returned in f. The degrees of freedom, unlogged
confidence limit factors and bandwidth are returned in stats (if present).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.
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6 Further Comments

6.1 Algorithmic Detail

The computation of the spectral estimates makes use of a discrete Fourier transform or FFT which is
computed using the procedure nag fft 1d real.

For a series zj , j = 0, 1, . . . , nt the FFT computes

ak + ibk =
1√
n

n−1
∑

j=0

zie
−2πj(k/n)i

for k = 0, 1, . . . , nt/2 where i =
√
−1. The computation of an FFT is fastest if the length of the series

only has prime factors 2, 3 or 5 and is slowest if the length of the series has large prime factors. In order
to make the computation of the FFT more efficient the series can be extended by adding a number of
zero points to the series to give an extended series the length of which only has low prime factors.

The FTT is applied to the time series which has been mean or trend corrected as appropriate and has had
zeros added to give a series of length ne For efficiency ne should only have low prime factors. In addition
to mean or trend correcting the data it can be advisable to taper the series to avoid discontinuity at the
end of the actual series. The split cosine bell is used for tapering:

1

2
(1− cos(π(t− 1

2
)/T )), 1 ≤ t ≤ T

1

2
(1− cos(π(n− t+

1

2
)/T )), n+ 1− T ≤ t ≤ n

1, otherwise

where T =
[

nh
2

]

and h is the tapering proportion.

Direct smoothing of the sample spectrum

From the coefficients computed by the FFT, (ak, bk) for k = 1, 2, . . . , [ne/2], the sample spectrum is
computed as f∗i = a2

k + b2k and then sampled at points j = 1, 2, . . . , l where j = (l/ne)i. If smoothing
is used this is then computed from the sample spectrum using the weights as given above. These are
applied to the ne values of f

∗
i to give l equidistant smoothed values. In either case l has to be a factor

of ne so by default ne is chosen such that ne is the lowest multiple of l ≥ n.

Computing the autocovariance function

The autocovariance function is computed using a FFT. First a FFT is applied to the spectral mean or
trend corrected time series with at least nc added zeros, where nc is the number of autocovariances to
be computed. This stops circular autocorrelation coefficients being computed rather than non-circular
as are normally used. The covariances are then computed by applying a second FFT to the series
f∗i , i = 1, 2, . . . , ne, where f

∗
ne−i = f∗i , and scaling the resulting real coefficients.

Transforming the autocovariances

Given the autocovariances, computed internally as described above, the smoothed spectrum is computed
by applying a FFT of length 2(l − 1) to a series formed from the autocovariances

w0C1, w1C2, . . . , wm−1Cm−1, 0, . . . , 0, wm−1Cm−1, wm−2Cm−2, . . . , w1C1

and scaling the resulting l > m real coefficients. For efficiency l should be such that (l − 1) has small
prime factors.

6.2 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will normally
be insignificant compared with uncertainty in the data.
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Procedure: nag spectral cov

1 Description

nag spectral cov calculates the smoothed sample spectrum of a univariate time series using one of four
lag windows – rectangular, Bartlett, Tukey or Parzen. The user must supply C, the autocovariances of
the data.

2 Usage

USE nag tsa spectral

CALL nag spectral cov(method, cov, f [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

l > 1 — the number of spectral estimates

1 ≤ m < l — the width of the smoothing window

3.1 Mandatory Arguments

method — character(len=1), intent(in)

Input: indicates the choice of the lag window.

If method = 'r' or 'R', a rectangular lag window is used;

if method = 'b' or 'B', a Bartlett lag window is used;

if method = 't' or 'T', a Tukey lag window is used;

if method = 'p' or 'P', a Parzen lag window is used.

cov(m) — real(kind=wp), intent(in)

Input: indicates the autocovariances for lags, C.

f(l) — real(kind=wp), intent(out)

Output: the spectral estimates, f̂(ωi), for i = 1, 2, . . . , l (logged or unlogged, according to the
optional argument logged).

Note: the number of spectral estimates computed, l, gives the frequency division of the spectral
estimates as π/(l − 1). For small and medium sized data sets l will often be chosen to be close to
n (the number of values in the original time series, see the optional argument n). However, l also
determines the order of the FFT used to compute the sample spectrum from the covariances. So
for efficiency l should be chosen such that l − 1 is the product of small primes.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

[NP3506/4] Module 29.3: nag tsa spectral 29.3.13



nag spectral cov Time Series Analysis

tap — real(kind=wp), intent(in), optional

Input: if the supplied covariances were calculated using nag spectral data, tap specifies the
proportion of the data tapered. A value of 0.0 implies no tapering.

Constraints: 0.0 ≤ tap ≤ 1.0.
Default: tap = 0.0.

logged — logical, intent(in), optional

Input: indicates whether logged or unlogged spectral estimates and confidence limits are required.

Default: logged = .false..

n — integer, intent(in), optional

Input: the number of values in the original time series.

Constraints: n ≥ m.

stats(4) — real(kind=wp), intent(out), optional

Output: the four associated statistics. These are the degrees of freedom in stats(1), the lower
and upper 95% confidence limit factors in stats(2) and stats(3) respectively (logged if logged =
.true.), and the bandwidth in stats(4).

Constraints: n must be present if stats is present.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 The calculation of confidence limit factors has failed.

Spectral estimates (logged if requested) are returned in f. The degrees of freedom
and bandwidth are returned in stats (if present).

Warnings (error%level = 1):

error%code Description

101 n will be ignored.

n is not required if stats is not present.

