NAG Toolbox

nag_sum_convcorr_complex (c06pk)

1 Purpose

nag_sum_convcorr_complex (c06pk) calculates the circular convolution or correlation of two complex vectors of period n.

2 Syntax

3 Description

nag sum convcorr complex (c06pk) computes:

if job = 1, the discrete **convolution** of x and y, defined by

$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j} = \sum_{j=0}^{n-1} x_{k-j} y_j;$$

if job = 2, the discrete **correlation** of x and y defined by

$$w_k = \sum_{j=0}^{n-1} \bar{x}_j y_{k+j}.$$

Here x and y are complex vectors, assumed to be periodic, with period n, i.e., $x_j = x_{j\pm n} = x_{j\pm 2n} = \dots$; z and w are then also periodic with period n.

Note: this usage of the terms 'convolution' and 'correlation' is taken from Brigham (1974). The term 'convolution' is sometimes used to denote both these computations.

If \hat{x} , \hat{y} , \hat{z} and \hat{w} are the discrete Fourier transforms of these sequences, and \tilde{x} is the inverse discrete Fourier transform of the sequence x_j , i.e.,

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{i=0}^{n-1} x_j \times \exp\left(-i\frac{2\pi jk}{n}\right), \text{ etc.},$$

and

$$\tilde{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \times \exp\left(i\frac{2\pi jk}{n}\right),\,$$

then $\hat{z}_k = \sqrt{n}.\hat{x}_k\hat{y}_k$ and $\hat{w}_k = \sqrt{n}.\hat{x}_k\hat{y}_k$ (the bar denoting complex conjugate).

4 References

Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

Mark 25 c06pk.1

5 Parameters

5.1 Compulsory Input Parameters

1: **job** – INTEGER

The computation to be performed:

Constraint: job = 1 or 2.

2: $\mathbf{x}(\mathbf{n}) - \text{COMPLEX (KIND=nag_wp) array}$

The elements of one period of the vector x. If \mathbf{x} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_convcorr_complex (c06pk) is called, then $\mathbf{x}(j)$ must contain x_j , for $j=0,1,\ldots,n-1$.

3: $y(n) - COMPLEX (KIND=nag_wp) array$

The elements of one period of the vector y. If \mathbf{y} is declared with bounds $(0:\mathbf{n}-1)$ in the function from which nag_sum_convcorr_complex (c06pk) is called, then $\mathbf{y}(j)$ must contain y_j , for $j=0,1,\ldots,n-1$.

5.2 Optional Input Parameters

1: **n** – INTEGER

Default: the dimension of the arrays \mathbf{x} , \mathbf{y} . (An error is raised if these dimensions are not equal.) n, the number of values in one period of the vectors \mathbf{x} and \mathbf{y} . The total number of prime factors of \mathbf{n} , counting repetitions, must not exceed 30.

Constraint: $n \ge 1$.

5.3 Output Parameters

1: $\mathbf{x}(\mathbf{n}) - \text{COMPLEX (KIND=nag_wp) array}$

The corresponding elements of the discrete convolution or correlation.

2: y(n) - COMPLEX (KIND=nag wp) array

The discrete Fourier transform of the convolution or correlation returned in the array x.

3: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

On entry, $\mathbf{n} < 1$.

c06pk.2 Mark 25

ifail = 2

On entry, $\mathbf{job} \neq 1$ or 2.

ifail = 3

An unexpected error has occurred in an internal call. Check all function calls and array dimensions. Seek expert help.

ifail = 4

On entry, **n** has more than 30 prime factors.

ifail
$$= -99$$

An unexpected error has been triggered by this routine. Please contact NAG.

ifail
$$= -399$$

Your licence key may have expired or may not have been installed correctly.

ifail
$$= -999$$

Dynamic memory allocation failed.

7 Accuracy

The results should be accurate to within a small multiple of the machine precision.

8 Further Comments

The time taken is approximately proportional to $n \times \log(n)$, but also depends on the factorization of n. nag_sum_convcorr_complex (c06pk) is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.

9 Example

This example reads in the elements of one period of two complex vectors x and y, and prints their discrete convolution and correlation (as computed by nag_sum_convcorr_complex (c06pk)). In realistic computations the number of data values would be much larger.

9.1 Program Text

```
function c06pk_example
fprintf('c06pk example results\n\n');
a = 1 - 0.5i;
b = -0.5i;
x(1:5) = a;
x(6:9) = b;
y(1:4) = a/2;
y(5:9) = b/2;
job = nag_int(1);
[conv, tconv, ifail] = c06pk(job, x, y);
job = nag_int(2);
[corr, tcorr, ifail] = c06pk(job, x, y);
result = [transpose(conv) transpose(corr)];
          Convolution
                               Correlation');
disp(result);
```

Mark 25 c06pk.3

9.2 Program Results

c06pk example results

Convolution		Correlation
-0.6250 -	2.2500i	3.1250 - 0.2500i
-0.1250 -	2.2500i	2.6250 - 0.2500i
0.3750 -	2.2500i	2.1250 - 0.2500i
0.8750 -	2.2500i	1.6250 - 0.2500i
0.8750 -	2.2500i	1.1250 - 0.2500i
0.3750 -	2.2500i	1.6250 - 0.2500i
-0.1250 -	2.2500i	2.1250 - 0.2500i
-0.6250 -	2.2500i	2.6250 - 0.2500i
-1.1250 -	2.2500i	3.1250 - 0.2500i

c06pk.4 (last) Mark 25