List of Contents ## Chapter 1: Utilities Module 1.1: nag_lib_support **Library Support Facilities** nag_lib_ident Prints details of the Library implementation nag_deallocate Deallocates storage from structures with types defined by the Library Module 1.2: nag_error_handling **Error Handling** nag_set_error Controls how errors are to be handled by the Library nag_error Communicates information about error handling between a user's program and the Library (type) Module 1.3: nag_write_mat **Matrix Printing** nag_write_gen_mat Writes a real, complex or integer general matrix nag_write_tri_mat Writes a real or complex triangular matrix nag_write_bnd_mat Writes a real or complex band matrix Module 1.4: nag_sort Sorting nag_sort_vec Sorts a vector of numeric or character data into ascending or descending order nag_rank_vec Ranks a vector of numeric or character data in ascending or descending order nag_reorder_vec Reorders a vector of numeric or character data into the order specified by a vector of ranks nag_rank_mat Ranks the rows or columns of a matrix of integer or real numbers in ascending or descending order nag_rank_arb_data Ranks arbitrary data according to a user-supplied comparison procedure nag_invert_perm Inverts a permutation, thus converts a rank vector to an index vector, or vice-versa nag_check_perm Checks the validity of a permutation nag_decomp_perm Decomposes a permutation into cycles, as an aid to reordering ranked data Module 1.5: nag_math_constants **Mathematical Constants** nag_pi Returns an approximation to π nag_euler_constant Returns an approximation to γ (Euler's constant) # Chapter 3: Special Functions Module 3.1: nag_inv_hyp_fun Inverse Hyperbolic Functions nag_arctanhInverse hyperbolic tangent, arctanh xnag_arcsinhInverse hyperbolic sine, arcsinh xnag_arccoshInverse hyperbolic cosine, arccosh x # Module 3.2: nag_gamma_fun #### **Gamma Functions** nag_gammaGamma functionnag_log_gammaLog gamma functionnag_polygammaPolygamma functions #### Module 3.3: nag_err_fun #### **Error Functions** nag_erf Error function erf x nag_erfc Complementary error function erfc x nag_dawson Dawson's integral F(x) #### Module 3.4: nag_bessel_fun #### **Bessel Functions** | nag_bessel_j0 | Bessel function $J_0(x)$ | |---------------|------------------------------| | nag_bessel_j1 | Bessel function $J_1(x)$ | | nag_bessel_j | Bessel function $J_{\nu}(z)$ | | nag_bessel_y0 | Bessel function $Y_0(x)$ | | nag_bessel_y1 | Bessel function $Y_1(x)$ | | nag_bessel_y | Bessel function $Y_{\nu}(z)$ | | | M - 1:C - 1 D 1 C 4: | $\begin{array}{lll} {\tt nag_bessel_i0} & {\tt Modified Bessel function} \ I_0(x) \\ {\tt nag_bessel_i1} & {\tt Modified Bessel function} \ I_1(x) \\ {\tt nag_bessel_i} & {\tt Modified Bessel function} \ I_{\nu}(z) \\ {\tt nag_bessel_k0} & {\tt Modified Bessel function} \ K_0(x) \\ {\tt nag_bessel_k1} & {\tt Modified Bessel function} \ K_1(x) \\ {\tt nag_bessel_k} & {\tt Modified Bessel function} \ K_{\nu}(z) \\ \end{array}$ #### Module 3.5: nag_fresnel_intg ## Fresnel Integrals $\begin{array}{ll} {\tt nag_fresnel_s} & {\tt Fresnel\ integral\ } S(x) \\ {\tt nag_fresnel_c} & {\tt Fresnel\ integral\ } C(x) \end{array}$ # Module 3.6: nag_ell_intg #### Elliptic Integrals | nag_ell_rf | Symmetrised elliptic integral of the first kind | |------------|--| | nag_ell_rc | Degenerate form of elliptic integral of the first kind | | nag_ell_rd | Symmetrised elliptic integral of the second kind | | nag_ell_rj | Symmetrised elliptic integral of the third kind | #### Module 3.7: nag_ell_fun #### **Elliptic Functions** nag_ell_jac Jacobian elliptic functions sn, cn and dn #### Module 3.8: nag_airy_fun #### **Airy Functions** | nag_airy_ai | Airy function $Ai(z)$ | |-------------|-----------------------| | nag_airy_bi | Airy function $Bi(z)$ | # Module 3.9: nag_kelvin_fun Kelvin Functions | nag_kelvin_ber | Kelvin function ber x | |----------------|--------------------------------------| | nag_kelvin_bei | Kelvin function bei \boldsymbol{x} | | nag_kelvin_ker | Kelvin function ker \boldsymbol{x} | | nag_kelvin_kei | Kelvin function kei \boldsymbol{x} | # Chapter 4: Matrix and Vector Operations #### Module 4.1: nag_mat_norm Norms of a Matrix | nag_gen_mat_norm | Computes a norm. | or the element | of largest | absolute value, of a | |------------------|------------------|----------------|------------|----------------------| | | | | | | general real or complex matrix real or complex square banded matrix nag_sym_mat_norm Computes a norm, or the element of largest absolute value, of a real or complex, symmetric or Hermitian matrix, stored in conventional or packed storage nag_sym_bnd_mat_norm Computes a norm, or the element of largest absolute value, of a real or complex, symmetric or Hermitian band matrix nag_trap_mat_norm Computes a norm, or the element of largest absolute value, of a real or complex trapezoidal matrix nag_tri_mat_norm Computes a norm, or the element of largest absolute value, of a real or complex triangular matrix, stored in conventional or packed storage real or complex triangular band matrix ${\it real or complex upper Hessenberg matrix}$ # Module 4.2: nag_mat_inv Matrix Inversion | nag_gen_mat_inv | Computes the inverse of a general real or complex matrix | |---------------------|--| | nag_gen_mat_inv_fac | Computes the inverse of a general real or complex matrix, with | the matrix previously factorized using nag_gen_lin_fac nag_sym_mat_inv Computes the inverse of a real or complex, symmetric or Hermitian matrix Hermitian matrix, with the matrix previously factorized using nag_sym_lin_fac nag_tri_mat_inv Computes the inverse of a real or complex triangular matrix #### Module 4.3: nag_sparse_mat Sparse Matrix Utilities nag_sparse_mat_init_coo nag_sparse_mat_init_csc nag_sparse_mat_init_dia nag_sparse_mat_extract Initializes a sparse matrix data structure from COO format Initializes a sparse matrix data structure from CSC format Initializes a sparse matrix data structure from CSR format Initializes a sparse matrix data structure from DIA format Extracts details of a sparse matrix from a structure of type nag_sparse_mat_real_wp or nag_sparse_mat_cmplx_wp nag_sparse_mat_real_wp nag_sparse_mat_cmplx_wp Matrix-vector multiply for a sparse matrix Represents a real sparse matrix (type) Represents a complex sparse matrix (type) ## Chapter 5: Linear Equations #### Module 5.1: nag_gen_lin_sys General Systems of Linear Equations nag_gen_lin_sol Solves a general real or complex system of linear equations with one or many right-hand sides $nag_gen_lin_fac$ Performs an LU factorization of a general real or complex matrix $nag_gen_lin_sol_fac$ Solves a general real or complex system of linear equations, with coefficient matrix previously factorized by nag_gen_lin_fac ## Module 5.2: nag_sym_lin_sys #### Symmetric Systems of Linear Equations nag_sym_lin_sol Solves a real or complex, symmetric or Hermitian system of linear equations with one or many right-hand sides nag_sym_lin_fac Performs a Cholesky or Bunch-Kaufman factorization of a real or complex, symmetric or Hermitian matrix nag_sym_lin_sol_fac Solves a real or complex, symmetric or Hermitian system of linear equations, with coefficient matrix previously factorized by nag_sym_lin_fac #### Module 5.3: nag_tri_lin_sys ### Triangular Systems of Linear Equations nag_tri_lin_sol Solves a real or complex triangular system of linear equations nag_tri_lin_cond Estimates the condition number of a real or complex triangular matrix nag_tri_mat_det Evaluates the determinant of a real or complex triangular matrix #### Module 5.4: nag_gen_bnd_lin_sys #### General Banded Systems of Linear Equations nag_gen_bnd_lin_sol Solves