102 One or more spectral estimates are negative.

Unlogged spectral estimates are returned in f. The degrees of freedom, unlogged
confidence limit factors and bandwidth are returned in stats (if present).
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5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

Transforming the autocovariances

Given the autocovariances, the smoothed spectrum is computed by applying a FFT of length 2(l− 1) to
a series formed from the autocovariances

w0C1, w1C2, . . . , wm−1Cm−1, 0, . . . , 0, wm−1Cm−1, wm−2Cm−2, . . . , w1C1

and scaling the resulting l > m real coefficients. For efficiency l should be such that (l − 1) has small
prime factors.

6.2 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will normally
be insignificant compared with uncertainty in the data.
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Procedure: nag bivar spectral data

1 Description

nag bivar spectral data calculates the smoothed sample cross spectrum of a bivariate time series using
one of six lag windows – rectangular, Bartlett, Tukey, Parzen, Daniell (trapezium frequency) or none
window. The user must supply the time series data points xi and yi, for i = 1, 2, . . . , n.

2 Usage

USE nag tsa spectral

CALL nag bivar spectral data(method, x ts, y ts, m, f xy [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n > 1 — the number of values in the time series x and y

1 < l ≤ n — the number of complex spectral estimates

1 ≤ m ≤ n — the width of the smoothing window

m+ α ≤ k ≤ n — the number of output cross covariance elements, where α = 0, if optional
argument s is not present and α = ABS(s), if s is present

3.1 Mandatory Arguments

method — character(len=1), intent(in)

Input: indicates the choice of the lag window.

If method = 'r' or 'R', a rectangular lag window is used;

if method = 'b' or 'B', a Bartlett lag window is used;

if method = 't' or 'T', a Tukey lag window is used;

if method = 'p' or 'P', a Parzen lag window is used;

if method = 'd' or 'D', a Daniell lag window is used;

if method = 'n' or 'N', no lag window is used, the unsmoothed sample spectrum is returned.

x ts(n) — real(kind=wp), intent(in)

Input: x ts(i) contains the i data point of the x time series.

y ts(n) — real(kind=wp), intent(in)

Input: y ts(i) contains the i data point of the y time series.

m — integer, intent(in)

Input: specifies the width of the smoothing window, m, relative to any alignment shift that has
been applied.

Constraints:

if method = 'r', 'R', 'b', 'B', 't', 'T', 'p' or 'P', then 1 ≤ m < l;

if method = 'd' or 'D', then 1 ≤ m ≤ n;

if method = 'n' or 'N', m is not used and will be ignored.
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f xy(l) — complex(kind=wp), intent(out)

Output: the complex spectral estimates, fxy(w).

Note: the number of spectral estimates computed, l, gives the frequency division of the spectral
estimates as π/(l−1). For small and medium sized data sets l will often be chosen to be close to n.
However, for the covariance based methods (method = 'r', 'R', 'b', 'B', 't', 'T' ,'p' or 'P') l
also determines the order of the FFT used to compute the sample spectrum from the covariances.
So for efficiency l should be chosen such that l − 1 is the product of small primes. For the direct
methods (method = 'd', 'D', 'r', 'R', 'n' or 'N') the size of l constrains the order of the FFT
applied to the data, see the optional argument ne.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

s — integer, intent(in), optional

Input: specifies the alignment shift, S, between the x and y series. If x leads y, the shift is positive.

Constraints:

if method = 'n' or 'N', s is not used;

if method = 'd' or 'D' and m = n=(size(x ts)), s is not used;

if method = 'd' or 'D' and m 6= n, then −2(l − 1) < s < 2(l − 1);
otherwise,−m < s < m.

Default: s = 0.

shape — real(kind=wp), intent(in), optional

Input: the shape parameter, p, of the trapezium frequency Daniell window. A value of 0.0 gives a
triangular window, and a value of 1.0 a rectangular window.

Constraints: 0.0 ≤ shape ≤ 1.0 and shape can only be supplied if method = 'd' or 'D'.

Default: shape = 1.0.

correc — character(len=1), intent(in), optional

Input: specifies the choice of the data correction:

if correc = 'n' or 'N', no correction is used;

if correc = 'm' or 'M', a mean correction is used;

if correc = 't' or 'T', a trend correction is used.

Default: correc = 'n' or 'N'.

tap — real(kind=wp), intent(in), optional

Input: specifies the proportion of the data, h, (totalled over both ends) to be initially tapered by
the split cosine bell taper. A value of 0.0 implies no tapering.

Constraints: 0.0 ≤ tap ≤ 1.0.
Default: tap = 0.0.

ne — integer, intent(in), optional

Input: the length, ne, of the extended series (data plus zeros) and hence the order of the initial
FFT. For efficiency ne should be a product of small primes.

Constraints:

if xy cov or yx cov is present, ne ≥ n+max(k,m);

if method = 'd', 'D', 'n' or 'N', ne ≥ n and ne must be a multiple of (l − 1) or (2l − 1);
otherwise, ne ≥ n+m.
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Default:

if xy cov or yx cov is present, ne = n+max(m, k);

if method = 'd', 'D', 'n' or 'N', ne = 2κ(l − 1), where 2(κ− 1)(l − 1) < n ≤ 2κ(l − 1);
otherwise, ne = n+m.

xy cov(k) — real(kind=wp), intent(out), optional

Output: the calculated cross autocovariances between values in the y series and earlier values in
time in the x series for lags 0, 1, . . . , k − 1.

yx cov(k) — real(kind=wp), intent(out), optional

Output: the calculated cross autocovariances between values in the y series and later values in time
in the x series for lags 0, 1, . . . , k − 1.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

304 Invalid presence of an optional argument.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Warnings (error%level = 1):

error%code Description

101 m will be ignored

The width of the smoothing window, m, is not required for method for method = 'n'

or 'N'.

