GAMS Index for the NAG Fortran 90 Library

This index classifies NAG fl90 procedures according to Version 2 of the GAMS classification scheme described in [1]. Note that only those GAMS classes which contain Library procedures, either directly or in a subclass, are included below.

C3a2 Chebyshev, Legendre nag_cheb_1d_eval (8.5) Evaluation of fitted polynomial in one variable, from Chebyshev series C4 Elementary transcendental functions C4c Hyperbolic, inverse hyperbolic nag_arctanh (3.1) Inverse hyperbolic tangent, arctanh x nag_arcsinh (3.1) Inverse hyperbolic sine, arcsinh x nag_arccosh (3.1) Inverse hyperbolic cosine, arccosh x C7 Gamma C7a Gamma, log gamma, reciprocal gamma	s form
C4 Elementary transcendental functions C4c Hyperbolic, inverse hyperbolic nag_arctanh (3.1) Inverse hyperbolic tangent, $arctanh x$ nag_arcsinh (3.1) Inverse hyperbolic sine, $arcsinh x$ nag_arccosh (3.1) Inverse hyperbolic cosine, $arccosh x$ C7 Gamma	s form
C4c Hyperbolic, inverse hyperbolic $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ccc} & \text{nag_arcsinh} \ (3.1) & \text{Inverse hyperbolic sine, } \operatorname{arcsinh} x \\ & \text{nag_arccosh} \ (3.1) & \text{Inverse hyperbolic cosine, } \operatorname{arccosh} x \\ \mathbf{C7} & \text{Gamma} \end{array}$	
nag_arccosh (3.1) Inverse hyperbolic cosine, arccosh x C7 Gamma	
C7 Gamma	
C7a Camma log gamma reciprocal gamma	
nag_gamma (3.2) Gamma function	
nag_log_gamma (3.2) Log gamma function	
C7c Psi function	
nag_polygamma (3.2) Polygamma functions	
C7e Incomplete gamma	
nag_incompl_gamma (3.2) Incomplete gamma functions	
Error functions	
C8a Error functions, their inverses, integrals, including the Normal distribution function	
nag_normal_prob (20.1) Computes probabilities for various parts of a univariate Normal distrib	bution
nag_erfc (3.3) Complementary error function erfc x	
$nag_erf (3.3)$ Error function erf x	
C8b Fresnel integrals	
$nag_fresnel_s$ (3.5) Fresnel integral $S(x)$	
$nag_fresnel_c (3.5)$ Fresnel integral $C(x)$	
C8c Dawson's integral	
nag_dawson (3.3) Dawson's integral $F(x)$	
C10 Bessel functions	
C10a J, Y, H_1, H_2	
C10a1 Real argument, integer order	
nag_bessel_y0 (3.4) Bessel function $Y_0(x)$	
nag_bessel_y1 (3.4) Bessel function $Y_1(x)$	

	${\tt nag_bessel_j0}~(3.4)$	Bessel function $J_0(x)$
	$nag_bessel_j1 (3.4)$	Bessel function $J_1(x)$
C10a4	Complex argument, real order	
	$nag_bessel_j (3.4)$	Bessel function $J_{\nu}(z)$
	$nag_bessel_y (3.4)$	Bessel function $Y_{\nu}(z)$
C10b	I,K	
C10b1	Real argument, integer order	
	${\tt nag_bessel_k0}\ (3.4)$	Modified Bessel function $K_0(x)$
	${\tt nag_bessel_k1}\ (3.4)$	Modified Bessel function $K_1(x)$
	${\tt nag_bessel_i0}\ (3.4)$	Modified Bessel function $I_0(x)$
	$nag_bessel_i1 (3.4)$	Modified Bessel function $I_1(x)$
C10b4	Complex argument, real order	
	${\tt nag_bessel_i}\ (3.4)$	Modified Bessel function $I_{\nu}(z)$
	${\tt nag_bessel_k}\ (3.4)$	Modified Bessel function $K_{\nu}(z)$
C10c	Kelvin functions	
	${\tt nag_kelvin_ber}\ (3.9)$	Kelvin function ber x
	${\tt nag_kelvin_bei}\ (3.9)$	Kelvin function bei x
	${\tt nag_kelvin_ker}\ (3.9)$	Kelvin function ker x
	${\tt nag_kelvin_kei}\ (3.9)$	Kelvin function kei x
C10d	Airy and Scorer functions	
	${\tt nag_airy_ai}\ (3.8)$	Airy function $Ai(z)$
	nag_airy_bi (3.8)	Airy function $Bi(z)$
C13	Jacobian elliptic functions, theta functions	
	${\tt nag_ell_jac}~(3.7)$	Jacobian elliptic functions sn, cn and dn
C14	Elliptic integrals	
	$nag_ell_rc (3.6)$	Degenerate form of elliptic integral of the first kind
	nag_ell_rf (3.6)	Symmetrised elliptic integral of the first kind
	${\tt nag_ell_rd}\ (3.6)$	Symmetrised elliptic integral of the second kind
	nag_ell_rj (3.6)	Symmetrised elliptic integral of the third kind
D	Linear Algebra	
D1	Elementary vector and matrix operations	
D1a	Elementary vector operations	
D1a10	Convolutions	
	nag_fft_conv (7.3)	Computes the convolution or correlation of two real or complex vectors
D1b	Elementary matrix operations	
D1b2	Norm	

	nag_gen_mat_norm (4.1) nag_gen_bnd_mat_norm (4.1) nag_sym_mat_norm (4.1) nag_sym_bnd_mat_norm (4.1) nag_trap_mat_norm (4.1) nag_tri_mat_norm (4.1)	Computes a norm, or the element of largest absolute value, of a general real or complex matrix Computes a norm, or the element of largest absolute value, of a real or complex square banded matrix Computes a norm, or the element of largest absolute value, of a real or complex, symmetric or Hermitian matrix, stored in conventional or packed storage Computes a norm, or the element of largest absolute value, of a real or complex, symmetric or Hermitian band matrix Computes a norm, or the element of largest absolute value, of a real or complex trapezoidal matrix Computes a norm, or the element of largest absolute value, of a real or complex triangular matrix, stored in conventional or packed storage
	${\tt nag_tri_bnd_mat_norm}\ (4.1)$	Computes a norm, or the element of largest absolute value, of a real or complex triangular band matrix
	${\tt nag_hessen_mat_norm}\ (4.1)$	Computes a norm, or the element of largest absolute value, of a real or complex upper Hessenberg matrix
D2	Solution of systems of linear equations (including	g inversion, LU and related decompositions)
D2a	Real nonsymmetric matrices	
D2a1	General	
	nag_gen_mat_inv (4.2)	Computes the inverse of a general real or complex matrix
	${\tt nag_gen_mat_inv_fac}~(4.2)$	Computes the inverse of a general real or complex matrix, with the matrix previously factorized using nag_gen_lin_fac
	${\tt nag_gen_lin_fac}~(5.1)$	Performs an LU factorization of a general real or complex matrix
	$\verb"nag_gen_lin_sol" (5.1)$	Solves a general real or complex system of linear equations with one or many right-hand sides
	${\tt nag_gen_lin_sol_fac}~(5.1)$	Solves a general real or complex system of linear equations, with coefficient matrix previously factorized by nag_gen_lin_fac
D2a2	Banded	
	${\tt nag_gen_bnd_lin_fac}~(5.4)$	Performs an LU factorization of a general real or complex band matrix
	${\tt nag_gen_bnd_lin_sol}~(5.4)$	Solves a general real or complex banded system of linear equations, with one or many right-hand sides
	${\tt nag_gen_bnd_lin_sol_fac}~(5.4)$	Solves a general real or complex banded system of linear equations, with coefficient matrix previously factorized by nag_gen_bnd_lin_fac
D2a3	Triangular	
	${\tt nag_tri_mat_inv}\ (4.2)$	Computes the inverse of a real or complex triangular matrix
	${\tt nag_tri_lin_sol}\ (5.3)$	Solves a real or complex triangular system of linear equations
	${\tt nag_tri_lin_cond}\ (5.3)$	Estimates the condition number of a real or complex triangular matrix
D2a4	Sparse	
	${ t nag_sparse_prec_init_ilu} \ (5.6)$	Initializes sparse ILU preconditioner for real non-symmetric or complex non-Hermitian matrices
	${\tt nag_sparse_prec_sol}\ (5.6)$	Sparse matrix preconditioned system solver
	${\tt nag_sparse_gen_lin_sol}~(5.7)$	General sparse linear system solver
D2b	Real symmetric matrices	
D2b1	General	
D2b1a	Indefinite	