a general real or complex banded system of linear equations, with one or many right-hand sides nag_gen_bnd_lin_fac Performs an LU factorization of a general real or complex band matrix nag_gen_bnd_lin_sol_fac Solves a general real or complex banded system of linear equations, with coefficient matrix previously factorized by nag_gen_bnd_lin_fac #### Module 5.5: nag_sym_bnd_lin_sys #### Symmetric Banded Systems of Linear Equations nag_sym_bnd_lin_sol Solves a real symmetric or complex Hermitian positive definite banded system of linear equations, with one or many right-hand sides nag_sym_bnd_lin_fac Performs a Cholesky factorization of a real symmetric or complex Hermitian positive definite band matrix nag_sym_bnd_lin_sol_fac Solves a real symmetric or complex Hermitian positive definite banded system of linear equations, with coefficient matrix previously factorized by nag_sym_bnd_lin_fac ### Module 5.6: nag_sparse_prec #### Sparse Matrix Preconditioner Set-up and Solve nag_sparse_prec_init_jac Initializes sparse Jacobi preconditioner nag_sparse_prec_init_ssor Initializes sparse SSOR preconditioner complex non-Hermitian matrices nag_sparse_prec_sol Sparse matrix preconditioned system solver 0.8.4 List of Contents [NP3506/4] #### Module 5.7: nag_sparse_lin_sys Sparse Linear System Iterative Solvers nag_sparse_gen_lin_sol General sparse linear system solver ## Chapter 6: Eigenvalue and Least-squares Problems #### Module 6.1: nag_sym_eig #### Standard Symmetric Eigenvalue Problems nag_sym_eig_all All eigenvalues, and optionally eigenvectors, of a real symmetric or complex Hermitian matrix nag_sym_eig_sel Selected eigenvalues, and optionally the corresponding eigenvec- tors, of a real symmetric or complex Hermitian matrix nag_sym_tridiag_reduc Reduction of a real symmetric or complex Hermitian matrix to real symmetric tridiagonal form nag_sym_tridiag_orth Form or apply the transformation matrix determined by nag_sym_tridiag_reduc nag_sym_tridiag_eig_all All eigenvalues, and optionally eigenvectors, of a real symmetric tridiagonal matrix nag_sym_tridiag_eig_val Selected eigenvalues of a real symmetric tridiagonal matrix Selected eigenvectors of a real symmetric tridiagonal matrix #### Module 6.2: nag_nsym_eig #### Standard Nonsymmetric Eigenvalue Problems nag_nsym_eig_all All eigenvalues, and optionally eigenvectors, of a general real or complex matrix nag_schur_fac Schur factorization of a general real or complex matrix #### Module 6.3: nag_svd #### Singular Value Decomposition (SVD) nag_gen_svd Singular value decomposition of a general real or complex matrix nag_gen_bidiag_reduc Reduction of a general real or complex matrix to real bidiagonal form nag_bidiag_svd Singular value decomposition of a real bidiagonal matrix #### Module 6.4: nag_lin_lsq Linear Least-squares Problems nag_lin_lsq_sol Solves a real or complex linear least-squares problem nag_lin_lsq_sol_svd Solves a real or complex linear least-squares problem, assuming that a singular value decomposition of the coefficient matrix has already been computed nag_qr_fac QR factorization of a general real or complex matrix nag_qr_orth Form or apply the matrix Q determined by nag_qr_fac nag_lin_lsq_sol_qr Solves a real or complex linear least-squares problem, assuming that the QR factorization of the coefficient matrix has already been computed nag_lin_lsq_sol_qr_svd Solves a real or complex linear least-squares problem using the SVD, assuming that the QR factorization of the coefficient matrix has already been computed ## Module 6.5: nag_sym_gen_eig #### Symmetric-definite Generalized Eigenvalue Problems nag_sym_gen_eig_all All eigenvalues, and optionally eigenvectors, of a real symmetric- definite or complex Hermitian-definite generalized eigenvalue problem nag_sym_gen_eig_sel Selected eigenvalues, and optionally the corresponding