List of Contents

Chapter 1: Utilities

Module 1.1: nag_lib_support

Library Support Facilities

nag_lib_ident Prints details of the Library implementation

nag_deallocate Deallocates storage from structures with types defined by the

Library

Module 1.2: nag_error_handling

Error Handling

nag_set_error Controls how errors are to be handled by the Library

nag_error Communicates information about error handling between a

user's program and the Library (type)

Module 1.3: nag_write_mat

Matrix Printing

nag_write_gen_mat Writes a real, complex or integer general matrix
nag_write_tri_mat Writes a real or complex triangular matrix
nag_write_bnd_mat Writes a real or complex band matrix

Module 1.4: nag_sort

Sorting

nag_sort_vec Sorts a vector of numeric or character data into ascending or

descending order

nag_rank_vec Ranks a vector of numeric or character data in ascending or

descending order

nag_reorder_vec Reorders a vector of numeric or character data into the order

specified by a vector of ranks

nag_rank_mat Ranks the rows or columns of a matrix of integer or real numbers

in ascending or descending order

nag_rank_arb_data Ranks arbitrary data according to a user-supplied comparison

procedure

nag_invert_perm Inverts a permutation, thus converts a rank vector to an index

vector, or vice-versa

nag_check_perm Checks the validity of a permutation

nag_decomp_perm Decomposes a permutation into cycles, as an aid to reordering

ranked data

Module 1.5: nag_math_constants

Mathematical Constants

nag_pi Returns an approximation to π

nag_euler_constant Returns an approximation to γ (Euler's constant)

Chapter 3: Special Functions

Module 3.1: nag_inv_hyp_fun Inverse Hyperbolic Functions

nag_arctanhInverse hyperbolic tangent, arctanh xnag_arcsinhInverse hyperbolic sine, arcsinh xnag_arccoshInverse hyperbolic cosine, arccosh x

Module 3.2: nag_gamma_fun

Gamma Functions

nag_gammaGamma functionnag_log_gammaLog gamma functionnag_polygammaPolygamma functions

Module 3.3: nag_err_fun

Error Functions

 nag_erf Error function erf x

 nag_erfc Complementary error function erfc x

nag_dawson Dawson's integral F(x)

Module 3.4: nag_bessel_fun

Bessel Functions

nag_bessel_j0	Bessel function $J_0(x)$
nag_bessel_j1	Bessel function $J_1(x)$
nag_bessel_j	Bessel function $J_{\nu}(z)$
nag_bessel_y0	Bessel function $Y_0(x)$
nag_bessel_y1	Bessel function $Y_1(x)$
nag_bessel_y	Bessel function $Y_{\nu}(z)$
	M - 1:C - 1 D 1 C 4:

 $\begin{array}{lll} {\tt nag_bessel_i0} & {\tt Modified Bessel function} \ I_0(x) \\ {\tt nag_bessel_i1} & {\tt Modified Bessel function} \ I_1(x) \\ {\tt nag_bessel_i} & {\tt Modified Bessel function} \ I_{\nu}(z) \\ {\tt nag_bessel_k0} & {\tt Modified Bessel function} \ K_0(x) \\ {\tt nag_bessel_k1} & {\tt Modified Bessel function} \ K_1(x) \\ {\tt nag_bessel_k} & {\tt Modified Bessel function} \ K_{\nu}(z) \\ \end{array}$

Module 3.5: nag_fresnel_intg

Fresnel Integrals

 $\begin{array}{ll} {\tt nag_fresnel_s} & {\tt Fresnel\ integral\ } S(x) \\ {\tt nag_fresnel_c} & {\tt Fresnel\ integral\ } C(x) \end{array}$

Module 3.6: nag_ell_intg

Elliptic Integrals

nag_ell_rf	Symmetrised elliptic integral of the first kind
nag_ell_rc	Degenerate form of elliptic integral of the first kind
nag_ell_rd	Symmetrised elliptic integral of the second kind
nag_ell_rj	Symmetrised elliptic integral of the third kind