	${\tt nag_sym_mat_inv}\ (4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_mat_inv_fac}~(4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix, with the matrix previously factorized using nag_sym_lin_fac
	${\tt nag_sym_lin_sol}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations with one or many right-hand sides
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_lin_sol_fac}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations, with coefficient matrix previously factorized by nag_sym_lin_fac
D2b1b	Positive definite	
	${\tt nag_sym_mat_inv}\ (4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_mat_inv_fac}~(4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix, with the matrix previously factorized using nag_sym_lin_fac
	${\tt nag_sym_lin_sol}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations with one or many right-hand sides
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_lin_sol_fac}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations, with coefficient matrix previously factorized by nag_sym_lin_fac
D2b2	Positive definite banded	
	${\tt nag_sym_bnd_lin_sol}~(5.5)$	Solves a real symmetric or complex Hermitian positive definite banded system of linear equations, with one or many right-hand sides
	${\tt nag_sym_bnd_lin_fac}~(5.5)$	Performs a Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix
	${\tt nag_sym_bnd_lin_sol_fac}~(5.5)$	Solves a real symmetric or complex Hermitian positive definite banded system of linear equations, with coefficient matrix previously factorized by nag_sym_bnd_lin_fac
D2c	Complex non-Hermitian matrices	
D2c1	General	
	${\tt nag_gen_mat_inv}\ (4.2)$	Computes the inverse of a general real or complex matrix
	${\tt nag_gen_mat_inv_fac}~(4.2)$	Computes the inverse of a general real or complex matrix, with the matrix previously factorized using nag_gen_lin_fac
	${\tt nag_gen_lin_sol}\ (5.1)$	Solves a general real or complex system of linear equations with one or many right-hand sides
	${\tt nag_gen_lin_fac}~(5.1)$	Performs an LU factorization of a general real or complex matrix
	${\tt nag_gen_lin_sol_fac}~(5.1)$	Solves a general real or complex system of linear equations, with coefficient matrix previously factorized by nag_gen_lin_fac
	${\tt nag_sym_lin_sol}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations with one or many right-hand sides
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_lin_sol_fac}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations, with coefficient matrix previously factorized by nag_sym_lin_fac
D2c2	Banded	

	$\label{eq:naggen_bnd_lin_fac} \begin{split} &\texttt{nag_gen_bnd_lin_fac}~(5.4) \\ &\texttt{nag_gen_bnd_lin_sol_fac}~(5.4) \\ &\texttt{nag_gen_bnd_lin_sol_fac}~(5.4) \end{split}$	Performs an LU factorization of a general real or complex band matrix Solves a general real or complex banded system of linear equations, with one or many right-hand sides Solves a general real or complex banded system of linear equations, with coefficient matrix previously factorized by nag_gen_bnd_lin_fac
D2c3	Triangular	
	${\tt nag_tri_mat_inv}\ (4.2)$	Computes the inverse of a real or complex triangular matrix
	${\tt nag_tri_lin_sol}\ (5.3)$	Solves a real or complex triangular system of linear equations
	${\tt nag_tri_lin_cond}\ (5.3)$	Estimates the condition number of a real or complex triangular matrix
D2c4	Sparse	
	${\tt nag_sparse_prec_init_ilu}~(5.6)$	Initializes sparse ILU preconditioner for real non-symmetric or complex non-Hermitian matrices
	${\tt nag_sparse_prec_sol}\ (5.6)$	Sparse matrix preconditioned system solver
	$nag_sparse_gen_lin_sol$ (5.7)	General sparse linear system solver
D2d	Complex Hermitian matrices	
D2d1	General	
D2d1a	Indefinite	
	${\tt nag_sym_mat_inv}\ (4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_mat_inv_fac}~(4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix, with the matrix previously factorized using nag_sym_lin_fac
	${\tt nag_sym_lin_sol}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations with one or many right-hand sides
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_lin_sol_fac}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations, with coefficient matrix previously factorized by nag_sym_lin_fac
D2d1b	Positive definite	
	${\tt nag_sym_mat_inv}\ (4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_mat_inv_fac}~(4.2)$	Computes the inverse of a real or complex, symmetric or Hermitian matrix, with the matrix previously factorized using nag_sym_lin_fac
	${\tt nag_sym_lin_sol}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations with one or many right-hand sides
	$nag_sym_lin_fac (5.2)$	Performs a Cholesky or Bunch-Kaufman factorization of a real or complex, symmetric or Hermitian matrix
	${\tt nag_sym_lin_sol_fac}~(5.2)$	Solves a real or complex, symmetric or Hermitian system of linear equations, with coefficient matrix previously factorized by nag_sym_lin_fac
D2d2	Positive definite banded	
	${\tt nag_sym_bnd_lin_sol}~(5.5)$	Solves a real symmetric or complex Hermitian positive definite banded system of linear equations, with one or many right-hand sides
	${\tt nag_sym_bnd_lin_fac}~(5.5)$	Performs a Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix
	${\tt nag_sym_bnd_lin_sol_fac}~(5.5)$	Solves a real symmetric or complex Hermitian positive definite banded system of linear equations, with coefficient matrix previously factorized by ${\tt nag_sym_bnd_lin_fac}$

D2e	Associated operations (e.g., matrix reorderings)	
	nag_sparse_mat_init_coo(4.3)	Initializes a sparse matrix data structure from COO format
	$nag_sparse_mat_init_csc$ (4.3)	Initializes a sparse matrix data structure from CSC format
	$nag_sparse_mat_init_csr$ (4.3)	Initializes a sparse matrix data structure from CSR format
	nag_sparse_mat_init_dia (4.3)	Initializes a sparse matrix data structure from DIA format
	nag_sparse_mat_extract (4.3)	Extracts details of a sparse matrix from a structure of type nag_sparse_mat_real_wp or
		nag_sparse_mat_cmplx_wp
	nag_sparse_matvec (4.3)	Matrix–vector multiply for a sparse matrix
D3	Determinants	
D3a	Real nonsymmetric matrices	
D3a1	General	
	${\tt nag_gen_lin_fac}~(5.1)$	Performs an LU factorization of a general real or complex matrix
D3a2	Banded	
	${\tt nag_gen_bnd_lin_fac}~(5.4)$	Performs an LU factorization of a general real or complex band matrix
D3a3	Triangular	
	${\tt nag_tri_mat_det}~(5.3)$	Evaluates the determinant of a real or complex triangular matrix
D3b	Real symmetric matrices	
D3b1	General	
D3b1a	Indefinite	
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix
D3b1b	Positive definite	
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix
D3b2	Positive definite banded	
	${\tt nag_sym_bnd_lin_fac}~(5.5)$	Performs a Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix
D3c	Complex non-Hermitian matrices	
D3c1	General	
	${\tt nag_gen_lin_fac}~(5.1)$	Performs an LU factorization of a general real or complex matrix
D3c2	Banded	
	${\tt nag_gen_bnd_lin_fac}~(5.4)$	Performs an LU factorization of a general real or complex band matrix
D3c3	Triangular	
	${\tt nag_tri_mat_det}~(5.3)$	Evaluates the determinant of a real or complex triangular matrix
D3d	Complex Hermitian matrices	
D3d1	General	
D3d1a	Indefinite	
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix
D3d1b	Positive-definite	
	${\tt nag_sym_lin_fac}~(5.2)$	Performs a Cholesky or Bunch–Kaufman factorization of a real or complex, symmetric or Hermitian matrix