102 The alignment shift between the x and y series is ignored.

s is not required, if either (method = 'n' or 'N') or (method = 'd' or 'D' and m =
SIZE(x ts)).

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.
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6 Further Comments

6.1 Algorithmic Detail

The computation of the cross spectral estimates makes use of a discrete Fourier transform or FFT which
is computed using the procedure nag fft 1d real.

For a series zj , j = 0, 1, . . . , nt the FFT computes

ak + ibk =
1√
n

n−1
∑

j=0

zie
−2πj(k/n)i

for k = 0, 1, . . . , nt/2 where i =
√
−1. The computation of an FFT is fastest if the length of the series

only has prime factors 2, 3 or 5 and is slowest if the length of the series has large prime factors. In order
to make the computation of the FFT more efficient the series can be extended by adding a number of
zero points to the series to give an extended series the length of which only has low prime factors.

The FTT is applied to the bivariate time series which has been mean or trend corrected as appropriate
and has had zeros added to give a series of length ne For efficiency ne should only have low prime
factors. In addition to mean or trend correcting the data it can be advisable to taper the series to avoid
discontinuity at the end of the actual series. The split cosine bell is used for tapering:

1

2
(1− cos(π(t− 1

2
)/T )), 1 ≤ t ≤ T

1

2
(1− cos(π(n− t+

1

2
)/T )), n+ 1− T ≤ t ≤ n

1, otherwise

where T =
[

nh
2

]

and h is the tapering proportion.

Direct smoothing of the sample spectrum

From the coefficients computed by the FFT from the x and y series, (axk, bxk, ayk, byk) for
k = 1, 2, . . . , [ne/2], the sample spectrum is computed as

f∗xy(ωk) = c(ωi) + q(ωi) ∝ (axkayk + bxkbyk) + i(aykbxk − axkbyk)

and then sampled at points j = 1, 2, . . . , l where j = (l/ne)i If direct smoothing is used this is then
computed from the sample spectrum using the weights as given in the introduction. These are applied
to the ne values of f

∗
xy(ωi) to give l equidistant smoothed values. In either case l has to be a factor of

ne so by default ne is chosen such that ne is the lowest multiple of l ≥ n.

Computing the cross-covariance function

The cross-covariance function can be computed using FFTs. First FFTs are applied to the mean or
trend corrected time series with at least nc added zeros, where nc is the number of cross-covariances
to be computed. This stops circular cross-covariances being computed rather than non-circular as are
normally used. The covariances are then computed by applying a second FFT to the series stored as a
Hermitian sequence, i.e.,

c(ω1), c(ω2), . . . c(ωne/2), q(ωne/2), c(ωne/2−1), . . . q(ω1)

and scaling the resulting real coefficients.

Transforming the cross-covariances

Given the cross-covariances, the smoothed spectrum is computed by applying a FFT of length 2(l − 1)
to a series formed from the autocovariances

w0Cxy(0), w1Cxy(1), . . . , wm−1Cxy(m−1), 0, . . . , 0, wm−1Cyx(m−1), wm−2Cyx(m−2), . . . , w1Cyx(1)

and scaling the resulting l > m real and imaginary coefficients. For efficiency l should be such that
(l − 1) has small prime factors.
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6.2 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will normally
be insignificant compared with uncertainty in the data.
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Procedure: nag bivar spectral cov

1 Description

nag bivar spectral cov calculates the smoothed sample cross spectrum of a bivariate time series using
one of four lag windows – rectangular, Bartlett, Tukey or Parzen. The user must supply C, the cross
autocovariances of the data.

2 Usage

USE nag tsa spectral

CALL nag bivar spectral cov(method, xy cov, yx cov, f xy [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

l > 1 — the number of cross spectral estimates

1 ≤ m < l — the width of the smoothing window

3.1 Mandatory Arguments

method — character(len=1), intent(in)

Input: indicates the choice of the lag window.

If method = 'r' or 'R', a rectangular lag window is used;

if method = 'b' or 'B', a Bartlett lag window is used;

if method = 't' or 'T', a Tukey lag window is used;

if method = 'p' or 'P', a Parzen lag window is used.

xy cov(m) — real(kind=wp), intent(in)

Input: indicates the cross autocovariances between values in the y series and earlier values in time
in the x series for lags, C.

yx cov(m) — real(kind=wp), intent(in)

Input: indicates the cross autocovariances between values in the y series and later values in time
in the x series for lags, C.

f xy(l) — complex(kind=wp), intent(out)

Output: the complex spectral estimates, fxy(w).

Note: the number of spectral estimates computed, l, gives the frequency division of the spectral
estimates as π/(l − 1). For small and medium sized data sets l will often be chosen to be close to
n (the number of values in the original time series, see the optional argument n). However, l also
determines the order of the FFT used to compute the sample spectrum from the covariances. So
for efficiency l should be chosen such that l − 1 is the product of small primes.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.
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s — integer, intent(in), optional

Input: specifies the alignment shift, S, between the x and y series. If x leads y, the shift is positive.

Constraints: −m < s < m.

Default: s = 0.

tap — real(kind=wp), intent(in), optional

Input: if the supplied cross autocovariance were computed using nag bivar spectral data, tap
specifies the proportion of the data tapered. A value of 0.0 implies no tapering.