eigenvec- tors, of a real symmetric-definite or complex Hermitian-definite generalized eigenvalue problem ### Module 6.6: nag_nsym_gen_eig #### Nonsymmetric Generalized Eigenvalue Problems nag_nsym_gen_eig_all All eigenvalues, and optionally eigenvectors, of a real or complex nonsymmetric generalized eigenvalue problem nag_gen_schur_fac Generalized Schur factorization of a real or complex matrix pencil ## Chapter 7: Transforms # Module 7.1: nag_fft Discrete Fourier Transforms | | Cimalo on m | oultiple 1 dies | manlar diamata | Commiss therefore | a an ita | |------------|--------------|-----------------|----------------|-------------------|----------| | nag_fft_1d | Single of th | nuitible 1-a co | mbiex discrete | Fourier transform | n, or us | inverse nag_fft_1d_real Single or multiple 1-d real or Hermitian discrete Fourier transform, or its inverse nag_fft_1d_basic Single or multiple 1-d real, Hermitian or complex discrete Fourier transform, which is overwritten on the input data nag_fft_2d 2-d complex discrete Fourier transform, or its inverse nag_fft_2d_basic 2-d complex discrete Fourier transform, which is overwritten on the input data nag_fft_3d 3-d complex discrete Fourier transform, or its inverse nag_fft_3d_basic 3-d complex discrete Fourier transform, which is overwritten on the input data nag_fft_trig Trigonometric coefficients for computing discrete Fourier ${\it transforms}$ nag_herm_to_cmplx Convert Hermitian sequences to general complex sequences nag_cmplx_to_herm Convert Hermitian complex sequences to their compact real form nag_conj_herm Complex conjugates of Hermitian sequences #### Module 7.2: nag_sym_fft #### Symmetric Discrete Fourier Transforms | nag_fft_sin | Single or multiple 1-d discrete Fourier sine transform | |-------------|--| | nag_fft_cos | Single or multiple 1-d discrete Fourier cosine transform | nag_fft_qtr_sin Single or multiple 1-d discrete quarter-wave Fourier sine transform, or its inverse nag_fft_qtr_cos Single or multiple 1-d discrete quarter-wave Fourier cosine transform, or its inverse # Module 7.3: nag_conv Convolution and Correlation nag_fft_conv Computes the convolution or correlation of two real or complex vectors # Chapter 8: Curve and Surface Fitting ## Module 8.1: nag_pch_interp #### Piecewise Cubic Hermite Interpolation Generates a monotonicity-preserving piecewise cubic Hermite nag_pch_monot_interp interpolant Computes values and optionally derivatives of a piecewise cubic nag_pch_eval Hermite interpolant nag_pch_intg Computes the definite integral of a piecewise cubic Hermite interpolant Extracts details of a piecewise cubic Hermite interpolant from a nag_pch_extract structure of type nag_pch_comm_wp Represents a piecewise cubic Hermite interpolant (type) nag_pch_comm_wp ## Module 8.2: nag_spline_1d One-dimensional Spline Fitting | nag_spline_1d_auto_fit | Generates a cubic spline approximation to an arbitrary 1-d data set, with automatic knot selection | |--|--| | nag_spline_1d_lsq_fit | Generates a weighted least-squares cubic spline fit to an arbitrary 1-d data set, with given interior knots | | <pre>nag_spline_1d_interp nag_spline_1d_eval</pre> | Generates a cubic spline interpolant to an arbitrary 1-d data set
Computes values of a cubic spline and optionally its first three
derivatives | | <pre>nag_spline_1d_intg nag_spline_1d_set</pre> | Computes the definite integral of a cubic spline
Initializes a cubic spline with given interior knots and B-spline | coefficients Extracts details of a cubic spline from a structure of type nag_spline_1d_extract nag_spline_1d_comm_wp ${\tt nag_spline_1d_comm_}{wp}$ Represents a 1-d cubic spline in B-spline series form (type) #### Module 8.3: nag_spline_2d Two-dimensional Spline Fitting | nag_spline_2d_auto_fit | Generates a bicubic spline approximation to a 2-d data set, with automatic knot selection | |-------------------------------------|--| | nag_spline_2d_lsq_fit | Generates a minimal, weighted least-squares bicubic spline