Module 3.7: nag_ell_fun

Elliptic Functions

nag_ell_jac Jacobian elliptic functions sn, cn and dn

Module 3.8: nag_airy_fun

Airy Functions

nag_airy_ai	Airy function $Ai(z)$
nag_airy_bi	Airy function $Bi(z)$

Module 3.9: nag_kelvin_fun Kelvin Functions

nag_kelvin_ber	Kelvin function ber x
nag_kelvin_bei	Kelvin function bei \boldsymbol{x}
nag_kelvin_ker	Kelvin function ker \boldsymbol{x}
nag_kelvin_kei	Kelvin function kei \boldsymbol{x}

Chapter 4: Matrix and Vector Operations

Module 4.1: nag_mat_norm Norms of a Matrix

nag_gen_mat_norm	Computes a norm.	or the element	of largest	absolute value, of a

general real or complex matrix

real or complex square banded matrix

nag_sym_mat_norm Computes a norm, or the element of largest absolute value, of

a real or complex, symmetric or Hermitian matrix, stored in

conventional or packed storage

nag_sym_bnd_mat_norm Computes a norm, or the element of largest absolute value, of a

real or complex, symmetric or Hermitian band matrix

nag_trap_mat_norm Computes a norm, or the element of largest absolute value, of a

real or complex trapezoidal matrix

nag_tri_mat_norm Computes a norm, or the element of largest absolute value, of

a real or complex triangular matrix, stored in conventional or

packed storage

real or complex triangular band matrix

 ${\it real or complex upper Hessenberg matrix}$

Module 4.2: nag_mat_inv Matrix Inversion

nag_gen_mat_inv	Computes the inverse of a general real or complex matrix
nag_gen_mat_inv_fac	Computes the inverse of a general real or complex matrix, with

the matrix previously factorized using nag_gen_lin_fac

nag_sym_mat_inv Computes the inverse of a real or complex, symmetric or

Hermitian matrix

Hermitian matrix, with the matrix previously factorized using

nag_sym_lin_fac

nag_tri_mat_inv Computes the inverse of a real or complex triangular matrix

Module 4.3: nag_sparse_mat Sparse Matrix Utilities

nag_sparse_mat_init_coo
nag_sparse_mat_init_csc
nag_sparse_mat_init_dia
nag_sparse_mat_extract

Initializes a sparse matrix data structure from COO format Initializes a sparse matrix data structure from CSC format Initializes a sparse matrix data structure from CSR format Initializes a sparse matrix data structure from DIA format Extracts details of a sparse matrix from a structure of type nag_sparse_mat_real_wp or nag_sparse_mat_cmplx_wp

nag_sparse_mat_real_wp
nag_sparse_mat_cmplx_wp

Matrix-vector multiply for a sparse matrix
Represents a real sparse matrix (type)
Represents a complex sparse matrix (type)

Chapter 5: Linear Equations

Module 5.1: nag_gen_lin_sys General Systems of Linear Equations

nag_gen_lin_sol Solves a general real or complex system of linear equations with

one or many right-hand sides

 $nag_gen_lin_fac$ Performs an LU factorization of a general real or complex matrix $nag_gen_lin_sol_fac$ Solves a general real or complex system of linear equations, with

coefficient matrix previously factorized by nag_gen_lin_fac

Module 5.2: nag_sym_lin_sys

Symmetric Systems of Linear Equations

nag_sym_lin_sol Solves a real or complex, symmetric or Hermitian system of linear

equations with one or many right-hand sides

nag_sym_lin_fac Performs a Cholesky or Bunch-Kaufman factorization of a real

or complex, symmetric or Hermitian matrix

nag_sym_lin_sol_fac Solves a real or complex, symmetric or Hermitian system of

linear equations, with coefficient matrix previously factorized by

nag_sym_lin_fac

Module 5.3: nag_tri_lin_sys

Triangular Systems of Linear Equations

nag_tri_lin_sol Solves a real or complex triangular system of linear equations
nag_tri_lin_cond Estimates the condition number of a real or complex triangular