D3d2	Positive-definite banded	
	${\tt nag_sym_bnd_lin_fac}~(5.5)$	Performs a Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix
D4	Eigenvalues, eigenvectors	
D4a	Ordinary eigenvalue problems $(Ax = \lambda x)$	
D4a1	Real symmetric	
	${\tt nag_sym_eig_sel}\ (6.1)$	Selected eigenvalues, and optionally the corresponding eigenvectors, of a real symmetric or complex Hermitian matrix
	${\tt nag_sym_eig_all}\ (6.1)$	All eigenvalues, and optionally eigenvectors, of a real symmetric or complex Hermitian matrix
D4a2	Real nonsymmetric	
	$nag_schur_fac\ (6.2)$	Schur factorization of a general real or complex matrix
	${\tt nag_nsym_eig_all}\ (6.2)$	All eigenvalues, and optionally eigenvectors, of a general real or complex matrix
D4a3	Complex Hermitian	
	${\tt nag_sym_eig_all}\ (6.1)$	All eigenvalues, and optionally eigenvectors, of a real symmetric or complex Hermitian matrix
D4a4	Complex non-Hermitian	
	${\tt nag_schur_fac}~(6.2)$	Schur factorization of a general real or complex matrix
	${\tt nag_nsym_eig_all}\ (6.2)$	All eigenvalues, and optionally eigenvectors, of a general real or complex matrix
D4a5	Tridiagonal	
	$\verb"nag_sym_tridiag_eig_all" (6.1)$	All eigenvalues, and optionally eigenvectors, of a real symmetric tridiagonal matrix
	${\tt nag_sym_tridiag_eig_val}\ (6.1)$	Selected eigenvalues of a real symmetric tridiagonal matrix
	${\tt nag_sym_tridiag_eig_vec}\ (6.1)$	Selected eigenvectors of a real symmetric tridiagonal matrix
D4b	Generalized eigenvalue problems (e.g., $Ax = \lambda Bx$)	
D4b1	Real symmetric	
	${\tt nag_sym_gen_eig_all}\ (6.5)$	All eigenvalues, and optionally eigenvectors, of a real symmetric-definite or complex Hermitian-definite generalized eigenvalue problem
	${\tt nag_sym_gen_eig_sel}\ (6.5)$	Selected eigenvalues, and optionally the corresponding eigenvectors, of a real symmetric-definite or complex Hermitian-definite generalized eigenvalue problem
D4b2	Real general	
	${\tt nag_nsym_gen_eig_all}\ (6.6)$	All eigenvalues, and optionally eigenvectors, of a real or complex nonsymmetric generalized eigenvalue problem
	${\tt nag_gen_schur_fac}~(6.6)$	Generalized Schur factorization of a real or complex matrix pencil
D4b3	Complex Hermitian	
	${\tt nag_sym_gen_eig_all}\ (6.5)$	All eigenvalues, and optionally eigenvectors, of a real symmetric-definite or complex Hermitian-definite generalized eigenvalue problem
	$\verb"nag_sym_gen_eig_sel" (6.5)$	Selected eigenvalues, and optionally the corresponding eigenvectors, of a real symmetric-definite or complex Hermitian-definite generalized eigenvalue problem
D4b4	Complex general	

	${\tt nag_nsym_gen_eig_all}~(6.6)$	All eigenvalues, and optionally eigenvectors, of a real or complex nonsymmetric generalized eigenvalue problem
	${\tt nag_gen_schur_fac}~(6.6)$	Generalized Schur factorization of a real or complex matrix pencil
D4c	Associated operations	
D4c1	Transform problem	
D4c1b	Reduce to compact form	
D4c1b1	Tridiagonal	
	${\tt nag_sym_tridiag_reduc}\ (6.1)$	Reduction of a real symmetric or complex Hermitian matrix to real symmetric tridiagonal form
	${\tt nag_sym_tridiag_orth}\ (6.1)$	Form or apply the transformation matrix determined by nag_sym_tridiag_reduc
D4c2	Compute eigenvalues of matrix in compact	m form
D4c2a	Tridiagonal	
	$\verb"nag_sym_tridiag_eig_all" (6.1)$	All eigenvalues, and optionally eigenvectors, of a real symmetric tridiagonal matrix
	$\verb"nag_sym_tridiag_eig_val" (6.1)$	Selected eigenvalues of a real symmetric tridiagonal matrix
D4c3	Form eigenvectors from eigenvalues	
	$\verb"nag_sym_tridiag_eig_vec" (6.1)$	Selected eigenvectors of a real symmetric tridiagonal matrix
D4c4	Back transform eigenvectors	
	${\tt nag_sym_tridiag_orth}\ (6.1)$	Form or apply the transformation matrix determined by nag_sym_tridiag_reduc
D5	QR decomposition, Gram–Schmidt orthogonalization	
	$\texttt{nag_qr_fac}\ (6.4)$	QR factorization of a general real or complex matrix
	${\tt nag_qr_orth}~(6.4)$	Form or apply the matrix Q determined by nag_qr_fac
D6	Singular value decomposition	
	nag_gen_svd (6.3)	Singular value decomposition of a general real or complex matrix
	${\tt nag_gen_bidiag_reduc}~(6.3)$	Reduction of a general real or complex matrix to real bidiagonal form
	nag_bidiag_svd (6.3)	Singular value decomposition of a real bidiagonal matrix
$\mathbf{D9}$	Singular, overdetermined or underdetermined systems of linear equations, generalized inverses	
D9a	Unconstrained	
D9a1	Least squares (L_2) solution	
	$nag_lin_lsq_sol$ (6.4)	Solves a real or complex linear least-squares problem
	${\tt nag_lin_lsq_sol_svd}~(6.4)$	Solves a real or complex linear least-squares problem, assuming that a singular value decomposition of the coefficient matrix has already been computed
	${\tt nag_lin_lsq_sol_qr} \ (6.4)$	Solves a real or complex linear least-squares problem, assuming that the QR factorization of the coefficient matrix has already been computed
	${\tt nag_lin_lsq_sol_qr_svd}~(6.4)$	Solves a real or complex linear least-squares problem using the SVD, assuming that the QR factorization of the coefficient matrix has already been computed
${f E}$	Interpolation	
$\mathbf{E1}$	Univariate data (curve fitting)	
E1a	Polynomial splines (piecewise polynomials)	