Constraints: 0.0 ≤ tap ≤ 1.0.
Default: tap = 0.0.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The computation of the cross spectral estimates makes use of a discrete Fourier transform or FFT which
is computed using the procedure nag fft 1d real.

Transforming the cross-covariances

Given the cross-covariances, the smoothed spectrum is computed by applying a FFT of length 2(l − 1)
to a series formed from the autocovariances

w0Cxy(0), w1Cxy(1), . . . , wm−1Cxy(m−1), 0, . . . , 0, wm−1Cyx(m−1), wm−2Cyx(m−2), . . . , w1Cyx(1)

and scaling the resulting l > m real and imaginary coefficients. For efficiency l should be such that
(l − 1) has small prime factors.

6.2 Accuracy

The FFT is a numerically stable process, and any errors introduced during the computation will normally
be insignificant compared with uncertainty in the data.
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Procedure: nag bivar spectral coh

1 Description

nag bivar spectral coh calculates the squared coherency, the cross amplitude spectrum, the gain and
the phase, together with lower and upper bounds from the univariate and bivariate spectra.

2 Usage

USE nag tsa spectral

CALL nag bivar spectral coh(f x, f y, f xy, stats, sqrd coh [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

l ≥ 1 — the number of spectral, cross amplitude spectra, squared coherency, gain and phase
estimates

3.1 Mandatory Arguments

f x(l) — real(kind=wp), intent(in)

Input: indicates the univariate spectral estimates, fxx(w), for the x time series.

f y(l) — real(kind=wp), intent(in)

Input: indicates the univariate spectral estimates, fyy(w), for the y time series.

f xy(l) — complex(kind=wp), intent(in)

Input: the complex bivariate spectral estimates, fxy(w), for the x and y series.

Note: the two univariate and the bivariate spectra must been calculated using the same method of
smoothing. For rectangular, Bartlett, Tukey or Parzen smoothing windows, the same cut off points
of the lag window and the same frequency division of the spectral estimates must be used. For the
trapezium frequency width and the shape of the window and the frequency division of the spectral
estimates must be the same. The spectral estimates and statistics must also be unlogged.

stats(4) — real(kind=wp), intent(in)

Input: the four associated statistics for the univariate spectral estimates for the x and y series.
These are the degrees of freedom in stats(1), the lower and upper bound multiplying factors in
stats(2) and stats(3) respectively, and the bandwidth in stats(4).

Constraints:

stats(1) ≥ 3.0,
0.0 < stats(2) ≤ 1.0,
stats(3) ≥ 1.0.

[NP3506/4] Module 29.3: nag tsa spectral 29.3.25



nag bivar spectral coh Time Series Analysis

sqrd coh(l) — real(kind=wp), intent(out)

Output: indicates the squared coherency estimates, Ŵ (w), at each frequency w.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

sqrd coh bounds(l, 2) — real(kind=wp), intent(out), optional

Output: sqrd coh bounds(:,1) contains the lower bounds for the squared coherency estimates and
sqrd coh bounds(:,2) contains the upper bounds for the squared coherency estimates.

t — real(kind=wp), intent(out), optional

Output: indicates the critical value for the significance of the squared coherency, T .

cross ampl(l) — real(kind=wp), intent(out), optional

Output: indicates the cross amplitude spectral estimates, Â(w), at each frequency of w.

cross ampl bounds(l, 2) — real(kind=wp), intent(out), optional

Output: cross ampl bounds(:,1) contains the lower bounds for the cross amplitude spectral
estimates and cross ampl bounds(:,2) contains the upper bounds for the cross amplitude spectral
estimates.

gain(l) — real(kind=wp), intent(out), optional

Output: indicates the gain estimates, Ĝ(w), at each frequency w.

gain bounds(l, 2) — real(kind=wp), intent(out), optional

Output: gain bounds(:,1) contains the lower bounds for the gain estimates and gain bounds(:,2)
contains the upper bounds for the gain estimates.

phase(l) — real(kind=wp), intent(out), optional

Output: indicates the phase estimates, φ̂(w), at each frequency w.

phase bounds(l, 2) — real(kind=wp), intent(out), optional

Output: phase bounds(:,1) contains the lower bounds for the phase estimates and
phase bounds(:,2) contains the upper bounds for the phase estimates.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.
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Failures (error%level = 2):

error%code Description

201 At least one of the x univariate spectral estimates fxx is negative.

For this frequency the cross amplitude spectrum and squared coherency, the gain and
the phase and their bounds are set to zero.

202 At least one of the y univariate spectral estimates fyy is negative.

For this frequency the cross amplitude spectrum and squared coherency, the gain and
the phase and their bounds are set to zero.

203 At least one univariate spectral estimate fxx or fyy is zero.

For this frequency the cross amplitude spectrum and squared coherency, the gain and
the phase and their bounds are set to zero.

204 At least one bivariate spectral estimate fxy is zero.

For this frequency the cross amplitude spectrum and squared coherency, the gain and
the phase and their bounds are set to zero.

205 A calculated value of the squared coherency exceeds 1.0.

For this frequency the squared coherency is reset to 1.0 and this value for the squared
coherency is used in the formulae for the calculation of bounds for the cross amplitude
spectrum, the squared coherency, the gain and phase. This has the consequence that
both squared coherency bounds are 1.0.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Accuracy

All computations are very stable and yield good accuracy.
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Procedure: nag bivar spectral lin sys

1 Description

nag bivar spectral lin sys calculates the noise spectrum together with multiplying factors for the
bounds and the impulse response function and its standard error from a linear system.