matrix

nag_tri_mat_det Evaluates the determinant of a real or complex triangular matrix

Module 5.4: nag_gen_bnd_lin_sys

General Banded Systems of Linear Equations

nag_gen_bnd_lin_sol Solves a general real or complex banded system of linear

equations, with one or many right-hand sides

nag_gen_bnd_lin_fac Performs an LU factorization of a general real or complex band

matrix

nag_gen_bnd_lin_sol_fac Solves a general real or complex banded system of linear

equations, with coefficient matrix previously factorized by

nag_gen_bnd_lin_fac

Module 5.5: nag_sym_bnd_lin_sys

Symmetric Banded Systems of Linear Equations

nag_sym_bnd_lin_sol Solves a real symmetric or complex Hermitian positive definite

banded system of linear equations, with one or many right-hand

sides

nag_sym_bnd_lin_fac Performs a Cholesky factorization of a real symmetric or complex

Hermitian positive definite band matrix

nag_sym_bnd_lin_sol_fac Solves a real symmetric or complex Hermitian positive definite

banded system of linear equations, with coefficient matrix

previously factorized by nag_sym_bnd_lin_fac

Module 5.6: nag_sparse_prec

Sparse Matrix Preconditioner Set-up and Solve

nag_sparse_prec_init_jac Initializes sparse Jacobi preconditioner nag_sparse_prec_init_ssor Initializes sparse SSOR preconditioner

complex non-Hermitian matrices

nag_sparse_prec_sol Sparse matrix preconditioned system solver

0.8.4 List of Contents [NP3506/4]

Module 5.7: nag_sparse_lin_sys Sparse Linear System Iterative Solvers

nag_sparse_gen_lin_sol General sparse linear system solver

Chapter 6: Eigenvalue and Least-squares Problems

Module 6.1: nag_sym_eig

Standard Symmetric Eigenvalue Problems

nag_sym_eig_all All eigenvalues, and optionally eigenvectors, of a real symmetric

or complex Hermitian matrix

nag_sym_eig_sel Selected eigenvalues, and optionally the corresponding eigenvec-

tors, of a real symmetric or complex Hermitian matrix

nag_sym_tridiag_reduc Reduction of a real symmetric or complex Hermitian matrix to

real symmetric tridiagonal form

nag_sym_tridiag_orth Form or apply the transformation matrix determined by

nag_sym_tridiag_reduc

nag_sym_tridiag_eig_all All eigenvalues, and optionally eigenvectors, of a real symmetric

tridiagonal matrix

nag_sym_tridiag_eig_val Selected eigenvalues of a real symmetric tridiagonal matrix Selected eigenvectors of a real symmetric tridiagonal matrix

Module 6.2: nag_nsym_eig

Standard Nonsymmetric Eigenvalue Problems

nag_nsym_eig_all All eigenvalues, and optionally eigenvectors, of a general real or

complex matrix

nag_schur_fac Schur factorization of a general real or complex matrix

Module 6.3: nag_svd

Singular Value Decomposition (SVD)

nag_gen_svd Singular value decomposition of a general real or complex matrix

nag_gen_bidiag_reduc Reduction of a general real or complex matrix to real bidiagonal

form

nag_bidiag_svd Singular value decomposition of a real bidiagonal matrix

Module 6.4: nag_lin_lsq Linear Least-squares Problems

nag_lin_lsq_sol Solves a real or complex linear least-squares problem

nag_lin_lsq_sol_svd Solves a real or complex linear least-squares problem, assuming

that a singular value decomposition of the coefficient matrix has

already been computed

 nag_qr_fac QR factorization of a general real or complex matrix nag_qr_orth Form or apply the matrix Q determined by nag_qr_fac

nag_lin_lsq_sol_qr Solves a real or complex linear least-squares problem, assuming

that the QR factorization of the coefficient matrix has already

been computed

nag_lin_lsq_sol_qr_svd Solves a real or complex linear least-squares problem using the