E2 E2a	<pre>nag_spline_1d_interp (8.2) nag_pch_monot_interp (8.1) nag_spline_1d_lsq_fit (8.2) Multivariate data (surface fitting) Gridded</pre>	Generates a cubic spline interpolant to an arbitrary 1-d data set Generates a monotonicity-preserving piecewise cubic Hermite interpolant Generates a weighted least-squares cubic spline fit to an arbitrary 1-d data set, with given interior knots
E2a	nag_spline_2d_interp (8.3)	Generates a bicubic spline interpolating surface through a set of data values, given on a rectangular grid of the xy plane
E2b	Scattered	
	${\tt nag_scat_2d_interp}\ (8.4)$	Generates a 2-d interpolating function using a modified Shepard method
	${\tt nag_scat_3d_interp}\ (8.4)$	Generates a 3-d interpolating function using a modified Shepard method
E3	Service routines for interpolation	
E3a	Evaluation of fitted functions, including qua	drature
E3a1	Function evaluation	
	${\tt nag_pch_eval}\ (8.1)$	Computes values and optionally derivatives of a piecewise cubic Hermite interpolant
	${\tt nag_spline_1d_eval}\ (8.2)$	Computes values of a cubic spline and optionally its first three derivatives
	${\tt nag_spline_2d_eval}\ (8.3)$	Computes values of a bicubic spline
	${\tt nag_scat_2d_eval}\ (8.4)$	Computes values of the interpolant generated by nag_scat_2d_interp and its partial derivatives
	${\tt nag_scat_3d_eval}\ (8.4)$	Computes values of the interpolant generated by nag_scat_3d_interp and its partial derivatives
	${\tt nag_cheb_1d_eval}\ (8.5)$	Evaluation of fitted polynomial in one variable, from Chebyshev series form
E3a2	Derivative evaluation	
	${\tt nag_pch_eval}\ (8.1)$	Computes values and optionally derivatives of a piecewise cubic Hermite interpolant
	${\tt nag_spline_1d_eval}\ (8.2)$	Computes values of a cubic spline and optionally its first three derivatives
	${\tt nag_scat_2d_eval}\ (8.4)$	Computes values of the interpolant generated by nag_scat_2d_interp and its partial derivatives
	${\tt nag_scat_3d_eval}\ (8.4)$	Computes values of the interpolant generated by nag_scat_3d_interp and its partial derivatives
	${\tt nag_cheb_1d_deriv}\ (8.5)$	Derivatives of fitted polynomial in Chebyshev series form
E3a3	Quadrature	
	${\tt nag_pch_intg}\ (8.1)$	Computes the definite integral of a piecewise cubic Hermite interpolant
	${\tt nag_spline_1d_intg}~(8.2)$	Computes the definite integral of a cubic spline
	${\tt nag_spline_2d_intg}~(8.3)$	Computes the definite integral of a bicubic spline
	${\tt nag_cheb_1d_intg}~(8.5)$	Integral of fitted polynomial in Chebyshev series form
E3d	Other	
	${\tt nag_pch_extract}\ (8.1)$	Extracts details of a piecewise cubic Hermite interpolant from a structure of type ${\tt nag_pch_comm_wp}$
	${\tt nag_spline_1d_set}~(8.2)$	Initializes a cubic spline with given interior knots and B-spline coefficients
	${\tt nag_spline_1d_extract}\ (8.2)$	Extracts details of a cubic spline from a structure of type nag_spline_1d_comm_wp
	${\tt nag_spline_2d_set}~(8.3)$	Initializes a bicubic spline with given interior knots and B-spline coefficients
	${\tt nag_spline_2d_extract}\ (8.3)$	Extracts details of a bicubic spline from a structure of type ${\tt nag_spline_2d_comm_wp}$

	nag_scat_2d_set (8.4) nag_scat_3d_set (8.4)	Initializes a structure of type nag_scat_comm_wp to represent a 2-d scattered data interpolant Initializes a structure of type nag_scat_comm_wp to represent a 3-d scattered data interpolant
	nag_scat_extract (8.4)	Extracts details of a scattered data interpolant from a structure of derived type nag_scat_comm_wp
${f F}$	Solution of nonlinear equations	
$\mathbf{F1}$	Single equation	
F1a	Polynomial	
F1a1	Real coefficients	
	${\tt nag_polynom_roots}\ (10.1)$	Calculates the roots of a polynomial
F1a2	Complex coefficients	
	${\tt nag_polynom_roots}\ (10.1)$	Calculates the roots of a polynomial
F1b	Nonpolynomial	
	${\tt nag_nlin_eqn_sol}~(10.2)$	Finds a solution of a single nonlinear equation
$\mathbf{F2}$	System of equations	
	${\tt nag_nlin_sys_sol}\ (10.3)$	Finds a solution of a system of nonlinear equations
\mathbf{G}	Optimization (search also classes K, L8)	
G1	Unconstrained	
G1a	Univariate	
G1a1	Smooth function	
G1a1a	User provides no derivatives	
	${\tt nag_uv_min_sol}\ (9.5)$	Finds the minimum of a continuous function of a single variable in a given finite interval
G1a1b	User provides first derivatives	
	${\tt nag_uv_min_sol}\ (9.5)$	Finds the minimum of a continuous function of a single variable in a given finite interval
G2	Constrained	
G2a	Linear programming	
G2a1	Dense matrix of constraints	
	${\tt nag_qp_sol}\ (9.1)$	Solves a linear or quadratic programming problem
G2c	Integer programming	
G2c1	Zero/one	
	$\texttt{nag_ip_sol}\ (19.1)$	Solves 'zero-one', 'general', 'mixed' or 'all' integer linear programming problems
G2c6	Pure integer programming	
	nag_ip_sol (19.1)	Solves 'zero-one', 'general', 'mixed' or 'all' integer linear programming problems
G2d	Network (for network reliability search class M)	
G2d1	Shortest path	
	nag_short_path_find (19.2)	Finds the shortest path through a directed or undirected acyclic network
G2e	Quadratic programming	
G2e1	Positive definite Hessian (i.e., convex problem)	

	${\tt nag_qp_sol}\ (9.1)$	Solves a linear or quadratic programming problem
G2e2	Indefinite Hessian	
	nag_qp_sol (9.1)	Solves a linear or quadratic programming problem
G2h	General nonlinear programming	
G2h1	Simple bounds	
G2h1a	Smooth function	
G2h1a1	User provides no derivatives	
	${\tt nag_nlp_sol}\ (9.3)$	Solves a dense nonlinear programming problem
	${\tt nag_con_nlin_lsq_sol}\ (9.4)$	Finds a constrained minimum of a sum of squares
	${\tt nag_con_nlin_lsq_sol_1}\ (9.4)$	Finds a constrained minimum of a sum of squares
	${\tt nag_nlp_sparse_sol}\ (9.6)$	Solves a sparse nonlinear programming problem
G2h1a2	User provides first derivatives	
	${\tt nag_nlp_sol}\ (9.3)$	Solves a dense nonlinear programming problem
	$\verb nag_con_nlin_lsq_sol (9.4)$	Finds a constrained minimum of a sum of squares
	${\tt nag_con_nlin_lsq_sol_1}\ (9.4)$	Finds a constrained minimum of a sum of squares
	${\tt nag_nlp_sparse_sol}\ (9.6)$	Solves a sparse nonlinear programming problem
G2h2	Linear equality or inequality constraints	
G2h2a	Smooth function	
G2h2a1	User provides no derivatives	
	${\tt nag_nlp_sol}~(9.3)$	Solves a dense nonlinear programming problem
	$\verb nag_con_nlin_lsq_sol (9.4)$	Finds a constrained minimum of a sum of squares
	${\tt nag_con_nlin_lsq_sol_1}\ (9.4)$	Finds a constrained minimum of a sum of squares
	${\tt nag_nlp_sparse_sol}\ (9.6)$	Solves a sparse nonlinear programming problem
G2h2a2	User provides first derivatives	
	$nag_nlp_sol (9.3)$	Solves a dense nonlinear programming problem
	${\tt nag_con_nlin_lsq_sol}\ (9.4)$	Finds a constrained minimum of a sum of squares
	$nag_con_nlin_lsq_sol_1 (9.4)$	Finds a constrained minimum of a sum of squares
	nag_nlp_sparse_sol (9.6)	Solves a sparse nonlinear programming problem
G2h3	Nonlinear constraints	
G2h3a	Equality constraints only	
G2h3a1	Smooth function and constraints	
	$nag_nlp_sol (9.3)$	Solves a dense nonlinear programming problem
	nag_con_nlin_lsq_sol (9.4)	Finds a constrained minimum of a sum of squares
	nag_con_nlin_lsq_sol_1 (9.4)	Finds a constrained minimum of a sum of squares
	nag_nlp_sparse_sol (9.6)	Solves a sparse nonlinear programming problem
G2h3b	Equality and inequality constraints	2 2 2 2 2 Parso nominous programming problem
0.21100	- 4 4	