surface fit to a given set of data points, with given interior knots | | nag_spline_2d_interp | Generates a bicubic spline interpolating surface through a set of data values, given on a rectangular grid of the xy plane | | nag_spline_2d_eval | Computes values of a bicubic spline | | nag_spline_2d_intg | Computes the definite integral of a bicubic spline | | nag_spline_2d_set | Initializes a bicubic spline with given interior knots and B-spline coefficients | | nag_spline_2d_extract | Extracts details of a bicubic spline from a structure of type nag_spline_2d_comm_wp | | ${\tt nag_spline_2d_comm_}{wp}$ | Represents a 2-d bicubic spline in B-spline series form (type) | #### Module 8.4: nag_scat_interp Interpolation of Scattered Data nag_scat_2d_interp Generates a 2-d interpolating function using a modified Shepard method nag_scat_2d_eval Computes values of the interpolant generated by nag_scat_2d_interp and its partial derivatives nag_scat_3d_interp Generates a 3-d interpolating function using a modified Shepard method nag_scat_3d_eval Computes values of the interpolant generated by nag_scat_3d_interp and its partial derivatives 2-d scattered data interpolant nag_scat_3d_set Initializes a structure of type nag_scat_comm_wp to represent a 3-d scattered data interpolant nag_scat_extract Extracts details of a scattered data interpolant from a structure of derived type nag_scat_comm_wp nag_scat_comm_wp Represents a scattered data interpolant generated either by nag_scat_2d_interp or nag_scat_3d_interp (type) # Module 8.5: nag_cheb_1d Chebyshev Series nag_cheb_1d_fit Finds the least-squares fit using arbitrary data points nag_cheb_1d_interp Generates the coefficients of the Chebyshev polynomial which interpolates (passes exactly through) data at a special set of points nag_cheb_1d_fit_con Finds the least-squares fit using arbitrary data points with constraints on some data points nag_cheb_1d_eval Evaluation of fitted polynomial in one variable, from Chebyshev series form nag_cheb_1d_deriv Derivatives of fitted polynomial in Chebyshev series form nag_cheb_1d_intg Integral of fitted polynomial in Chebyshev series form # Chapter 9: Optimization #### Module 9.1: nag_qp #### Linear and Quadratic Programming nag_qp_solSolves a linear or quadratic programming problemnag_qp_cntrl_initInitialization procedure for nag_qp_cntrl_wpnag_qp_cntrl_wpControl parameters for nag_qp_sol (type) #### Module 9.2: nag_nlin_lsq #### **Unconstrained Nonlinear Least-squares** nag_nlin_lsq_sol Finds an unconstrained minimum of a sum of squares nag_nlin_lsq_cov Computes the variance-covariance matrix for a nonlinear least- squares problem nag_nlin_lsq_cntrl_init Initialization procedure for nag_nlin_lsq_cntrl_wp nag_nlin_lsq_cntrl_wp Control parameters for nag_nlin_lsq_sol (type) #### Module 9.3: nag_nlp Nonlinear Programming nag_nlp_solSolves a dense nonlinear programming problemnag_nlp_cntrl_initInitialization procedure for nag_nlp_cntrl_wpnag_nlp_cntrl_wpControl parameters for nag_nlp_sol (type) #### Module 9.4: nag_con_nlin_lsq Constrained Nonlinear Least-squares nag_con_nlin_lsq_sol Finds a constrained minimum of a sum of squares nag_con_nlin_lsq_sol_1 Finds a constrained minimum of a sum of squares nag_con_nlin_lsq_cntrl_init Initialization procedure for nag_con_nlin_lsq_cntrl_wp nag_con_nlin_lsq_con_nlin_lsq_sol_ and nag_con_nlin_lsq_sol_1 (type) Module 9.5: nag_uv_min Univariate Minimization nag_uv_min_sol Finds the minimum of a continuous function of a single variable in a given finite interval Module 9.6: nag_nlp_sparse Sparse Nonlinear Programming nag_nlp_sparse_solSolves a sparse nonlinear programming problemnag_nlp_sparse_cntrl_initInitialization procedure for