SVD, assuming that the QR factorization of the coefficient

matrix has already been computed

Module 6.5: nag_sym_gen_eig

Symmetric-definite Generalized Eigenvalue Problems

nag_sym_gen_eig_all All eigenvalues, and optionally eigenvectors, of a real symmetric-

definite or complex Hermitian-definite generalized eigenvalue

problem

nag_sym_gen_eig_sel Selected eigenvalues, and optionally the corresponding eigenvec-

tors, of a real symmetric-definite or complex Hermitian-definite

generalized eigenvalue problem

Module 6.6: nag_nsym_gen_eig

Nonsymmetric Generalized Eigenvalue Problems

nag_nsym_gen_eig_all All eigenvalues, and optionally eigenvectors, of a real or complex

nonsymmetric generalized eigenvalue problem

nag_gen_schur_fac Generalized Schur factorization of a real or complex matrix

pencil

Chapter 7: Transforms

Module 7.1: nag_fft Discrete Fourier Transforms

	Cimalo on m	oultiple 1 dies	manlar diamata	Commiss therefore	a an ita
nag_fft_1d	Single of th	nuitible 1-a co	mbiex discrete	Fourier transform	n, or us

inverse

nag_fft_1d_real Single or multiple 1-d real or Hermitian discrete Fourier

transform, or its inverse

nag_fft_1d_basic Single or multiple 1-d real, Hermitian or complex discrete Fourier

transform, which is overwritten on the input data

nag_fft_2d 2-d complex discrete Fourier transform, or its inverse

nag_fft_2d_basic 2-d complex discrete Fourier transform, which is overwritten on

the input data

nag_fft_3d 3-d complex discrete Fourier transform, or its inverse

nag_fft_3d_basic 3-d complex discrete Fourier transform, which is overwritten on

the input data

nag_fft_trig Trigonometric coefficients for computing discrete Fourier

 ${\it transforms}$

nag_herm_to_cmplx Convert Hermitian sequences to general complex sequences
nag_cmplx_to_herm Convert Hermitian complex sequences to their compact real form

nag_conj_herm Complex conjugates of Hermitian sequences

Module 7.2: nag_sym_fft

Symmetric Discrete Fourier Transforms

nag_fft_sin	Single or multiple 1-d discrete Fourier sine transform
nag_fft_cos	Single or multiple 1-d discrete Fourier cosine transform

nag_fft_qtr_sin Single or multiple 1-d discrete quarter-wave Fourier sine

transform, or its inverse

nag_fft_qtr_cos Single or multiple 1-d discrete quarter-wave Fourier cosine

transform, or its inverse

Module 7.3: nag_conv Convolution and Correlation

nag_fft_conv Computes the convolution or correlation of two real or complex

vectors

Chapter 8: Curve and Surface Fitting

Module 8.1: nag_pch_interp

Piecewise Cubic Hermite Interpolation

Generates a monotonicity-preserving piecewise cubic Hermite nag_pch_monot_interp

interpolant

Computes values and optionally derivatives of a piecewise cubic nag_pch_eval

Hermite interpolant

nag_pch_intg Computes the definite integral of a piecewise cubic Hermite

interpolant

Extracts details of a piecewise cubic Hermite interpolant from a nag_pch_extract

structure of type nag_pch_comm_wp

Represents a piecewise cubic Hermite interpolant (type) nag_pch_comm_wp

Module 8.2: nag_spline_1d One-dimensional Spline Fitting

nag_spline_1d_auto_fit	Generates a cubic spline approximation to an arbitrary 1-d data set, with automatic knot selection
nag_spline_1d_lsq_fit	Generates a weighted least-squares cubic spline fit to an arbitrary 1-d data set, with given interior knots
<pre>nag_spline_1d_interp nag_spline_1d_eval</pre>	Generates a cubic spline interpolant to an arbitrary 1-d data set Computes values of a cubic spline and optionally its first three derivatives
<pre>nag_spline_1d_intg nag_spline_1d_set</pre>	Computes the definite integral of a cubic spline Initializes a cubic spline with given interior knots and B-spline

coefficients

Extracts details of a cubic spline from a structure of type nag_spline_1d_extract

nag_spline_1d_comm_wp

 ${\tt nag_spline_1d_comm_}{wp}$ Represents a 1-d cubic spline in B-spline series form (type)

