## NAG Toolbox <br> nag_sum_fft_qtrcosine (c06rh)

## 1 Purpose

nag_sum_fft_qtrcosine (c06rh) computes the discrete quarter-wave Fourier cosine transforms of $m$ sequences of real data values. The elements of each sequence and its transform are stored contiguously.

## 2 Syntax

```
[x, ifail] = nag_sum_fft_qtrcosine(idir, n, x, 'm', m)
[x, ifail] = c06rh(idir, n, x, 'm', m)
```


## 3 Description

Given $m$ sequences of $n$ real data values $x_{j}^{p}$, for $j=0,1, \ldots, n-1$ and $p=1,2, \ldots, m$, nag_sum_fft_qtrcosine (c06rh) simultaneously calculates the quarter-wave Fourier cosine transforms of all the sequences defined by

$$
\hat{x}_{k}^{p}=\frac{1}{\sqrt{n}}\left(\frac{1}{2} x_{0}^{p}+\sum_{j=1}^{n-1} x_{j}^{p} \times \cos \left(j(2 k+1) \frac{\pi}{2 n}\right)\right), \quad \text { if } \mathbf{i d i r}=1,
$$

or its inverse

$$
x_{k}^{p}=\frac{2}{\sqrt{n}} \sum_{j=0}^{n-1} \hat{x}_{j}^{p} \times \cos \left((2 j+1) k \frac{\pi}{2 n}\right), \quad \text { if } \mathbf{i d i r}=-1,
$$

where $k=0,1, \ldots, n-1$ and $p=1,2, \ldots, m$.
(Note the scale factor $\frac{1}{\sqrt{n}}$ in this definition.)
A call of nag_sum_fft_qtrcosine (c06rh) with idir $=1$ followed by a call with idir $=-1$ will restore the original data.

The two transforms are also known as type-III DCT and type-II DCT, respectively.
The transform calculated by this function can be used to solve Poisson's equation when the derivative of the solution is specified at the left boundary, and the solution is specified at the right boundary (see Swarztrauber (1977)).

The function uses a variant of the fast Fourier transform (FFT) algorithm (see Brigham (1974)) known as the Stockham self-sorting algorithm, described in Temperton (1983), together with pre- and postprocessing stages described in Swarztrauber (1982). Special coding is provided for the factors 2, 3, 4 and 5.

## 4 References

## Brigham E O (1974) The Fast Fourier Transform Prentice-Hall

Swarztrauber P N (1977) The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle SIAM Rev. 19(3) 490-501
Swarztrauber P N (1982) Vectorizing the FFT's Parallel Computation (ed G Rodrique) 51-83 Academic Press

Temperton C (1983) Fast mixed-radix real Fourier transforms J. Comput. Phys. 52 340-350

## 5 Parameters

### 5.1 Compulsory Input Parameters

1: idir - INTEGER
Indicates the transform, as defined in Section 3, to be computed.

$$
\begin{aligned}
& \mathbf{i d i r}= 1 \\
& \quad \text { Forward transform. }
\end{aligned}
$$

idir $=-1$
Inverse transform.
Constraint : idir $=1$ or -1.

2: $\quad \mathbf{n}$ - INTEGER
$n$, the number of real values in each sequence.
Constraint: $\mathbf{n} \geq 1$.
3: $\quad \mathbf{x}(\mathbf{0}: \mathbf{n}-\mathbf{1}, \mathbf{m})-$ REAL (KIND=nag_wp) array
The data values of the $p$ th sequence to be transformed, denoted by $x_{j}^{p}$, for $j=0,1, \ldots, n-1$ and $p=1,2, \ldots, m$, must be stored in $\mathbf{x}(j, p)$.

### 5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the second dimension of the array $\mathbf{x}$.
$m$, the number of sequences to be transformed.
Constraint: $\mathbf{m} \geq 1$.

### 5.3 Output Parameters

1: $\quad \mathbf{x}(\mathbf{0}: \mathbf{n}-\mathbf{1}, \mathbf{m})-$ REAL (KIND=nag_wp) array
The $n$ components of the $p$ th quarter-wave cosine transform, denoted by $\hat{x}_{k}^{p}$, for $k=0,1, \ldots, n-1$ and $p=1,2, \ldots, m$, are stored in $\mathbf{x}(k, p)$, overwriting the corresponding original values.

2: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

## 6 Error Indicators and Warnings

Errors or warnings detected by the function:
ifail $=1$
Constraint: $\mathbf{m} \geq 1$.
$\mathbf{i f a i l}=2$
Constraint: $\mathbf{n} \geq 1$.

## $\mathbf{i f a i l}=3$

Constraint: idir $=-1$ or 1.

## ifail $=4$

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.

$$
\text { ifail }=-99
$$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

## 7 Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

## 8 Further Comments

The time taken by nag_sum_fft_qtrcosine (c06rh) is approximately proportional to $n m \log (n)$, but also depends on the factors of $n$. nag_sum_fft_qtrcosine (c06rh) is fastest if the only prime factors of $n$ are 2,3 and 5 , and is particularly slow if $\bar{n}$ is a large prime, or has large prime factors. Workspace is internally allocated by this function. The total amount of memory allocated is $O(n)$.

## 9 Example

This example reads in sequences of real data values and prints their quarter-wave cosine transforms as computed by nag_sum_fft_qtrcosine (c06rh) with idir $=1$. It then calls the function again with idir $=-1$ and prints the results which may be compared with the original data.

### 9.1 Program Text

function c06rh_example

```
fprintf('cO6rh example results\n\n');
% Discrete quarter-wave cosine transform of 3 sequences of length 6
m = nag_int(3);
n = nag_int(6);
x = [ l 0.3854 0.5417 0.9172;
    0.6772 0.2983 0.0644;
    0.1138 0.1181 0.6037;
    0.6751 0.7255 0.6430;
    0.6362 0.8638 0.0428;
    0.1424 0.8723 0.4815];
idir = nag_int(1);
[x, ifail] = c06rh(idir, n, x);
disp('x under discrete quarter-wave cosine transform');
disp(x);
idir = -idir;
[x, ifail] = c06rh(idir, n, x);
disp('x reconstructed by inverse quarter-wave cosine transform');
disp(x);
```


### 9.2 Program Results

c06rh example results
X under discrete quarter-wave cosine transform

| 0.7257 | 0.7479 | 0.6713 |
| ---: | ---: | ---: |
| -0.2216 | -0.6172 | -0.1363 |
| 0.1011 | 0.4112 | -0.0064 |
| 0.2355 | 0.0791 | -0.0285 |
| -0.1406 | 0.1331 | 0.4758 |
| -0.2282 | -0.0906 | 0.1475 |

X reconstructed by inverse quarter-wave cosine transform
0.38540 .5417
$0.6772 \quad 0.2983 \quad 0.0644$
$0.1138 \quad 0.1181 \quad 0.6037$
$0.6751 \quad 0.7255 \quad 0.6430$
$0.6362 \quad 0.8638 \quad 0.0428$
$0.1424 \quad 0.8723 \quad 0.4815$

