NAG Toolbox
 nag_roots_contfn_cntin (c05aw)

1 Purpose

nag_roots_contfn_cntin (c05aw) attempts to locate a zero of a continuous function using a continuation method based on a secant iteration.

2 Syntax

```
[x, user, ifail] = nag_roots_contfn_cntin(x, eps, eta, f, nfmax, 'user', user)
[x, user, ifail] = c05aw(x, eps, eta, f, nfmax, 'user', user)
```


3 Description

nag_roots_contfn_cntin (c05aw) attempts to obtain an approximation to a simple zero α of the function $f(x)$ given an initial approximation x to α. The zero is found by a call to nag_roots_contfn_cntin_ rcomm (c05ax) whose specification should be consulted for details of the method used.

The approximation x to the zero α is determined so that at least one of the following criteria is satisfied:
(i) $|x-\alpha| \sim \mathbf{e p s}$,
(ii) $|f(x)|<$ eta.

4 References

None.

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{x}-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
An initial approximation to the zero.
2: \quad eps - REAL (KIND=$=$ nag_wp $)$
An absolute tolerance to control the accuracy to which the zero is determined. In general, the smaller the value of eps the more accurate \mathbf{x} will be as an approximation to α. Indeed, for very small positive values of eps, it is likely that the final approximation will satisfy $|\mathbf{x}-\alpha|<\mathbf{e p s}$. You are advised to call the function with more than one value for eps to check the accuracy obtained.

Constraint: eps >0.0.
3: \quad eta - REAL (KIND=nag_wp)
A value such that if $|f(x)|<$ eta, x is accepted as the zero. eta may be specified as 0.0 (see Section 7).

4: $\quad \mathbf{f}$ - REAL (KIND=nag_wp) FUNCTION, supplied by the user.
f must evaluate the function f whose zero is to be determined.
[result, user] $=f(x$, user $)$

Input Parameters

1: $\quad \mathbf{x}-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
The point at which the function must be evaluated.
2: user - INTEGER array
\mathbf{f} is called from nag_roots_contfn_cntin (c05aw) with the object supplied to nag_roots_contfn_cntin (c05aw).

Output Parameters

result

The value of f evaluated at \mathbf{x}.
2: user - INTEGER array

5: nfmax - INTEGER
The maximum permitted number of calls to \mathbf{f} from nag_roots_contfn_cntin (c05aw). If \mathbf{f} is inexpensive to evaluate, nfmax should be given a large value (say >1000).

Constraint: $\mathbf{n f m a x}>0$.

5.2 Optional Input Parameters

1: user - INTEGER array
user is not used by nag_roots_contfn_cntin (c05aw), but is passed to f. Note that for large objects it may be more efficient to use a global variable which is accessible from the m-files than to use user.

5.3 Output Parameters

1: $\quad \mathbf{x}-$ REAL (KIND=nag_wp)
The final approximation to the zero, unless ifail $=1,2$ or 5 , in which case it contains no useful information.
user - INTEGER array
ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:
ifail $=1$
Constraint: eps >0.0.
Constraint: nfmax >0.
ifail $=2$
Internal scale factor invalid for this problem. Consider using nag_roots_contfn_cntin_rcomm (c05ax) instead and setting scal.

ifail $=3$

Either \mathbf{f} has no zero near \mathbf{x} or too much accuracy has been requested. Check the coding of \mathbf{f} or increase eps.

ifail $=4$

More than nfmax calls have been made to \mathbf{f}.
nfmax may be too small for the problem (because \boldsymbol{x} is too far away from the zero), or \boldsymbol{f} has no zero near \boldsymbol{x}, or too much accuracy has been requested in calculating the zero. Increase nfmax, check the coding of \boldsymbol{f} or increase eps.
ifail $=5$
A serious error occurred in an internal call to an auxiliary function.

$$
\text { ifail }=-99
$$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

The levels of accuracy depend on the values of eps and eta. If full machine accuracy is required, they may be set very small, resulting in an exit with ifail $=3$ or 4 , although this may involve many more iterations than a lesser accuracy. You are recommended to set eta $=0.0$ and to use eps to control the accuracy, unless you have considerable knowledge of the size of $f(x)$ for values of x near the zero.

8 Further Comments

The time taken by nag_roots_contfn_cntin (c05aw) depends primarily on the time spent evaluating the function f (see Section 5) and on how close the initial value of \mathbf{x} is to the zero.

If a more flexible way of specifying the function f is required or if you wish to have closer control of the calculation, then the reverse communication function nag_roots_contfn_cntin_rcomm (c05ax) is recommended instead of nag_roots_contfn_cntin (c05aw).

9 Example

This example calculates the zero of $f(x)=e^{-x}-x$ from a starting value $\mathbf{x}=1.0$. Two calculations are made with eps $=1.0 \mathrm{e}-3$ and $1.0 \mathrm{e}-4$ for comparison purposes, with eta $=0.0$ in both cases.

9.1 Program Text

```
        function c05aw_example
fprintf('c05aw example results\n\n');
x = 1;
eta = 0;
nfmax = nag_int(200);
fprintf('\n');
% Repeat with tolerance eps set to varying powers of }1
for k=3:4
    [xOut, user, ifail] = c05aw(x, 10^-k, eta, @f, nfmax);
    switch ifail
```

```
        case {0}
        fprintf('With eps = %10.2e, root = %14.5f\n', 10^-k, xOut);
        case {3, 4}
        fprintf('With eps = %10.2e, final value = %14.5f\n', 10^-k, xOut);
        otherwise
        break;
    end
end
function [result, user] = f(x, user)
    result = x - exp(-x);
```


9.2 Program Results

c05aw example results
With eps $=1.00 \mathrm{e}-03$, root $=0.56715$
With eps $=1.00 \mathrm{e}-04$, root $=0.56715$