Module 8.3: nag_spline_2d Two-dimensional Spline Fitting

nag_spline_2d_auto_fit	Generates a bicubic spline approximation to a 2-d data set, with automatic knot selection
nag_spline_2d_lsq_fit	Generates a minimal, weighted least-squares bicubic spline surface fit to a given set of data points, with given interior knots
nag_spline_2d_interp	Generates a bicubic spline interpolating surface through a set of data values, given on a rectangular grid of the xy plane
nag_spline_2d_eval	Computes values of a bicubic spline
nag_spline_2d_intg	Computes the definite integral of a bicubic spline
nag_spline_2d_set	Initializes a bicubic spline with given interior knots and B-spline coefficients
nag_spline_2d_extract	Extracts details of a bicubic spline from a structure of type nag_spline_2d_comm_wp
${\tt nag_spline_2d_comm_}{wp}$	Represents a 2-d bicubic spline in B-spline series form (type)

Module 8.4: nag_scat_interp Interpolation of Scattered Data

nag_scat_2d_interp Generates a 2-d interpolating function using a modified Shepard

method

nag_scat_2d_eval Computes values of the interpolant generated by

nag_scat_2d_interp and its partial derivatives

nag_scat_3d_interp Generates a 3-d interpolating function using a modified Shepard

method

nag_scat_3d_eval Computes values of the interpolant generated by

nag_scat_3d_interp and its partial derivatives

2-d scattered data interpolant

nag_scat_3d_set Initializes a structure of type nag_scat_comm_wp to represent a

3-d scattered data interpolant

nag_scat_extract Extracts details of a scattered data interpolant from a structure

of derived type nag_scat_comm_wp

nag_scat_comm_wp Represents a scattered data interpolant generated either by

nag_scat_2d_interp or nag_scat_3d_interp (type)

Module 8.5: nag_cheb_1d Chebyshev Series

nag_cheb_1d_fit Finds the least-squares fit using arbitrary data points

nag_cheb_1d_interp Generates the coefficients of the Chebyshev polynomial which

interpolates (passes exactly through) data at a special set of

points

nag_cheb_1d_fit_con Finds the least-squares fit using arbitrary data points with

constraints on some data points

nag_cheb_1d_eval Evaluation of fitted polynomial in one variable, from Chebyshev

series form

nag_cheb_1d_deriv Derivatives of fitted polynomial in Chebyshev series form nag_cheb_1d_intg Integral of fitted polynomial in Chebyshev series form

Chapter 9: Optimization

Module 9.1: nag_qp

Linear and Quadratic Programming

nag_qp_solSolves a linear or quadratic programming problemnag_qp_cntrl_initInitialization procedure for nag_qp_cntrl_wpnag_qp_cntrl_wpControl parameters for nag_qp_sol (type)

Module 9.2: nag_nlin_lsq

Unconstrained Nonlinear Least-squares

nag_nlin_lsq_sol Finds an unconstrained minimum of a sum of squares

nag_nlin_lsq_cov Computes the variance-covariance matrix for a nonlinear least-

squares problem

nag_nlin_lsq_cntrl_init Initialization procedure for nag_nlin_lsq_cntrl_wp
nag_nlin_lsq_cntrl_wp Control parameters for nag_nlin_lsq_sol (type)

Module 9.3: nag_nlp Nonlinear Programming

nag_nlp_solSolves a dense nonlinear programming problemnag_nlp_cntrl_initInitialization procedure for nag_nlp_cntrl_wpnag_nlp_cntrl_wpControl parameters for nag_nlp_sol (type)

Module 9.4: nag_con_nlin_lsq Constrained Nonlinear Least-squares

nag_con_nlin_lsq_sol Finds a constrained minimum of a sum of squares
nag_con_nlin_lsq_sol_1 Finds a constrained minimum of a sum of squares
nag_con_nlin_lsq_cntrl_init Initialization procedure for nag_con_nlin_lsq_cntrl_wp
nag_con_nlin_lsq_con_nlin_lsq_sol_ and
nag_con_nlin_lsq_sol_1 (type)