G2h3b1	Smooth function and constraints		
G2h3b1a	User provides no derivatives		
	$\verb nag_con_nlin_lsq_sol (9.4)$	Finds a constrained minimum of a sum of squares	
G2h3b1b	÷		
	${\tt nag_con_nlin_lsq_sol} \ (9.4)$	Finds a constrained minimum of a sum of squares	
G4	Service routines		
G4c	Check user-supplied derivatives		
	${\tt nag_nlin_lsq_sol} \ (9.2)$	Finds an unconstrained minimum of a sum of squares	
G4d	Find feasible point		
	nag_qp_sol (9.1)	Solves a linear or quadratic programming problem	
	${\tt nag_con_nlin_lsq_sol} \ (9.4)$	Finds a constrained minimum of a sum of squares	
G4f	Other		
	${\tt nag_qp_cntrl_init}\ (9.1)$	Initialization procedure for nag_qp_cntrl_wp	
	${\tt nag_nlin_lsq_cntrl_init}\ (9.2)$	Initialization procedure for $nag_nlin_lsq_cntrl_wp$	
	${\tt nag_nlp_cntrl_init}\ (9.3)$	Initialization procedure for nag_nlp_cntrl_wp	
	${\tt nag_con_nlin_lsq_cntrl_init}\ (9.4)$	Initialization procedure for nag_con_nlin_lsq_cntrl_wp	
	${\tt nag_nlp_sparse_cntrl_init}\ (9.6)$	Initialization procedure for $nag_nlp_sparse_cntrl_wp$	
H	Differentiation, integration		
H2	Quadrature (numerical evaluation of definite integrals)		
H2a	One-dimensional integrals		
H2a1	Finite interval (general integrand)		
H2a1a	Integrand available via user-defined procedu		
H2a1a1	Automatic (user need only specify require	* /	
	nag_quad_1d_gen (11.1)	1-d quadrature, adaptive, finite interval, allowing for badly behaved integrand, allowing for singularities at user-specified break-points, suitable for oscillatory integrands	
H2a1b	Integrand available only on grid		
H2a1b2	Nonautomatic		
	${\tt nag_quad_1d_data}~(11.1)$	1-d quadrature, integration of function defined by data values, Gill-Miller method	
H2a2		grand including weight functions, oscillating and singular	
H2a2a	integrands, principal value integrals, splines, etc.) Integrand available via user-defined procedure		
H2a2a1	Automatic (user need only specify require	ed accuracy)	
	$\verb"nag-quad-1d-gen" (11.1)$	1-d quadrature, adaptive, finite interval, allowing for badly behaved integrand, allowing for singularities at user-specified break-points, suitable for oscillatory integrands	
	${\tt nag_quad_1d_wt_trig}~(11.1)$	1-d quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$	
	${\tt nag_quad_1d_wt_end_sing} \ (11.1)$	1-d quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type	

	nag_quad_1d_wt_hilb (11.1)	1-d quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principal value (Hilbert transform)
H2a2b	Integrand available only on grid	transform)
H2a2b1	Automatic (user need only specify require	ed accuracy)
	nag_spline_1d_intg (8.2)	Computes the definite integral of a cubic spline
H2a3	Semi-infinite interval (including e^{-x} weight for	unction)
H2a3a	Integrand available via user-defined proced	· · · · · · · · · · · · · · · · · · ·
H2a3a1	Automatic (user need only specify require	ed accuracy)
	$nag_quad_1d_inf_gen (11.2)$	1-d quadrature, adaptive, semi-infinite or infinite interval
	$nag_quad_1d_inf_wt_trig\ (11.2)$	1-d quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$
H2a4	Infinite interval (including $\exp(-x^2)$ weight for	unction)
H2a4a	Integrand available via user-defined proced-	ire
H2a4a1	Automatic (user need only specify require	ed accuracy)
	${\tt nag_quad_1d_inf_gen} \ (11.2)$	1-d quadrature, adaptive, semi-infinite or infinite interval
H2b	Multidimensional integrals	
H2b1	One or more hyper-rectangular regions (inclu	des iterated integrals)
H2b1a	Integrand available via user-defined procedure	
H2b1a1	Automatic (user need only specify require	-,
	${\tt nag_quad_md_rect_mintg}~(11.3)$	Multi-dimensional adaptive quadrature over a hyper-rectangle, multiple integrands
	${\tt nag_quad_md_rect}~(11.3)$	Multi-dimensional adaptive quadrature over a hyper-rectangle
	$\texttt{nag_quad_2d}\ (11.3)$	2-d quadrature, finite region
	${\tt nag_quad_monte_carlo}~(11.3)$	Multi-dimensional quadrature over hyper-rectangle, Monte-Carlo method
H2c	Service routines (e.g., compute weights and noc	
	${\tt nag_quad_gs_wt_absc}~(11.4)$	Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
I	Differential and integral equations	
I1	Ordinary differential equations (ODE's)	
I1a	Initial value problems	
I1a1	General, nonstiff or mildly stiff	
I1a1a	One-step methods (e.g., Runge–Kutta)	
	nag_rk_interval (12.1)	Integrates across an interval and provides the solution at user-specified points
	nag_rk_step (12.1)	Integrates one step at a time
I1a2	Stiff and mixed algebraic- differential equatio	
	nag_pde_parab_1d_fd (13.3)	Integrates a system of parabolic PDEs in one space variable, coupled with ODEs; using finite differences for the spatial discretisation with optional automatic adaptive spatial remeshing
I1c	Service routines (e.g., interpolation of solutions	
	nag_rk_setup (12.1)	Sets up the integration
	${\tt nag_rk_reset_end}\ (12.1)$	Resets the end point of integration