Note: all the output arguments of this procedure are optional. However, at least one output argument
must be present in every call statement.

2 Usage

USE nag tsa spectral

CALL nag bivar spectral lin sys(f x, f y, f xy, stats, n [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

l ≥ 1 — the number of spectral and noise spectral estimates

3.1 Mandatory Arguments

f x(l) — real(kind=wp), intent(in)

Input: indicates the univariate spectral estimates, fxx(w), for the x time series.

f y(l) — real(kind=wp), intent(in)

Input: indicates the univariate spectral estimates, fyy(w), for the y time series.

f xy(l) — complex(kind=wp), intent(in)

Input: the complex bivariate spectral estimates, fxy(w), for the x and y series.

Note: the two univariate and the bivariate spectra must been calculated using the same method of
smoothing. For rectangular, Bartlett, Tukey or Parzen smoothing windows, the same cut off points
of the lag window and the same frequency division of the spectral estimates must be used. For the
trapezium frequency width and the shape of the window and the frequency division of the spectral
estimates must be the same. The spectral estimates and statistics must also be unlogged.

stats(4) — real(kind=wp), intent(in)

Input: the four associated statistics for the univariate spectral estimates for the x and y series.
These are the degrees of freedom in stats(1), the lower and upper bound multiplying factors in
stats(2) and stats(3) respectively, and the bandwidth in stats(4).

Constraints:

stats(1) ≥ 3.0,
0.0 < stats(2) ≤ 1.0,
stats(3) ≥ 1.0.

[NP3506/4] Module 29.3: nag tsa spectral 29.3.29



nag bivar spectral lin sys Time Series Analysis

n — integer, intent(in)

Input: the number of points in each of the time series x and y. n should have the same values as l in
the call of nag bivar spectral data or nag bivar spectral cov which calculated the smoothed
sample cross spectrum. n is used in calculating the impulse response function standard error (rfse).

Constraints: n ≥ 1.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

ns(l) — real(kind=wp), intent(out), optional

Output: indicates the noise spectrum, f̂y/x(w), at each frequency.

ns bounds(l, 2) — real(kind=wp), intent(out), optional

Output: ns bounds(:,1) contains the noise spectrum lower bounds and ns bounds(:,2) contains the
noise spectrum upper bounds.

crf(l) — real(kind=wp), intent(out), optional

Output: indicates the causal responses for the impulse response function.

arf(l − 1) — real(kind=wp), intent(out), optional

Output: indicates the anticipatory responses for the impulse response function.

rfse — real(kind=wp), intent(out), optional

Output: indicates the impulse response function standard error.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

Failures (error%level = 2):

error%code Description

201 At least one of the x univariate spectral estimates fxx is negative.

For this frequency the noise spectrum is set to zero and the contributions to the
impulse response function and its standard error are set to zero.

202 At least one of the y univariate spectral estimates fyy is negative.
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For this frequency the noise spectrum is set to zero and the contributions to the
impulse response function and its standard error are set to zero.

203 At least one univariate spectral estimate fxxorfyy is zero.

For this frequency the noise spectrum is set to zero and the contributions to the
impulse response function and its standard error are set to zero.

204 At least one bivariate spectral estimate fxy is zero.

For this frequency the noise spectrum is set to zero and the contribution to the impulse
response function and its standard error is set to zero.

205 A calculated value of the squared coherency exceeds 1.0.

For this frequency the squared coherency is reset to 1.0 and the noise spectrum is
zero and the contribution to the impulse response function at this frequency is zero.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 3 of this module document.

6 Further Comments

6.1 Accuracy

The computation of the noise is stable and yields good accuracy. The FFT is a numerically stable
process, and any errors introduced during the computation will normally be insignificant compared with
uncertainty in the data.
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Example 1: Calculation of the Smoothed Sample Spectrum

of a Univariate Time Series

This example program shows how nag spectral data is used to calculate the univariate spectrum. The
optional argument cov (returned by nag spectral data) is then used to show how nag spectral cov

may be used to calculate the same sample spectrum.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_tsa_spectral_ex01

! Example Program Text for nag_tsa_spectral

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_tsa_spectral, ONLY : nag_spectral_data, nag_spectral_cov

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, l, m, n

CHARACTER (1) :: method

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: cov(:), f(:), ts(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_tsa_spectral_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, m, l

ALLOCATE (ts(n),f(l),cov(m)) ! Allocate storage

READ (nag_std_in,*) ts

method = ’p’

CALL nag_spectral_data(method,ts,m,f,cov=cov)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Results using the time series data’

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,A,I3)’) &

’Frequency width of smoothing window = 1/’, m

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Spectrum Spectrum Spectrum Spectrum’

WRITE (nag_std_out,*) &

’ estimate estimate estimate estimate’

WRITE (nag_std_out,’((1X,4(I5,F10.3)))’) (i,f(i),i=1,l)

CALL nag_spectral_cov(method,cov,f)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Results using the time series auto-covariance’
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WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Spectrum Spectrum Spectrum Spectrum’

WRITE (nag_std_out,*) &

’ estimate estimate estimate estimate’

WRITE (nag_std_out,’((1X,4(I5,F10.3)))’) (i,f(i),i=1,l)

