C05 — Roots of One or More Transcendental Equations c05rb

NAG Toolbox

nag roots sys deriv_easy (c05rb)

1 Purpose

nag_roots sys deriv_easy (c05rb) is an easy-to-use function that finds a solution of a system of
nonlinear equations by a modification of the Powell hybrid method. You must provide the Jacobian.

2 Syntax
[x, fvec, fjac, user, ifail] = nag_roots_sys_deriv_easy(fcn, x, 'n’, n, ’'xtol’,
xtol, ’'user’, user)
[x, fvec, fjac, user, ifail] = cO5rb(fcn, x, 'n’, n, ’'xtol’, xtol, ’user’, user)

3 Description
The system of equations is defined as:
fi(xlﬂx%"‘axn):(), 7;:1,2,...7’0.

nag_roots sys_deriv_easy (c05rb) is based on the MINPACK routine HYBRIJ1 (see Mor¢ et al. (1980)).
It chooses the correction at each step as a convex combination of the Newton and scaled gradient
directions. The Jacobian is updated by the rank-1 method of Broyden. At the starting point, the Jacobian
is requested, but it is not asked for again until the rank-1 method fails to produce satisfactory progress.
For more details see Powell (1970).

4 References

Moré J J, Garbow B S and Hillstrom K E (1980) User guide for MINPACK-1 Technical Report ANL-
80-74 Argonne National Laboratory

Powell M J D (1970) A hybrid method for nonlinear algebraic equations Numerical Methods for
Nonlinear Algebraic Equations (ed P Rabinowitz) Gordon and Breach

5 Parameters
5.1 Compulsory Input Parameters
1: fcn — SUBROUTINE, supplied by the user.

Depending upon the value of iflag, fen must either return the values of the functions f; at a point
x or return the Jacobian at z.

[fvec, fjac, user, iflag] = fcn(n, x, fvec, fjac, user, iflag)

Input Parameters
1: n — INTEGER

n, the number of equations.

2: x(n) — REAL (KIND=nag_wp) array

The components of the point = at which the functions or the Jacobian must be
evaluated.

Mark 25 c05rb.1

c05rb

Output Parameters

1:

NAG Toolbox for MATLAB Manual

fvec(n) — REAL (KIND=nag_wp) array
If iflag = 2, fvec contains the function values f;(x) and must not be changed.
fjac(n,n) — REAL (KIND=nag_wp) array
afi .
If iflag = 1, fjac contains the value of a—f at the point z, for 1 =1,2,...,n and

Ty
7=1,2,...,n, and must not be changed.

user — INTEGER array

fen is called from nag roots sys deriv_easy (cO5rb) with the object supplied to
nag_roots sys deriv_easy (c05rb).

iflag — INTEGER

iflag =1 or 2.
iflag = 1

fvec is to be updated.
iflag = 2

fjac is to be updated.

fvec(n) — REAL (KIND=nag wp) array

If iflag = 1 on entry, fvec must contain the function values f;(x) (unless iflag is set to a
negative value by fcn).

fjac(n,n) — REAL (KIND=nag_wp) array

Ofi
836]-

i=1,2,...,nand j=1,2,...,n, (unless iflag is set to a negative value by fcn).

If iflag =2 on entry, fjac(i,j) must contain the value of at the point z, for

user — INTEGER array

iflag — INTEGER

In general, iflag should not be reset by fen. If, however, you wish to terminate
execution (perhaps because some illegal point x has been reached), then iflag should be
set to a negative integer.

2: x(n) — REAL (KIND=nag_wp) array

An initial guess at the solution vector.

5.2 Optional Input Parameters

1: n — INTEGER

Default: the dimension of the array x.

n, the number of equations.

Constraint: m > 0.

2: xtol — REAL (KIND=nag_ wp)

Suggested value: /e, where € is the machine precision returned by nag machine precision

(x024aj).

c05rb.2

Mark 25

C05 — Roots of One or More Transcendental Equations c05rb

Default: \/machine precision
The accuracy in x to which the solution is required.

Constraint: xtol > 0.0.

3: user — INTEGER array
user is not used by nag_roots sys deriv_easy (c05rb), but is passed to fen. Note that for large
objects it may be more efficient to use a global variable which is accessible from the m-files than
to use user.

5.3 Output Parameters

1: x(n) — REAL (KIND=nag_wp) array
The final estimate of the solution vector.

2: fvec(n) — REAL (KIND=nag_wp) array
The function values at the final point returned in x.

3: fjac(n,n) — REAL (KIND=nag_wp) array
The orthogonal matrix) produced by the QR factorization of the final approximate Jacobian.

4: user — INTEGER array

5: ifail — INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 2 (warning)
There have been at least 100 x (n + 1) calls to fen. Consider restarting the calculation from the
point held in x.

ifail = 3 (warning)

No further improvement in the solution is possible.

ifail = 4 (warning)

The iteration is not making good progress. This failure exit may indicate that the system does not
have a zero, or that the solution is very close to the origin (see Section 7). Otherwise, rerunning
nag_roots sys deriv_easy (c05rb) from a different starting point may avoid the region of
difficulty.

ifail = 5 (warning)
iflag was set negative in fen.
ifail = 11

Constraint: n > 0.

ifail = 12
Constraint: xtol > 0.0.