	<pre>nag_rk_interp (12.1) nag_rk_info (12.1) nag_rk_global_err (12.1)</pre>	Interpolates the solution Provides statistics about the integration Provides information about global error assessment
TO	Partial differential equations	Frovides information about global error assessment
I2 I2a	Initial boundary value problems	
12a I2a1	Parabolic	
I2a1a	One spatial dimension	
	nag_pde_parab_1d_coll (13.3)	Integrates a system of parabolic PDEs in one space variable, coupled with ODEs; using a Chebyshev C^0 collocation method for the spatial discretisation
	nag_pde_interp_1d_coll (13.3)	Interpolates the solution and first derivative of a system of partial differential equations solved using a Chebyshev C^0 collocation method, at a set of user-specified points
	${\tt nag_pde_interp_1d_fd}~(13.3)$	Interpolates the solution and first derivative of a system of partial differential equations solved using finite differences, at a set of user-specified points
I2b	Elliptic boundary value problems	
I2b1	Linear	
I2b1a	Second order	
I2b1a1		
I2b1a1a	Rectangular domain (or topologically re	9
	${\tt nag_pde_helm_3d}~(13.1)$	Solves the 3-d Helmholtz equation using a standard seven-point finite difference scheme and a fast Fourier transform method
I2b1a3	Nonseparable problems	
	${\tt nag_pde_ell_rect}~(13.2)$	Generates a seven-diagonal system of linear equations which arises from the discretization of a two-dimensional elliptic partial differential equation on a rectangle
I2b4	Service routines	
	${\tt nag_pde_ell_rect}~(13.2)$	Generates a seven-diagonal system of linear equations which arises from the discretization of a two- dimensional elliptic partial differential equation on a rectangle
	nag_pde_interp_1d_col1 (13.3)	Interpolates the solution and first derivative of a system of partial differential equations solved using a Chebyshev C^0 collocation method, at a set of user-specified points
	${\tt nag_pde_interp_1d_fd}~(13.3)$	Interpolates the solution and first derivative of a system of partial differential equations solved using finite differences, at a set of user-specified points
I2b4a	Domain triangulation (search also class P)	
	${\tt nag_pde_ell_mg_sol}~(13.2)$	Solves a seven-diagonal system of linear equations using a multigrid iteration
J	Integral transforms	
J1	Trigonometric transforms including fast Fourier tr	ransforms
J1a	One-dimensional	
J1a1	Real	
	${\tt nag_fft_1d_basic}~(7.1)$	Single or multiple 1-d real, Hermitian or complex discrete Fourier transform, which is overwritten on the input data

	• • • • • • • • • • • • • • • • • • • •	Single or multiple 1-d real or Hermitian discrete Fourier transform, or its inverse
J1a2	Complex	
	• ,	Single or multiple 1-d complex discrete Fourier transform, or its inverse
	• • • • • • • • • • • • • • • • • • • •	Single or multiple 1-d real, Hermitian or complex discrete Fourier transform, which is overwritten on the input data
	$nag_fft_1d_real$ (7.1)	Single or multiple 1-d real or Hermitian discrete Fourier transform, or its inverse
	$nag_fft_cos(7.2)$	Single or multiple 1-d discrete Fourier cosine transform
	$nag_fft_sin(7.2)$	Single or multiple 1-d discrete Fourier sine transform
	$nag_fft_qtr_cos$ (7.2)	Single or multiple 1-d discrete quarter-wave Fourier cosine transform, or its inverse
	${\tt nag_fft_qtr_sin}\ (7.2)$	Single or multiple 1-d discrete quarter-wave Fourier sine transform, or its inverse
	${\tt nag_conj_herm}\ (7.1)$	Complex conjugates of Hermitian sequences
	${\tt nag_herm_to_cmplx}\ (7.1)$	Convert Hermitian sequences to general complex sequences
	${\tt nag_cmplx_to_herm}\ (7.1)$	Convert Hermitian complex sequences to their compact real form
$_{ m J1b}$	Multidimensional	
	${\tt nag_fft_2d}~(7.1)$	2-d complex discrete Fourier transform, or its inverse
	${\tt nag_fft_2d_basic}\ (7.1)$	2-d complex discrete Fourier transform, which is overwritten on the input data
	${\tt nag_fft_3d}~(7.1)$	3-d complex discrete Fourier transform, or its inverse
	${\tt nag_fft_3d_basic}~(7.1)$	3-d complex discrete Fourier transform, which is overwritten on the input data
J2	Convolutions	
	nag_fft_conv (7.3)	Computes the convolution or correlation of two real or complex vectors
J4	Hilbert transforms	
	3 1	1-d quadrature, adaptive, finite interval, weight function $1/(x-c)$, Cauchy principal value (Hilbert transform)
K	Approximation (search also class $L8$)	
K1	Least squares (L_2) approximation	
K1a	Linear least squares (search also classes D5, D6,	D9)
K1a1	Unconstrained	
K1a1a	Univariate data (curve fitting)	
K1a1a1	Polynomial splines (piecewise polynomials)	
	, , ,	Generates a weighted least-squares cubic spline fit to an arbitrary 1-d data set, with given interior knots
	· · · · · · · · · · · · · · · · · ·	Generates a cubic spline approximation to an arbitrary 1-d data set, with automatic knot selection
K1a1b	Multivariate data (surface fitting)	
		Generates a minimal, weighted least-squares bicubic spline surface fit to a given set of data points, with given interior knots
	5 • • • • • • • • • • • • • • • • • • •	Generates a bicubic spline approximation to a 2-d data set, with automatic knot selection
K1b	Nonlinear least squares	
K1b1	Unconstrained	

K1b1a	Smooth functions	
K1b1a1	User provides no derivatives	
	$\verb nag_nlin_lsq_sol (9.2)$	Finds an unconstrained minimum of a sum of squares
K1b1a2	User provides first derivatives	
	${\tt nag_nlin_lsq_sol} \ (9.2)$	Finds an unconstrained minimum of a sum of squares
K1b1a3	User provides first and second derivatives	
	${\tt nag_nlin_lsq_sol}\ (9.2)$	Finds an unconstrained minimum of a sum of squares
K1b2	Constrained	
K1b2b	Nonlinear constraints	
	${\tt nag_con_nlin_lsq_sol} \ (9.4)$	Finds a constrained minimum of a sum of squares
K6	Service routines for approximation	
K6a	Evaluation of fitted functions, including quadrat	ture
K6a1	Function evaluation	
	${\tt nag_spline_1d_eval}\ (8.2)$	Computes values of a cubic spline and optionally its first three derivatives
	${\tt nag_spline_2d_eval}\ (8.3)$	Computes values of a bicubic spline
	${\tt nag_cheb_1d_eval}\ (8.5)$	Evaluation of fitted polynomial in one variable, from Chebyshev series form
K6a2	Derivative evaluation	
	${\tt nag_spline_1d_eval}\ (8.2)$	Computes values of a cubic spline and optionally its first three derivatives
	${\tt nag_cheb_1d_deriv} \ (8.5)$	Derivatives of fitted polynomial in Chebyshev series form
K6a3	Quadrature	
	$nag_spline_1d_intg$ (8.2)	Computes the definite integral of a cubic spline
	${\tt nag_spline_2d_intg}~(8.3)$	Computes the definite integral of a bicubic spline
	${\tt nag_cheb_1d_intg}~(8.5)$	Integral of fitted polynomial in Chebyshev series form
$\mathbf{K6d}$	Other	
	${\tt nag_spline_1d_set}~(8.2)$	Initializes a cubic spline with given interior knots and B-spline coefficients
	${\tt nag_spline_1d_extract}\ (8.2)$	Extracts details of a cubic spline from a structure of type nag_spline_1d_comm_wp
	${\tt nag_spline_2d_set}~(8.3)$	Initializes a bicubic spline with given interior knots and B-spline coefficients
	${\tt nag_spline_2d_extract}\ (8.3)$	Extracts details of a bicubic spline from a structure of type nag_spline_2d_comm_wp
	${\tt nag_nlin_lsq_cov}\ (9.2)$	Computes the variance-covariance matrix for a nonlinear least-squares problem
	${\tt nag_nlin_lsq_cntrl_init}\ (9.2)$	Initialization procedure for nag_nlin_lsq_cntrl_wp
${f L}$	Statistics, probability	
L1	Data summarization	
L1a	One-dimensional data	
L1a1	Raw data	
	${\tt nag_summary_stats_1v}\ (22.1)$	Computes basic descriptive statistics for univariate data
L1a3	Grouped data	