DEALLOCATE (ts,f,cov) ! Deallocate storage

END PROGRAM nag_tsa_spectral_ex01

2 Program Data

Example Program Data for nag_tsa_spectral_ex01

131 31 51 : n,m,l

11.500 9.890 8.728 8.400 8.230 8.365 8.383 8.243

8.080 8.244 8.490 8.867 9.469 9.786 10.100 10.714

11.320 11.900 12.390 12.095 11.800 12.400 11.833 12.200

12.242 11.687 10.883 10.138 8.952 8.443 8.231 8.067

7.871 7.962 8.217 8.689 8.989 9.450 9.883 10.150

10.787 11.000 11.133 11.100 11.800 12.250 11.350 11.575

11.800 11.100 10.300 9.725 9.025 8.048 7.294 7.070

6.933 7.208 7.617 7.867 8.309 8.640 9.179 9.570

10.063 10.803 11.547 11.550 11.800 12.200 12.400 12.367

12.350 12.400 12.270 12.300 11.800 10.794 9.675 8.900

8.208 8.087 7.763 7.917 8.030 8.212 8.669 9.175

9.683 10.290 10.400 10.850 11.700 11.900 12.500 12.500

12.800 12.950 13.050 12.800 12.800 12.800 12.600 11.917

10.805 9.240 8.777 8.683 8.649 8.547 8.625 8.750

9.110 9.392 9.787 10.340 10.500 11.233 12.033 12.200

12.300 12.600 12.800 12.650 12.733 12.700 12.259 11.817

10.767 9.825 9.150 : ts(1:n)

3 Program Results

Example Program Results for nag_tsa_spectral_ex01

Results using the time series data

Frequency width of smoothing window = 1/ 31

Spectrum Spectrum Spectrum Spectrum

estimate estimate estimate estimate

1 372.438 2 321.103 3 204.187 4 94.109

5 32.066 6 10.384 7 4.839 8 2.657

9 1.846 10 1.748 11 1.359 12 0.807

13 0.530 14 0.435 15 0.380 16 0.380

17 0.381 18 0.328 19 0.272 20 0.241

21 0.217 22 0.202 23 0.198 24 0.186

25 0.165 26 0.152 27 0.143 28 0.137

29 0.133 30 0.127 31 0.115 32 0.107

33 0.106 34 0.109 35 0.109 36 0.105

37 0.098 38 0.091 39 0.089 40 0.088

41 0.085 42 0.083 43 0.081 44 0.077

45 0.074 46 0.072 47 0.071 48 0.071

49 0.071 50 0.070 51 0.069

Results using the time series auto-covariance

Spectrum Spectrum Spectrum Spectrum

estimate estimate estimate estimate
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1 372.438 2 321.103 3 204.187 4 94.109

5 32.066 6 10.384 7 4.839 8 2.657

9 1.846 10 1.748 11 1.359 12 0.807

13 0.530 14 0.435 15 0.380 16 0.380

17 0.381 18 0.328 19 0.272 20 0.241

21 0.217 22 0.202 23 0.198 24 0.186

25 0.165 26 0.152 27 0.143 28 0.137

29 0.133 30 0.127 31 0.115 32 0.107

33 0.106 34 0.109 35 0.109 36 0.105

37 0.098 38 0.091 39 0.089 40 0.088

41 0.085 42 0.083 43 0.081 44 0.077

45 0.074 46 0.072 47 0.071 48 0.071

49 0.071 50 0.070 51 0.069
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Example 2: Calculation of the Smoothed Sample

Cross Spectrum of a Bivariate Time Series

This example program shows how nag bivar spectral data is used to calculate the bivariate cross
spectrum. The optional arguments xy cov and yx cov (returned by nag bivar spectral data) is then
used to show how nag bivar spectral cov may be used to calculate the same sample cross spectrum.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_tsa_spectral_ex02

! Example Program Text for nag_tsa_spectral

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_tsa_spectral, ONLY : nag_bivar_spectral_data, &

nag_bivar_spectral_cov

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC AIMAG, KIND, REAL

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, l, m, n

CHARACTER (1) :: method

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: xy_cov(:), x_ts(:), yx_cov(:), y_ts(:)

COMPLEX (wp), ALLOCATABLE :: f_xy(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_tsa_spectral_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, m, l

method = ’R’

ALLOCATE (x_ts(n),y_ts(n),xy_cov(m),yx_cov(m), &

f_xy(l)) ! Allocate storage

READ (nag_std_in,*) x_ts

READ (nag_std_in,*) y_ts

CALL nag_bivar_spectral_data(method,x_ts,y_ts,m,f_xy,xy_cov=xy_cov, &

yx_cov=yx_cov)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Returned sample spectrum - using nag_bivar_spectral_data’

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Real Imaginary Real Imaginary Real Imaginary’

WRITE (nag_std_out,*) &

’ Lag part part Lag part part Lag part part’

WRITE (nag_std_out,’((3(I4,2F9.3)))’) (i-1,REAL(f_xy(i)),AIMAG(f_xy(i)), &

i=1,l)
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CALL nag_bivar_spectral_cov(method,xy_cov,yx_cov,f_xy)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Returned sample spectrum - using nag_bivar_spectral_cov’

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Real Imaginary Real Imaginary Real Imaginary’

WRITE (nag_std_out,*) &

’ Lag part part Lag part part Lag part part’

WRITE (nag_std_out,’((3(I4,2F9.4)))’) (i-1,REAL(f_xy(i)),AIMAG(f_xy(i)), &

i=1,l)