Module 9.5: nag_uv_min
Univariate Minimization

nag_uv_min_sol Finds the minimum of a continuous function of a single variable

in a given finite interval

Module 9.6: nag_nlp_sparse Sparse Nonlinear Programming

nag_nlp_sparse_solSolves a sparse nonlinear programming problemnag_nlp_sparse_cntrl_initInitialization procedure for nag_nlp_sparse_cntrl_wpnag_nlp_sparse_cntrl_wpControl parameters for nag_nlp_sparse_sol (type)

Chapter 10: Nonlinear Equations

Module 10.1: nag_polynom_eqn

Roots of Polynomials

Module 10.2: nag_nlin_eqn

Roots of a Single Nonlinear Equation

nag_nlin_eqn_sol Finds a solution of a single nonlinear equation

Module 10.3: nag_nlin_sys

Roots of a System of Nonlinear Equations

nag_nlin_sys_sol Finds a solution of a system of nonlinear equations

Chapter 11: Quadrature

Module 11.1: nag_quad_1d

Numerical Integration over a Finite Interval

nag_quad_1d_gen 1-d quadrature, adaptive, finite interval, allowing for badly

behaved integrand, allowing for singularities at user-specified

break-points, suitable for oscillatory integrands

nag_quad_1d_wt_trig 1-d quadrature, adaptive, finite interval, weight function $\cos(\omega x)$

or $\sin(\omega x)$

nag_quad_1d_wt_end_sing 1-d quadrature, adaptive, finite interval, weight function with

end-point singularities of algebraico-logarithmic type

nag_quad_1d_wt_hilb 1-d quadrature, adaptive, finite interval, weight function 1/(x-

c), Cauchy principal value (Hilbert transform)

nag_quad_1d_data 1-d quadrature, integration of function defined by data values,

Gill-Miller method

Module 11.2: nag_quad_1d_inf

Numerical Integration over an Infinite Interval

nag_quad_1d_inf_gennag_quad_1d_inf_wt_trig1-d quadrature, adaptive, semi-infinite interval, weight function

 $\cos(\omega x)$ or $\sin(\omega x)$

Module 11.3: nag_quad_md Multi-dimensional Integrals

nag_quad_md_rect Multi-dimensional adaptive quadrature over a hyper-rectangle Multi-dimensional adaptive quadrature over a hyper-rectangle,

multiple integrands

nag_quad_2d 2-d quadrature, finite region

nag_quad_monte_carlo Multi-dimensional quadrature over hyper-rectangle, Monte-

Carlo method

Module 11.4: nag_quad_util Numerical Integration Utilities

nag_quad_gs_wt_absc Calculation of weights and abscissae for Gaussian quadrature

rules, general choice of rule

Chapter 12: Ordinary Differential Equations

Module 12.1: nag_ivp_ode_rk

Solution of Initial Value Problems for Ordinary Differential Equations by Runge–Kutta Methods

nag_rk_setup Sets up the integration

nag_rk_interval Integrates across an interval and provides the solution at user-

specified points

nag_rk_info Provides statistics about the integration

nag_rk_global_err Provides information about global error assessment

nag_rk_stepIntegrates one step at a timenag_rk_interpInterpolates the solution

nag_rk_reset_end Resets the end point of integration

nag_rk_comm_wp Communicating structure for nag_ivp_ode_rk (type)