nag_nlp_sparse_cntrl_wpnag_nlp_sparse_cntrl_wpControl parameters for nag_nlp_sparse_sol (type) # Chapter 10: Nonlinear Equations Module 10.1: nag_polynom_eqn **Roots of Polynomials** Module 10.2: nag_nlin_eqn Roots of a Single Nonlinear Equation nag_nlin_eqn_sol Finds a solution of a single nonlinear equation Module 10.3: nag_nlin_sys Roots of a System of Nonlinear Equations nag_nlin_sys_sol Finds a solution of a system of nonlinear equations # Chapter 11: Quadrature Module 11.1: nag_quad_1d Numerical Integration over a Finite Interval nag_quad_1d_gen 1-d quadrature, adaptive, finite interval, allowing for badly behaved integrand, allowing for singularities at user-specified break-points, suitable for oscillatory integrands nag_quad_1d_wt_trig 1-d quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$ nag_quad_1d_wt_end_sing 1-d quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type nag_quad_1d_wt_hilb 1-d quadrature, adaptive, finite interval, weight function 1/(x- c), Cauchy principal value (Hilbert transform) nag_quad_1d_data 1-d quadrature, integration of function defined by data values, Gill-Miller method #### Module 11.2: nag_quad_1d_inf #### Numerical Integration over an Infinite Interval nag_quad_1d_inf_gennag_quad_1d_inf_wt_trig1-d quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$ # Module 11.3: nag_quad_md Multi-dimensional Integrals nag_quad_md_rect Multi-dimensional adaptive quadrature over a hyper-rectangle Multi-dimensional adaptive quadrature over a hyper-rectangle, multiple integrands nag_quad_2d 2-d quadrature, finite region nag_quad_monte_carlo Multi-dimensional quadrature over hyper-rectangle, Monte- Carlo method #### Module 11.4: nag_quad_util Numerical Integration Utilities nag_quad_gs_wt_absc Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule ## Chapter 12: Ordinary Differential Equations ### Module 12.1: nag_ivp_ode_rk Solution of Initial Value Problems for Ordinary Differential Equations by Runge–Kutta Methods nag_rk_setup Sets up the integration nag_rk_interval Integrates across an interval and provides the solution at user- specified points nag_rk_info Provides statistics about the integration nag_rk_global_err Provides information about global error assessment nag_rk_stepIntegrates one step at a timenag_rk_interpInterpolates the solution nag_rk_reset_end Resets the end point of integration nag_rk_comm_wp Communicating structure for nag_ivp_ode_rk (type) # Chapter 13: Partial Differential Equations Module 13.1: nag_pde_helm **Helmholtz Equations** nag_pde_helm_3d Solves the 3-d Helmholtz equation using a standard seven-point finite difference scheme and a fast Fourier transform method Module 13.2: nag_pde_ell_mg Multigrid Solution of Elliptic Partial Differential Equations nag_pde_ell_rect Generates a seven-diagonal system of linear equations which arises from the discretization of a two-dimensional elliptic partial differential equation on a rectangle nag_pde_ell_mg_sol Solves a seven-diagonal system of linear equations using a multigrid iteration #### Module 13.3: nag_pde_parab_1d #### Parabolic Partial Differential Equations in One Space Variable Integrates a system of parabolic PDEs in one space variable, nag_pde_parab_1d_fd coupled with ODEs; using finite differences for the spatial discretisation with optional automatic adaptive spatial remeshing nag_pde_interp_1d_fd Interpolates the solution and first derivative of a system of partial differential equations solved using finite differences, at a set of user-specified points Integrates a system of parabolic PDEs in one space variable, nag_pde_parab_1d_coll coupled with ODEs; using a Chebyshev \mathbb{C}^0 collocation method for the spatial discretisation nag_pde_interp_1d_coll Interpolates the solution and first derivative of a system of partial differential equations solved using a Chebyshev