	nag_summary_stats_1v (22.1)	Computes basic descriptive statistics for univariate data
L1c	Multi-dimensional data	
L1c1	Raw data	
L1c1b	Covariance, correlation	
	${\tt nag_prod_mom_correl}\ (25.2)$	Calculates the variance-covariance matrix and the Pearson product-moment correlation coefficients for a set of data
	${\tt nag_part_correl}\ (25.2)$	Calculates the partial variance-covariance matrix and the partial correlation matrix from a correlation or variance covariance matrix
L5	Function evaluation (search also class C)	
L5a	Univariate	
L5a1	Cumulative distribution functions, probability	density functions
L5a1b	Beta, binomial	
	${\tt nag_binom_prob}\ (20.7)$	Computes lower tail, upper tail or point probability for a binomial distribution with parameters n and p
	${\tt nag_beta_prob}\ (20.5)$	Computes lower or upper tail probability for a beta distribution with parameters a and b
L5a1c	Cauchy, χ^2	
	${\tt nag_chisq_prob}\;(20.3)$	Computes lower or upper tail probability for a χ^2 -distribution with ν degrees of freedom
L5a1e	Error function, exponential, extreme value	
	${\tt nag_erfc}\ (3.3)$	Complementary error function erfc x
	${\tt nag_erf}\ (3.3)$	Error function $\operatorname{erf} x$
L5a1f	F-distribution	
	$\texttt{nag_f_prob}\ (20.4)$	Computes lower or upper tail probability for an F-distribution with ν_1 and ν_2 degrees of freedom
L5a1g	Gamma, general, geometric	
	${\tt nag_gamma_prob}\ (20.6)$	Computes lower or upper tail probability for a gamma distribution with shape parameter a and scale parameter b
L5a1h	Halfnormal, hypergeometric	
	nag_hypergeo_prob (20.7)	Computes lower tail, upper tail or point probability for a hypergeometric distribution with parameters n , l , and m
L5a1n	Negative binomial, normal	
	${\tt nag_normal_prob}\ (20.1)$	Computes probabilities for various parts of a univariate Normal distribution
L5a1p	Pareto, Poisson	
	$\verb nag_poisson_prob (20.7)$	Computes lower tail, upper tail or point probability for a Poisson distribution with parameter λ
L5a1t	t-distribution	
	$\texttt{nag_t_prob}\ (20.2)$	Computes probabilities for various parts of a Student's t -distribution with ν degrees of freedom
L5a2	Inverse distribution functions, sparsity function	ons
L5a2b	Beta, binomial	
	${\tt nag_beta_deviate} \ (20.5)$	Computes the deviate associated with a given lower tail probability of a beta distribution with parameters a and b

L5a2c	Cauchy, χ^2	
	${\tt nag_chisq_deviate}\ (20.3)$	Computes the deviate associated with a given lower tail probability of a χ^2 -distribution with ν degrees of freedom
L5a2f	F-distribution	
	${\tt nag_f_deviate}\ (20.4)$	Computes the deviate associated with a given lower tail probability of an F -distribution with ν_1 and ν_2 degrees of freedom
L5a2g	Gamma, general, geometric	
	${\tt nag_gamma_deviate}~(20.6)$	Computes the deviate associated with a given lower tail probability of a gamma distribution with shape parameter a and scale parameter b
L5a2n	Negative binomial, normal, normal order s	
	${\tt nag_normal_deviate}\ (20.1)$	Computes the deviate associated with a given probability of a standard Normal distribution
L5a2t	t-distribution	
	${\tt nag_t_deviate}\ (20.2)$	Computes the deviate associated with a given probability of a Student's t -distribution
L5b	Multivariate	
L5b1	Cumulative multivariate distribution function	ns, probability density functions
L5b1n	Normal	
	nag_bivar_normal_prob (20.1)	Computes the lower tail probability for a bivariate Normal distribution
	nag_mv_normal_prob (20.1)	Computes probabilities for various parts of a multivariate Normal distribution
L6	Random number generation	
L6a	Univariate	
	nag_rand_ref_vec (21.3)	Generates random integers from a discrete distribution, using a reference vector
L6a2	Beta, binomial, Boolean	
	nag_rand_binom (21.3)	Generates random integers from a binomial distribution and/or returns a reference vector for the distribution
	${\tt nag_rand_beta}\ (21.2)$	Generates random numbers from a beta distribution with parameters a and b
L6a5	Exponential, extreme value	
	${\tt nag_rand_neg_exp}\ (21.2)$	Generates random numbers from a (negative) exponential distribution with mean a
L6a7	Gamma, general (continuous, discrete), georg	
	<pre>nag_rand_user_dist (21.3)</pre>	Generates random integers and/or returns a reference vector from a discrete distribution defined in terms of its PDF or CDF
	${\tt nag_rand_gamma}\ (21.2)$	Generates random numbers from a gamma distribution with parameters a and b
L6a8	Halfnormal, hypergeometric	
	nag_rand_hypergeo (21.3)	Generates random integers from an hypergeometric distribution and/or returns a reference vector for the distribution
L6a14	Negative binomial, normal, normal order sta	tistics
	${\tt nag_rand_normal}\ (21.2)$	Generates random numbers from a Normal distribution with mean a and standard deviation b
	nag_rand_neg_binom (21.3)	Generates random integers from a negative binomial distribution and/or returns a reference vector for the distribution

L6a21	Uniform (continuous, discrete), uniform order statistics	
	${\tt nag_rand_uniform}~(21.2)$	Generates random numbers from a uniform distribution over (a, b)
L6b	Multivariate	
L6b14	Normal	
	nag_rand_mv_normal (21.2)	Generates a vector of n random numbers from a multivariate Normal distribution with mean vector a and covariance matrix C
$\mathbf{L6c}$	Service routines (e.g., seed)	
	nag_rand_seed_set (21.1)	Sets the seed used by random number generating procedures to give a repeatable or non-repeatable sequence of random numbers
L7	Analysis of variance (including analysis of covaria	nce)
L7f	Generate experimental designs	
	${\tt nag_mult_lin_reg}\;(25.1)$	Performs a general multiple linear regression analysis for any given predictor variables and a response variable
L8	Regression (search also classes D5, D6, D9, G, K	
L8a	Simple linear (i.e., $y = b_0 + b_1 x$) (search also classically	$ass \ L8h)$
L8a1	Ordinary least squares	
L8a1a	Parameter estimation	
L8a1a1	Unweighted data	
	${\tt nag_simple_lin_reg}\;(25.1)$	Performs a simple linear regression analysis for a pair of related variables
L8c	Multiple linear (i.e., $y = b_0 + b_1 x_1 + + b_p x_p$)	
L8c1	Ordinary least squares	
L8c1b	Parameter estimation (search also class L8	c1a)
L8c1b1	Using raw data	
	nag_mult_lin_reg (25.1)	Performs a general multiple linear regression analysis for any given predictor variables and a response variable
L8e	Nonlinear (i.e., $y = F(X, b)$) (search also class in	L8h)
L8e1	Ordinary least squares	
L8e1b	Parameter estimation (search also class L8e1a)	
L8e1b1	Unweighted data, user provides no derivatives	
	${\tt nag_nlin_lsq_cov}\ (9.2)$	Computes the variance-covariance matrix for a nonlinear least-squares problem
	${\tt nag_nlin_lsq_sol} \ (9.2)$	Finds an unconstrained minimum of a sum of squares
	${\tt nag_con_nlin_lsq_sol} \ (9.4)$	Finds a constrained minimum of a sum of squares
	$\verb nag_con_nlin_lsq_sol_1 (9.4)$	Finds a constrained minimum of a sum of squares
L8e1b2	Unweighted data, user provides derivative	
	${\tt nag_nlin_lsq_sol}\ (9.2)$	Finds an unconstrained minimum of a sum of squares
	${\tt nag_con_nlin_lsq_sol}\ (9.4)$	Finds a constrained minimum of a sum of squares
	${\tt nag_con_nlin_lsq_sol_1}\ (9.4)$	Finds a constrained minimum of a sum of squares