Chapter 13: Partial Differential Equations

Module 13.1: nag_pde_helm

Helmholtz Equations

nag_pde_helm_3d Solves the 3-d Helmholtz equation using a standard seven-point

finite difference scheme and a fast Fourier transform method

Module 13.2: nag_pde_ell_mg

Multigrid Solution of Elliptic Partial Differential Equations

nag_pde_ell_rect Generates a seven-diagonal system of linear equations which

arises from the discretization of a two-dimensional elliptic partial

differential equation on a rectangle

nag_pde_ell_mg_sol Solves a seven-diagonal system of linear equations using a

multigrid iteration

Module 13.3: nag_pde_parab_1d

Parabolic Partial Differential Equations in One Space Variable

Integrates a system of parabolic PDEs in one space variable, nag_pde_parab_1d_fd coupled with ODEs; using finite differences for the spatial discretisation with optional automatic adaptive spatial remeshing nag_pde_interp_1d_fd Interpolates the solution and first derivative of a system of partial differential equations solved using finite differences, at a set of user-specified points Integrates a system of parabolic PDEs in one space variable, nag_pde_parab_1d_coll coupled with ODEs; using a Chebyshev \mathbb{C}^0 collocation method for the spatial discretisation nag_pde_interp_1d_coll Interpolates the solution and first derivative of a system of partial differential equations solved using a Chebyshev C^0 collocation method, at a set of user-specified points nag_pde_parab_1d_cntrl_init Initialization procedure for type nag_pde_parab_1d_cntrl_wp Communicates arrays for the underlying ODE solver between nag_pde_parab_1d_comm_wp calls to the procedures in nag_pde_parab_1d (type) Control parameters for procedures nag_pde_parab_1d_fd and nag_pde_parab_1d_cntrl_wp

Chapter 19: Operations Research

Module 19.1: nag_ip Integer Programming

nag_ip_sol Solves 'zero-one', 'general', 'mixed' or 'all' integer linear

nag_pde_parab_1d_coll (type)

programming problems

nag_ip_cntrl_init Initialization procedure for nag_ip_cntrl_wp
nag_ip_cntrl_wp Control parameters for nag_ip_sol (type)

Module 19.2: nag_short_path

Shortest Path Problems

nag_short_path_find Finds the shortest path through a directed or undirected acyclic

network

Chapter 20: Statistical Distribution Functions

Module 20.1: nag_normal_dist

Probabilities and Deviate for a Normal Distribution

nag_normal_prob Computes probabilities for various parts of a univariate Normal

distribution

nag_normal_deviate Computes the deviate associated with a given probability of a

standard Normal distribution

nag_bivar_normal_prob Computes the lower tail probability for a bivariate Normal

distribution

nag_mv_normal_prob Computes probabilities for various parts of a multivariate

Normal distribution

Module 20.2: nag_t_dist

Probabilities and Deviate for a Student's t-distribution

nag_t_prob Computes probabilities for various parts of a Student's t-

distribution with ν degrees of freedom

nag_t_deviate Computes the deviate associated with a given probability of a

Student's t-distribution

Module 20.3: nag_chisq_dist

Probabilities and Deviate for a χ^2 -distribution

nag_chisq_prob Computes lower or upper tail probability for a χ^2 -distribution

with ν degrees of freedom

nag_chisq_deviate Computes the deviate associated with a given lower tail

probability of a χ^2 -distribution with ν degrees of freedom

Module 20.4: nag_f_dist

Probabilities and Deviate for an F-distribution

nag_f_prob Computes lower or upper tail probability for an F-distribution

with ν_1 and ν_2 degrees of freedom

nag_f_deviate Computes the deviate associated with a given lower tail

probability of an F-distribution with ν_1 and ν_2 degrees of

freedom

Module 20.5: nag_beta_dist

Probabilities and Deviate for a Beta Distribution

nag_beta_prob Computes lower or upper tail probability for a beta distribution

with parameters a and b

nag_beta_deviate Computes the deviate associated with a given lower tail

probability of a beta distribution with parameters a and b

Module 20.6: nag_gamma_dist

Probabilities and Deviate for a Gamma Distribution

nag_gamma_prob Computes lower or upper tail probability for a gamma

distribution with shape parameter a and scale parameter b

nag_gamma_deviate Computes the deviate associated with a given lower tail

probability of a gamma distribution with shape parameter a and

scale parameter b

Module 20.7: nag_discrete_dist Probabilities for Discrete Distributions

nag_binom_prob Computes lower tail, upper tail or point probability for a

binomial distribution with parameters n and p

nag_poisson_prob Computes lower tail, upper tail or point probability for a Poisson

distribution with parameter λ

nag_hypergeo_prob Computes lower tail, upper tail or point probability for a

hypergeometric distribution with parameters n, l, and m

Chapter 21: Random Number Generation

Module 21.1: nag_rand_util

Utilities for Random Number Generation

nag_rand_seed_set Sets the seed used by random number generating procedures to

give a repeatable or non-repeatable sequence of random numbers $\,$

nag_seed_wp Stores data required to generate successive random numbers

from a given stream (type)