C^0 collocation method, at a set of user-specified points nag_pde_parab_1d_cntrl_init Initialization procedure for type nag_pde_parab_1d_cntrl_wp Communicates arrays for the underlying ODE solver between nag_pde_parab_1d_comm_wp calls to the procedures in nag_pde_parab_1d (type) Control parameters for procedures nag_pde_parab_1d_fd and nag_pde_parab_1d_cntrl_wp # Chapter 19: Operations Research # Module 19.1: nag_ip Integer Programming nag_ip_sol Solves 'zero-one', 'general', 'mixed' or 'all' integer linear nag_pde_parab_1d_coll (type) programming problems nag_ip_cntrl_init Initialization procedure for nag_ip_cntrl_wp nag_ip_cntrl_wp Control parameters for nag_ip_sol (type) Module 19.2: nag_short_path **Shortest Path Problems** nag_short_path_find Finds the shortest path through a directed or undirected acyclic network # Chapter 20: Statistical Distribution Functions #### Module 20.1: nag_normal_dist #### Probabilities and Deviate for a Normal Distribution nag_normal_prob Computes probabilities for various parts of a univariate Normal distribution nag_normal_deviate Computes the deviate associated with a given probability of a standard Normal distribution nag_bivar_normal_prob Computes the lower tail probability for a bivariate Normal distribution nag_mv_normal_prob Computes probabilities for various parts of a multivariate Normal distribution #### Module 20.2: nag_t_dist #### Probabilities and Deviate for a Student's t-distribution nag_t_prob Computes probabilities for various parts of a Student's t- distribution with ν degrees of freedom nag_t_deviate Computes the deviate associated with a given probability of a Student's t-distribution #### Module 20.3: nag_chisq_dist #### Probabilities and Deviate for a χ^2 -distribution nag_chisq_prob Computes lower or upper tail probability for a χ^2 -distribution with ν degrees of freedom nag_chisq_deviate Computes the deviate associated with a given lower tail probability of a χ^2 -distribution with ν degrees of freedom ## Module 20.4: nag_f_dist #### Probabilities and Deviate for an F-distribution nag_f_prob Computes lower or upper tail probability for an F-distribution with ν_1 and ν_2 degrees of freedom nag_f_deviate Computes the deviate associated with a given lower tail probability of an F-distribution with ν_1 and ν_2 degrees of freedom #### Module 20.5: nag_beta_dist #### Probabilities and Deviate for a Beta Distribution nag_beta_prob Computes lower or upper tail probability for a beta distribution with parameters a and b nag_beta_deviate Computes the deviate associated with a given lower tail probability of a beta distribution with parameters a and b #### Module 20.6: nag_gamma_dist #### Probabilities and Deviate for a Gamma Distribution nag_gamma_prob Computes lower or upper tail probability for a gamma distribution with shape parameter a and scale parameter b nag_gamma_deviate Computes the deviate associated with a given lower tail probability of a gamma distribution with shape parameter a and scale parameter b #### Module 20.7: nag_discrete_dist Probabilities for Discrete Distributions nag_binom_prob Computes lower tail, upper tail or point probability for a binomial distribution with parameters n and p nag_poisson_prob Computes lower tail, upper tail or point probability for a Poisson distribution with parameter λ nag_hypergeo_prob Computes lower tail, upper tail or point probability for a hypergeometric distribution with parameters n, l, and m # Chapter 21: Random Number Generation #### Module 21.1: nag_rand_util #### **Utilities for Random Number Generation** nag_rand_seed_set Sets the seed used by random number generating procedures to give a repeatable or non-repeatable sequence of random numbers $\,$ nag_seed_wp Stores data required to generate successive random numbers from a given stream (type) ## Module 21.2: nag_rand_contin #### Random Numbers from Continuous Distributions nag_rand_uniform Generates random numbers from a uniform distribution over (a,b) nag_rand_normal Generates random numbers from a Normal distribution with mean a and standard deviation b nag_rand_mv_normal Generates a vector of n random numbers from a multivariate Normal distribution with mean vector a and covariance matrix C nag_rand_beta Generates random numbers from a beta distribution with parameters a and b nag_rand_neg_exp Generates random numbers from a (negative) exponential distribution with mean a nag_rand_gamma Generates random numbers from a gamma distribution with parameters a and b #### Module 21.3: nag_rand_discrete #### Random Numbers from Discrete Distributions nag_rand_binom Generates random integers from a binomial distribution and/or returns a reference vector for the distribution nag_rand_neg_binom Generates random integers from a negative binomial distribution and/or returns a reference vector for the distribution nag_rand_hypergeo Generates random integers from an hypergeometric distribution and/or returns a reference vector for the distribution nag_rand_user_dist Generates random integers and/or returns a reference vector from a discrete distribution defined in terms of its PDF or CDF Generates random integers from a discrete distribution, using a reference vector nag_ref_vec_wp Stores a reference vector which is used to generate random integers from a discrete distribution (type) ## Chapter 22: Basic Descriptive Statistics Module 22.1: nag_basic_stats Basic Descriptive Statistics for Univariate Data nag_summary_stats_1v Computes basic descriptive statistics for univariate data # Chapter 25: Correlation and Regression Analysis Module 25.1: nag_lin_reg Regression Analysis nag_rand_ref_vec nag_simple_lin_reg Performs a simple linear regression analysis for a pair of related variables nag_mult_lin_reg Performs a general multiple linear regression analysis for any given predictor variables and a response variable Module 25.2: nag_correl Correlation Analysis nag_prod_mom_correl Calculates the variance-covariance matrix and the Pearson product-moment correlation coefficients for a set of data nag_part_correl Calculates the partial variance-covariance matrix and the partial correlation matrix from a correlation or variance covariance matrix ## Chapter 28: Multivariate Analysis Module 28.1: nag_fac_analysis Factor Analysis and Principal Component nag_prin_comp Performs principal component analysis Module 28.2: nag_canon_analysis Canonical Analysis nag_canon_var Performs canonical variate analysis Module 28.3: nag_mv_rotation Rotations nag_orthomax Computes orthogonal rotation, using a generalized orthomax rotations # Chapter 29: Time Series Analysis Module 29.1: nag_tsa_identify Time Series Analysis – Identification nag_tsa_acf Calculates the sample autocorrelation function of a univariate time series nag_tsa_pacf Calculates the sample partial autocorrelation function of a univariate time series # Module 29.2: nag_tsa_kalman Kalman Filtering nag_kalman_init Provides an initial estimate of the Kalman filter state covariance matrix nag_kalman_predict Calculates a one step prediction for the square root covariance Kalman filter nag_kalman_sqrt_cov_var Calculates a time-varying square root covariance Kalman filter Calculates a time-invariant square root covariance Kalman filter Module 29.3: nag_tsa_spectral Time Series Spectral Analysis series nag_spectral_cov Calculates the smoothed sample spectrum of a univariate time series using autocovariances data time series time series using autocovariances data nag_bivar_spectral_coh Calculates the squared coherency, the cross amplitude, the gain and the phase spectra nag_bivar_spectral_lin_sys Calculates the noise spectrum and the impulse response function from a linear system