DEALLOCATE (x_ts,y_ts,xy_cov,yx_cov,f_xy) ! Deallocate storage

END PROGRAM nag_tsa_spectral_ex02

2 Program Data

Example Program Data for nag_tsa_spectral_ex02

150 41 50 : n,m,l

-0.109 0.000 0.178 0.339 0.373 0.441 0.461 0.348

0.127 -0.180 -0.588 -1.055 -1.421 -1.520 -1.302 -0.814

-0.475 -0.193 0.088 0.435 0.771 0.866 0.875 0.891

0.987 1.263 1.775 1.976 1.934 1.866 1.832 1.767

1.608 1.265 0.790 0.360 0.115 0.088 0.331 0.645

0.960 1.409 2.670 2.834 2.812 2.483 1.929 1.485

1.214 1.239 1.608 1.905 2.023 1.815 0.535 0.122

0.009 0.164 0.671 1.019 1.146 1.155 1.112 1.121

1.223 1.257 1.157 0.913 0.620 0.255 -0.280 -1.080

-1.551 -1.799 -1.825 -1.456 -0.944 -0.570 -0.431 -0.577

-0.960 -1.616 -1.875 -1.891 -1.746 -1.474 -1.201 -0.927

-0.524 0.040 0.788 0.943 0.930 1.006 1.137 1.198

1.054 0.595 -0.080 -0.314 -0.288 -0.153 -0.109 -0.187

-0.255 -0.299 -0.007 0.254 0.330 0.102 -0.423 -1.139

-2.275 -2.594 -2.716 -2.510 -1.790 -1.346 -1.081 -0.910

-0.876 -0.885 -0.800 -0.544 -0.416 -0.271 0.000 0.403

0.841 1.285 1.607 1.746 1.683 1.485 0.993 0.648

0.577 0.577 0.632 0.747 0.999 0.993 0.968 0.790

0.399 -0.161 -0.553 -0.603 -0.424 -0.194 : x_ts(1:n)

53.8 53.6 53.5 53.5 53.4 53.1 52.7 52.4 52.2 52.0 52.0

52.4 53.0 54.0 54.9 56.0 56.8 56.8 56.4 55.7 55.0 54.3

53.2 52.3 51.6 51.2 50.8 50.5 50.0 49.2 48.4 47.9 47.6

47.5 47.5 47.6 48.1 49.0 50.0 51.1 51.8 51.9 51.7 51.2

50.0 48.3 47.0 45.8 45.6 46.0 46.9 47.8 48.2 48.3 47.9

47.2 47.2 48.1 49.4 50.6 51.5 51.6 51.2 50.5 50.1 49.8

49.6 49.4 49.3 49.2 49.3 49.7 50.3 51.3 52.8 54.4 56.0

56.9 57.5 57.3 56.6 56.0 55.4 55.4 56.4 57.2 58.0 58.4

58.4 58.1 57.7 57.0 56.0 54.7 53.2 52.1 51.6 51.0 50.5

50.4 51.0 51.8 52.4 53.0 53.4 53.6 53.7 53.8 53.8 53.8

53.3 53.0 52.9 53.4 54.6 56.4 58.0 59.4 60.2 60.0 59.4

58.4 57.6 56.9 56.4 56.0 55.7 55.3 55.0 54.4 53.7 52.8

51.6 50.6 49.4 48.8 48.5 48.7 49.2 49.8 50.4 50.7 50.9

50.7 50.5 50.4 50.2 50.4 51.2 52.3 : y_ts(1:n)
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3 Program Results