Module 21.2: nag_rand_contin

Random Numbers from Continuous Distributions

nag_rand_uniform Generates random numbers from a uniform distribution over

(a,b)

nag_rand_normal Generates random numbers from a Normal distribution with

mean a and standard deviation b

nag_rand_mv_normal Generates a vector of n random numbers from a multivariate

Normal distribution with mean vector a and covariance matrix

C

nag_rand_beta Generates random numbers from a beta distribution with

parameters a and b

nag_rand_neg_exp Generates random numbers from a (negative) exponential

distribution with mean a

nag_rand_gamma Generates random numbers from a gamma distribution with

parameters a and b

Module 21.3: nag_rand_discrete

Random Numbers from Discrete Distributions

nag_rand_binom Generates random integers from a binomial distribution and/or

returns a reference vector for the distribution

nag_rand_neg_binom Generates random integers from a negative binomial distribution

and/or returns a reference vector for the distribution

nag_rand_hypergeo Generates random integers from an hypergeometric distribution

and/or returns a reference vector for the distribution

nag_rand_user_dist Generates random integers and/or returns a reference vector

from a discrete distribution defined in terms of its PDF or CDF Generates random integers from a discrete distribution, using a

reference vector

nag_ref_vec_wp Stores a reference vector which is used to generate random

integers from a discrete distribution (type)

Chapter 22: Basic Descriptive Statistics

Module 22.1: nag_basic_stats

Basic Descriptive Statistics for Univariate Data

nag_summary_stats_1v Computes basic descriptive statistics for univariate data

Chapter 25: Correlation and Regression Analysis

Module 25.1: nag_lin_reg

Regression Analysis

nag_rand_ref_vec

nag_simple_lin_reg Performs a simple linear regression analysis for a pair of related

variables

nag_mult_lin_reg Performs a general multiple linear regression analysis for any

given predictor variables and a response variable

Module 25.2: nag_correl

Correlation Analysis

nag_prod_mom_correl Calculates the variance-covariance matrix and the Pearson

product-moment correlation coefficients for a set of data

nag_part_correl Calculates the partial variance-covariance matrix and the partial

correlation matrix from a correlation or variance covariance

matrix

Chapter 28: Multivariate Analysis

Module 28.1: nag_fac_analysis

Factor Analysis and Principal Component

nag_prin_comp Performs principal component analysis

Module 28.2: nag_canon_analysis

Canonical Analysis

nag_canon_var Performs canonical variate analysis

Module 28.3: nag_mv_rotation

Rotations

nag_orthomax Computes orthogonal rotation, using a generalized orthomax

rotations

Chapter 29: Time Series Analysis

Module 29.1: nag_tsa_identify Time Series Analysis – Identification

nag_tsa_acf Calculates the sample autocorrelation function of a univariate

time series

nag_tsa_pacf Calculates the sample partial autocorrelation function of a

univariate time series

Module 29.2: nag_tsa_kalman

Kalman Filtering

nag_kalman_init Provides an initial estimate of the Kalman filter state covariance

matrix

nag_kalman_predict Calculates a one step prediction for the square root covariance

Kalman filter

nag_kalman_sqrt_cov_var Calculates a time-varying square root covariance Kalman filter Calculates a time-invariant square root covariance Kalman filter

Module 29.3: nag_tsa_spectral Time Series Spectral Analysis

series

nag_spectral_cov Calculates the smoothed sample spectrum of a univariate time

series using autocovariances data

time series

time series using autocovariances data

nag_bivar_spectral_coh Calculates the squared coherency, the cross amplitude, the gain

and the phase spectra

nag_bivar_spectral_lin_sys Calculates the noise spectrum and the impulse response function

from a linear system