Mark 25 c05rb.3

c05rb NAG Toolbox for MATLAB Manual

ifail = —99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7 Accuracy
If & is the true solution, nag roots sys deriv_easy (c05rb) tries to ensure that
o — &, < xtol x 2],

If this condition is satisfied with xtol = 107%, then the larger components of z have k significant
decimal digits. There is a danger that the smaller components of x may have large relative errors, but
the fast rate of convergence of nag roots sys deriv_easy (c05rb) usually obviates this possibility.

If xtol is less than machine precision and the above test is satisfied with the machine precision in
place of xtol, then the function exits with ifail = 3.

Note: this convergence test is based purely on relative error, and may not indicate convergence if the
solution is very close to the origin.

The convergence test assumes that the functions and the Jacobian are coded consistently and that the
functions are reasonably well behaved. If these conditions are not satisfied, then nag_roots_sys_deriv_
easy (c05rb) may incorrectly indicate convergence. The coding of the Jacobian can be checked using
nag_roots sys deriv_check (c05zd). If the Jacobian is coded correctly, then the validity of the answer
can be checked by rerunning nag roots _sys_deriv_easy (c05rb) with a lower value for xtol.

8 Further Comments

Local workspace arrays of fixed lengths are allocated internally by nag roots sys deriv_easy (c05rb).
The total size of these arrays amounts to n x (n+ 13)/2 double elements.

The time required by nag roots_sys deriv_easy (c05rb) to solve a given problem depends on n, the
behaviour of the functions, the accuracy requested and the starting point. The number of arithmetic
operations executed by nag roots sys_deriv_easy (c05rb) is approximately 11.5 x n? to process each
evaluation of the functions and approximately 1.3 x n? to process each evaluation of the Jacobian. The
timing of nag roots sys_deriv_easy (c05rb) is strongly influenced by the time spent evaluating the
functions.

Ideally the problem should be scaled so that, at the solution, the function values are of comparable
magnitude.

9 Example
This example determines the values xi,...,x9 which satisfy the tridiagonal equations:
(3—2%1)%1 —2.772 = —l,
—Ti_1 +(3—2.’L‘T;)in—2$i+1 = -1, +1=2,3,...,8
—xg+ (3 —2x9)z9 = —1.

c05rb.4 Mark 25

C05 — Roots of One or More Transcendental Equations c05rb

9.1 Program Text

function cO5rb_example
fprintf(’cO05rb example results\n\n’);

% The following starting values provide a rough solution.

x = —-ones(9, 1);
[xOut, fvec, fjac, user, ifail] = cO5rb(@fcn, x);
switch ifail
case {0}
fprintf (’\nFinal 2-norm of the residuals = %12.4e\n’, norm(fvec));

fprintf (’\nFinal approximate solution\n’);
disp (xOut) ;
case {2, 3, 4}
fprintf ('\nApproximate solution\n’);
disp (x0ut) ;

end
function [fvec, fjac, user, iflag] = fcn(n, x, fvec, fjac, user, iflag)
coeff = [-1, 3, -2, -2, -1];
nd = double(n); % Can’t use 64 bit integers in loops
if (iflag "= 2)
fvec(l:nd) = (coeff(2)+coeff(3)*x(1l:nd)).*x(1l:nd) - coeff(5);
fvec(2:nd) = fvec(2:nd) + coeff(1l)*x(1l:(nd-1));
fvec(l:(nd-1)) = fvec(l:(nd-1)) + coeff(4)*x(2:nd);
else
fjac = zeros(nd, nd);
fjac(1l,1) = coeff(2) + 2*coeff(3)*x(1);
fjac(1,2) = coeff(4);
for k = 2:nd-1
fjac(k,k-1) = coeff(1l);
fjac(k,k) = coeff(2) + 2*coeff(3)*x(k);
fjac(k,k+1) = coeff(4);
end
fjac(nd,nd-1) = coeff(1l);
fjac(nd,nd) = coeff(2) + 2*coeff(3)*x(nd);
end

9.2 Program Results

cO5rb example results
Final 2-norm of the residuals = 1.1926e-08

Final approximate solution
-0.5707
-0.6816
-0.7017
-0.7042
-0.7014
-0.6919
-0.6658
-0.5960
-0.41064

Mark 25 c05rb.5 (last)

	nag_roots_sys_deriv_easy (c05rb)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	More et al. (1980)
	Powell (1970)

	5 Parameters
	5.1 Compulsory Input Parameters
	fcn
	FCN Input Parameters
	n
	x
	fvec
	fjac
	user
	iflag

	FCN Output Parameters
	fvec
	fjac
	user
	iflag

	x

	5.2 Optional Input Parameters
	n
	xtol
	user

	5.3 Output Parameters
	x
	fvec
	fjac
	user
	ifail

	6 Error Indicators and Warnings
	ifail=2
	ifail=3
	ifail=4
	ifail=5
	ifail=11
	ifail=12
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