Example Program Results for nag_tsa_spectral_ex02

Returned sample spectrum - using nag_bivar_spectral_data

Real Imaginary Real Imaginary Real Imaginary

Lag part part Lag part part Lag part part

0 129.889 0.000 1 29.847 -9.867 2 -21.247 -14.846

3 9.819 9.148 4 -11.436 2.775 5 6.938 -5.992

6 0.847 2.442 7 -3.102 -3.512 8 6.386 0.235

9 -7.236 -0.071 10 3.915 -1.597 11 -1.288 1.671

12 -1.021 -1.764 13 3.249 0.956 14 -3.930 -0.266

15 3.462 -0.537 16 -2.078 0.775 17 0.325 -1.178

18 1.188 1.037 19 -2.265 -0.605 20 2.761 0.068

21 -2.363 0.405 22 1.337 -0.776 23 -0.052 0.847

24 -1.183 -0.738 25 1.994 0.426 26 -2.205 0.042

27 1.780 -0.423 28 -0.911 0.687 29 -0.245 -0.718

30 1.201 0.555 31 -1.797 -0.264 32 1.862 -0.102

33 -1.412 0.432 34 0.579 -0.618 35 0.394 0.625

36 -1.241 -0.465 37 1.694 0.175 38 -1.668 0.168

39 1.159 -0.450 40 -0.340 0.601 41 -0.583 -0.587

42 1.309 0.378 43 -1.659 -0.084 44 1.519 -0.238

45 -0.943 0.494 46 0.103 -0.594 47 0.750 0.527

48 -1.408 -0.308 49 1.635 0.000

Returned sample spectrum - using nag_bivar_spectral_cov

Real Imaginary Real Imaginary Real Imaginary

Lag part part Lag part part Lag part part

0 129.8894 0.0000 1 29.8473 -9.8673 2 -21.2468 -14.8464

3 9.8193 9.1483 4 -11.4359 2.7751 5 6.9385 -5.9925

6 0.8472 2.4417 7 -3.1024 -3.5116 8 6.3857 0.2352

9 -7.2365 -0.0707 10 3.9147 -1.5974 11 -1.2882 1.6706

12 -1.0208 -1.7636 13 3.2489 0.9559 14 -3.9303 -0.2662

15 3.4621 -0.5368 16 -2.0782 0.7745 17 0.3249 -1.1777

18 1.1883 1.0368 19 -2.2646 -0.6055 20 2.7612 0.0680

21 -2.3628 0.4047 22 1.3370 -0.7761 23 -0.0520 0.8470

24 -1.1835 -0.7378 25 1.9942 0.4256 26 -2.2048 0.0419

27 1.7805 -0.4232 28 -0.9111 0.6872 29 -0.2449 -0.7180

30 1.2008 0.5554 31 -1.7974 -0.2644 32 1.8620 -0.1016

33 -1.4125 0.4318 34 0.5785 -0.6179 35 0.3936 0.6246

36 -1.2406 -0.4653 37 1.6936 0.1750 38 -1.6685 0.1676

39 1.1592 -0.4499 40 -0.3400 0.6010 41 -0.5827 -0.5868

42 1.3093 0.3784 43 -1.6594 -0.0844 44 1.5192 -0.2383

45 -0.9428 0.4937 46 0.1033 -0.5935 47 0.7498 0.5272

48 -1.4084 -0.3079 49 1.6349 0.0000
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Example 3: Calculation of the Squared Coherency and

the Impulse Causal Response Function

This example program shows how nag bivar spectral coh may be used to calculate the squared
coherency. It also shows how nag bivar spectral lin sys may be used to calculate the impulse casual
response function by using the optional argument crf.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_tsa_spectral_ex03

! Example Program Text for nag_tsa_spectral

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_tsa_spectral, ONLY : nag_bivar_spectral_coh, &

nag_bivar_spectral_lin_sys

USE nag_examples_io, ONLY : nag_std_out, nag_std_in

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, l, n

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: crf(:), f_x(:), f_y(:), sqrd_coh(:)

REAL (wp) :: stats(4)

COMPLEX (wp), ALLOCATABLE :: f_xy(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_tsa_spectral_ex03’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) l, n

ALLOCATE (f_x(l),f_y(l),f_xy(l),sqrd_coh(l),crf(l)) ! Allocate storage

READ (nag_std_in,*) stats

READ (nag_std_in,*) f_x

READ (nag_std_in,*) f_y

READ (nag_std_in,*) f_xy

CALL nag_bivar_spectral_coh(f_x,f_y,f_xy,stats,sqrd_coh)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’ Squared coherency - using nag_bivar_spectral_coh’

WRITE (nag_std_out,*)

WRITE (nag_std_out,’((1X,4(I5,f10.4)))’) (i-1,sqrd_coh(i),i=1,l)

CALL nag_bivar_spectral_lin_sys(f_x,f_y,f_xy,stats,n,crf=crf)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ Impulse causal response function &

&- using nag_bivar_spectral_lin_sys’

WRITE (nag_std_out,*)

WRITE (nag_std_out,’((1X,4(I5,f10.4)))’) (i-1,crf(i),i=1,l)
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DEALLOCATE (f_x,f_y,f_xy,sqrd_coh,crf) ! Deallocate storage

END PROGRAM nag_tsa_spectral_ex03

2 Program Data

Example Program Data for nag_tsa_spectral_ex03

9 296 : l, n

30.00000 0.63858 1.78670 0.33288 : stats (1:4)

2.03490 0.51554 0.07640 0.01068 0.00093

0.00100 0.00076 0.00037 0.00021 : f_x(1:l)

21.97712 3.29761 0.28782 0.02480 0.00285

0.00203 0.00125 0.00107 0.00191 : f_y(1;l)

(-6.54995,0.00000) (0.34107,-1.19030)

(0.12335,0.04087) (-0.00514,0.00842)

(-0.00033,0.00032) (-0.00039,-0.00001)

(-0.00026,0.00018) (0.00011,-0.00016)

(0.00007,0.00000) : f_xy(1:l)

3 Program Results

Example Program Results for nag_tsa_spectral_ex03

Squared coherency - using nag_bivar_spectral_coh

0 0.9593 1 0.9018 2 0.7679 3 0.3674

4 0.0797 5 0.0750 6 0.1053 7 0.0952

8 0.0122

Impulse causal response function - using nag_bivar_spectral_lin_sys

0 -0.0547 1 0.0586 2 -0.0322 3 -0.6956

4 -0.7181 5 -0.8019 6 -0.4303 7 -0.2392

8 -0.0766
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Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag tsa spectral ex04

Computes the univariate spectrum together with the optional 95% confidence multiplying limits,
statistics and autocovariances for a univariate time series.

nag tsa spectral ex05

Computes the univariate logged spectrum together with the optional 95% confidence multiplying
limits, statistics and frequency width of smoothing window for a univariate time series. No
smoothing is carried out.

nag tsa spectral ex06

Computes the univariate spectrum together with the optional 95% confidence multiplying limits
and statistics for a univariate time series using autocovariances data.

nag tsa spectral ex07

Computes the cross spectrum and the optional cross covariances for a bivariate time series.

nag tsa spectral ex08

Computes the cross spectrum for a bivariate time series using autocovariances data.

nag tsa spectral ex09

Computes the squared coherency together with the optional squared coherency lower and upper
bounds, the cross amplitude spectrum and its bounds, the gain and the phase and their bounds
for a univariate and bivariate spectra.

nag tsa spectral ex10

Computes the optional noise spectrum and its lower and upper bounds, the impulse causal and
anticipatory response function and its standard error for a linear system.
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