L8g	Spline (i.e., piecewise polynomial)	
	nag_spline_1d_lsq_fit (8.2)	Generates a weighted least-squares cubic spline fit to an arbitrary 1-d data set, with given interior knots
	${\tt nag_spline_1d_auto_fit}~(8.2)$	Generates a cubic spline approximation to an arbitrary 1-d data set, with automatic knot selection
L10	Time series analysis (search also class J)	
L10a	Univariate (search also classes L3a6 and L3a7)	
L10a2	Time domain analysis	
L10a2a	Summary statistics	
L10a2a1	Autocorrelations and autocovariances	
	${\tt nag_tsa_acf}\ (29.1)$	Calculates the sample autocorrelation function of a univariate time series
L10a2a2	Partial autocorrelations	
	${\tt nag_tsa_pacf}\ (29.1)$	Calculates the sample partial autocorrelation function of a univariate time series
L10a2c1	Model identification	
	${\tt nag_tsa_pacf}\ (29.1)$	Calculates the sample partial autocorrelation function of a univariate time series
L10a3	Frequency domain analysis (search also class	J1)
L10a3a	Spectral analysis	
L10a3a3	Spectrum estimation using the periodogra	
	${\tt nag_spectral_cov}~(29.3)$	Calculates the smoothed sample spectrum of a univariate time series using autocovariances data
L10a3a4	Spectrum estimation using the Fourier tra	
	${\tt nag_spectral_data} \ (29.3)$	Calculates the smoothed sample spectrum of a univariate time series
L10b	Two time series (search also classes L3b3c, L10c, and L10d)	
L10b3	Frequency domain analysis (search also class	J1)
L10b3a	Cross-spectral analysis	
L10b3a3	Cross-spectrum estimation using the cross	
	${\tt nag_bivar_spectral_cov}\ (29.3)$	Calculates the smoothed sample cross spectrum of a bivariate time series using autocovariances data
L10b3a4		rier transform of the cross-correlation or cross-covariance
	function nag_bivar_spectral_data (29.3)	Calculates the smoothed sample cross spectrum of a bivariate time series
L10b3a6	Spectral functions	Calculates the shiotoned sample cross spectrum of a bivariate time series
1100000	nag_bivar_spectral_coh (29.3)	Calculates the squared coherency, the cross amplitude, the gain and the phase spectra
	nag_bivar_spectral_lin_sys (29.3)	Calculates the noise spectrum and the impulse response function from a linear system
L10c	Multivariate time series (search also classes J1,	
2100	nag_kalman_init (29.2)	Provides an initial estimate of the Kalman filter state covariance matrix
	nag_kalman_predict (29.2)	Calculates a one step prediction for the square root covariance Kalman filter
	nag_kalman_sqrt_cov_var (29.2)	Calculates a time-varying square root covariance Kalman filter
	nag_kalman_sqrt_cov_invar (29.2)	Calculates a time-invariant square root covariance Kalman filter
L12	Discriminant analysis	The second of th
	nag_canon_var (28.2)	Performs canonical variate analysis
	()	

L13	Covariance structure models	
L13a	Factor analysis	
	nag_orthomax (28.3)	Computes orthogonal rotation, using a generalized orthomax rotations
L13b		
	${\tt nag_prin_comp}\ (28.1)$	Performs principal component analysis
L13c	Canonical correlation	
	${\tt nag_canon_var}\ (28.2)$	Performs canonical variate analysis
\mathbf{N}	Data handling (search also class $L2$)	
N1	Input, output	
	${\tt nag_write_gen_mat}\ (1.3)$	Writes a real, complex or integer general matrix
	${\tt nag_write_tri_mat}\ (1.3)$	Writes a real or complex triangular matrix
	${\tt nag_write_bnd_mat}\ (1.3)$	Writes a real or complex band matrix
N6	Sorting	
N6a	Internal	
N6a1	Passive (i.e., construct pointer array, rank)	
	nag_rank_arb_data (1.4)	Ranks arbitrary data according to a user-supplied comparison procedure
N6a1a	Integer	
	$nag_rank_vec (1.4)$	Ranks a vector of numeric or character data in ascending or descending order
	$nag_rank_mat(1.4)$	Ranks the rows or columns of a matrix of integer or real numbers in ascending or descending order
N6a1b	Real	
	${\tt nag_rank_vec}\ (1.4)$	Ranks a vector of numeric or character data in ascending or descending order
	${\tt nag_rank_mat}~(1.4)$	Ranks the rows or columns of a matrix of integer or real numbers in ascending or descending order
N6a1c	Character	
	$nag_rank_vec (1.4)$	Ranks a vector of numeric or character data in ascending or descending order
N6a2	Active	
N6a2a	Integer	
	${\tt nag_sort_vec}\ (1.4)$	Sorts a vector of numeric or character data into ascending or descending order
N6a2b	Real	
	$nag_sort_vec (1.4)$	Sorts a vector of numeric or character data into ascending or descending order
N6a2c	Character	
	$nag_sort_vec (1.4)$	Sorts a vector of numeric or character data into ascending or descending order
N8	Permuting	
	nag_reorder_vec (1.4)	Reorders a vector of numeric or character data into the order specified by a vector of ranks
	nag_invert_perm (1.4)	Inverts a permutation, thus converts a rank vector to an index vector, or vice-versa
	nag_check_perm (1.4)	Checks the validity of a permutation
	nag_decomp_perm (1.4)	Decomposes a permutation into cycles, as an aid to reordering ranked data

References

\mathbf{R}	Service routines	
	${\tt nag_lib_ident}\ (1.1)$	Prints details of the Library implementation
	${\tt nag_deallocate}\ (1.1)$	Deallocates storage from structures with types defined by the Library
R1	Machine-dependent constants	
	${\tt nag_pi}\ (1.5)$	Returns an approximation to π
	${\tt nag_euler_constant}\ (1.5)$	Returns an approximation to γ (Euler's constant)
R3	Error handling	
R3c	Other utilities	
	${\tt nag_set_error}\ (1.2)$	Controls how errors are to be handled by the Library

References

- [1] Boisvert R F, Howe S E and Kahaner D K (1990) The guide to available mathematical software problem classification scheme Report NISTIR 4475 Applied and Computational Mathematics Division, National Institute of Standards and Technology
- [2] Boisvert R F, Howe S E and Kahaner D K (1985) GAMS a framework for the management of scientific software ACM Trans. Math. Software 11 313–355
- [3] Boisvert R F (1989) The guide to available mathematical software advisory system Math. Comput. Simul. 31 453–464