NAG Toolbox
 nag_roots_contfn_brent (c05ay)

1 Purpose

nag_roots_contfn_brent (c05ay) locates a simple zero of a continuous function in a given interval using Brent's method, which is a combination of nonlinear interpolation, linear extrapolation and bisection.

2 Syntax

```
[x, user, ifail] = nag_roots_contfn_brent(a, b, eps, eta, f, 'user', user)
[x, user, ifail] = c05ay(a, b, eps, eta, f, 'user', user)
```


3 Description

nag_roots_contfn_brent (c05ay) attempts to obtain an approximation to a simple zero of the function $f(x)$ given an initial interval $[a, b]$ such that $f(a) \times f(b) \leq 0$. The same core algorithm is used by nag_roots_contfn_brent_rcomm (c05az) whose specification should be consulted for details of the method used.
The approximation x to the zero α is determined so that at least one of the following criteria is satisfied:
(i) $|x-\alpha| \leq \mathbf{e p s}$,
(ii) $|f(x)| \leq$ eta.

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice-Hall

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}-$ REAL (KIND=nag_wp)
a, the lower bound of the interval.
2: $\quad \mathbf{b}$ - REAL (KIND=nag_wp)
b, the upper bound of the interval.
Constraint: $\mathbf{b} \neq \mathbf{a}$.
3: eps - REAL (KIND=nag_wp)
The termination tolerance on x (see Section 3).
Constraint: eps >0.0.
4: \quad eta - REAL $\left(K I N D=n a g _w p\right)$
A value such that if $|f(x)| \leq$ eta, x is accepted as the zero. eta may be specified as 0.0 (see Section 7).

5: $\quad \mathbf{f}$ - REAL (KIND=nag_wp) FUNCTION, supplied by the user.
f must evaluate the function f whose zero is to be determined.

$$
\text { [result, user] }=f(x, \text { user })
$$

Input Parameters

1: $\quad \mathbf{x}-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
The point at which the function must be evaluated.
2: user - INTEGER array
\mathbf{f} is called from nag_roots_contfn_brent (c05ay) with the object supplied to nag_roots_contfn_brent (c05ay).

Output Parameters

result
The value of f evaluated at \mathbf{x}.
2: user - INTEGER array

5.2 Optional Input Parameters

: user - INTEGER array
user is not used by nag_roots_contfn_brent (c05ay), but is passed to \mathbf{f}. Note that for large objects it may be more efficient to use a global variable which is accessible from the m-files than to use user.

5.3 Output Parameters

1: $\quad \mathbf{x}-$ REAL (KIND=nag_wp)
If ifail $=0$ or $2, \mathbf{x}$ is the final approximation to the zero. If ifail $=3, \mathbf{x}$ is likely to be a pole of $f(x)$. Otherwise, \mathbf{x} contains no useful information.
user - INTEGER array
ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:
ifail $=1$
Constraint: $\mathbf{a} \neq \mathbf{b}$.
Constraint: eps >0.0.
On entry, $\mathbf{f}(\mathbf{a})$ and $\mathbf{f}(\mathbf{b})$ have the same sign with neither equalling 0.0.

ifail $=2($ warning $)$

No further improvement in the solution is possible.

$\mathbf{i f a i l}=3($ warning $)$

The function values in the interval $[\mathbf{a}, \mathbf{b}]$ might contain a pole rather than a zero. Reducing eps may help in distinguishing between a pole and a zero.

$$
\text { ifail }=-99
$$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

The levels of accuracy depend on the values of eps and eta. If full machine accuracy is required, they may be set very small, resulting in an exit with ifail $=2$, although this may involve many more iterations than a lesser accuracy. You are recommended to set eta $=0.0$ and to use eps to control the accuracy, unless you have considerable knowledge of the size of $f(x)$ for values of x near the zero.

8 Further Comments

The time taken by nag_roots_contfn_brent (c05ay) depends primarily on the time spent evaluating \mathbf{f} (see Section 5).

If it is important to determine an interval of relative length less than $2 \times$ eps containing the zero, or if \mathbf{f} is expensive to evaluate and the number of calls to \mathbf{f} is to be restricted, then use of nag_roots_contfn_brent_rcomm (c05az) is recommended. Use of nag_roots_contfn_brent_rcomm (c05az) is also recommended when the structure of the problem to be solved does not permit a simple \mathbf{f} to be written: the reverse communication facilities of nag_roots_contfn_brent_rcomm (c05az) are more flexible than the direct communication of \mathbf{f} required by nag_roots_contfn_brent (c05ay).

9 Example

This example calculates an approximation to the zero of $e^{-x}-x$ within the interval $[0,1]$ using a tolerance of eps $=1.0 \mathrm{e}-5$.

9.1 Program Text

```
function cO5ay_example
```

fprintf('c05ay example results $\left.\backslash \mathrm{n} \backslash \mathrm{n}^{\prime}\right)$;
a $=0$;
$\mathrm{b}=1$;
eps = 1e-5;
eta = 0;
fprintf('\n');
[x, user, ifail] = c05ay(a, b, eps, eta, @f);
switch ifail
case $\{0\}$
fprintf('With eps = \%10.2e, root = \%14.5f\n', eps, x);
case $\{2,3\}$
fprintf('With eps = \%10.2e, final value = \%14.5f\n', eps, x);
end
function [result, user] $=\mathrm{f}(\mathrm{x}$, user)
result = $x-\exp (-x)$;

9.2 Program Results

cO5ay example results
With eps $=1.00 \mathrm{e}-05$, root $=0.56714$

