
NAG Toolbox

nag_pde_2d_laplace (d03ea)

1 Purpose

nag_pde_2d_laplace (d03ea) solves Laplace's equation in two dimensions for an arbitrary domain
bounded internally or externally by one or more closed contours, given the value of either the unknown
function or its normal derivative (into the domain) at each point of the boundary.

2 Syntax

[pphhii, pphhiidd, aallpphhaa, iiffaaiill] = nag_pde_2d_laplace(ssttaaggee11, eexxtt, ddoorrmm, pp, qq, xx, yy,
pphhii, pphhiidd, aallpphhaa, ’n’, nn, ’n1p1’, nn11pp11)

[pphhii, pphhiidd, aallpphhaa, iiffaaiill] = d03ea(ssttaaggee11, eexxtt, ddoorrmm, pp, qq, xx, yy, pphhii, pphhiidd,
aallpphhaa, ’n’, nn, ’n1p1’, nn11pp11)

3 Description

nag_pde_2d_laplace (d03ea) uses an integral equation method, based upon Green's formula, which
yields the solution, �, within the domain, given its value or that of its normal derivative at each point of
the boundary (except possibly at a finite number of discrete points). The solution is obtained in two
stages. The first, which is executed once only, determines the complementary boundary values, i.e., �,
where its normal derivative is known and vice versa. The second stage is entered once for each point at
which the solution is required.

The boundary is divided into a number of intervals in each of which � and its normal derivative are
approximated by constants. Of these half are evaluated by applying the given boundary conditions at
one ‘nodal’ point within each interval while the remainder are determined (in stage 1) by solving a set
of simultaneous linear equations. Here this is achieved by means of auxiliary function nag_lapack_dgels
(f08aa), which will yield the least squares solution of an overdetermined system of equations as well as
the unique solution of a square nonsingular system.

In exterior domains the solution behaves as cþ s log rð Þ þO 1=rð Þ as r tends to infinity, where c is a
constant, s is the total integral of the normal derivative around the boundary and r is the radial distance
from the origin of coordinates. For the Neumann problem (when the normal derivative is given along
the whole boundary) s is fixed by the boundary conditions whilst c is chosen by you. However, for a
Dirichlet problem (when � is given along the whole boundary) or for a mixed problem, stage 1
produces a value of c for which s ¼ 0; then as r tends to infinity the solution tends to the constant c.

4 References

Symm G T and Pitfield R A (1974) Solution of Laplace's equation in two dimensions NPL Report NAC
44 National Physical Laboratory

5 Parameters

5.1 Compulsory Input Parameters

1: stage1 – LOGICAL

Indicates whether the function call is for stage 1 of the computation as defined in Section 3.

stage1 ¼ true
The call is for stage 1.

stage1 ¼ false
The call is for stage 2.

D03 – Partial Differential Equations d03ea

Mark 25 d03ea.1

2: ext – LOGICAL

The form of the domain. If ext ¼ true, the domain is unbounded. Otherwise the domain is an
interior one.

3: dorm – LOGICAL

The form of the boundary conditions. If dorm ¼ true, then the problem is a Dirichlet or mixed
boundary value problem. Otherwise it is a Neumann problem.

4: p – REAL (KIND=nag_wp)
5: q – REAL (KIND=nag_wp)

To stage 2, p and q must specify the x and y coordinates respectively of a point at which the
solution is required.

When stage1 is true, p and q are ignored.

6: xðn1p1Þ – REAL (KIND=nag_wp) array
7: yðn1p1Þ – REAL (KIND=nag_wp) array

The x and y coordinates respectively of points on the one or more closed contours which define
the domain of the problem.

Note: each contour is described in such a manner that the subscripts of the coordinates increase
when the domain is kept on the left. The final point on each contour coincides with the first and,
if a further contour is to be described, the coordinates of this point are repeated in the arrays. In
this way each interval is defined by three points, the second of which (the nodal point) always
has an even subscript. In the case of the interior Neumann problem, the outermost boundary
contour must be given first, if there is more than one.

8: phiðnÞ – REAL (KIND=nag_wp) array

For stage 1, phi must contain the nodal values of � or its normal derivative (into the domain) as
prescribed in each interval. For stage 2 it must retain its output values from stage 1.

9: phidðnÞ – REAL (KIND=nag_wp) array

For stage 1, phidðiÞ must hold the value 0:0 or 1:0 accordingly as phiðiÞ contains a value of � or
its normal derivative, for i ¼ 1; 2; . . . ;n. For stage 2 it must retain its output values from stage 1.

10: alpha – REAL (KIND=nag_wp)

For stage 1, the use of alpha depends on the nature of the problem:

if dorm ¼ true, alpha need not be set;

if dorm ¼ false and ext ¼ true, alpha must contain the prescribed constant c (see
Section 3);

if dorm ¼ false and ext ¼ false, alpha must contain an appropriate value (often zero) for
the integral of � around the outermost boundary.

For stage 2, on every call alpha must contain the value returned at stage 1.

5.2 Optional Input Parameters

1: n – INTEGER

Default: the dimension of the arrays phi, phid. (An error is raised if these dimensions are not
equal.)

The number of intervals into which the boundary is divided (see Section 7 and Section 9).

d03ea NAG Toolbox for MATLAB Manual

d03ea.2 Mark 25

2: n1p1 – INTEGER

Default: the dimension of the arrays x, y. (An error is raised if these dimensions are not equal.)

The value 2 nþMð Þ � 1, where M denotes the number of closed contours which make up the
boundary.

5.3 Output Parameters

1: phiðnÞ – REAL (KIND=nag_wp) array

From stage 1, it contains the constants which approximate � in each interval. It remains
unchanged on exit from stage 2.

2: phidðnÞ – REAL (KIND=nag_wp) array

From stage 1, phid contains the constants which approximate the normal derivative of � in each
interval. It remains unchanged on exit from stage 2.

3: alpha – REAL (KIND=nag_wp)

From stage 1:

if ext ¼ false, alpha contains 0:0;

if ext ¼ true and dorm ¼ false alpha is unchanged;

if ext ¼ true and dorm ¼ true alpha contains a computed estimate for c.

From stage 2:

alpha contains the computed value of � at the point (p,q).

4: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

Invalid tolerance used in an internal call to an auxiliary function:

icintð1Þ ¼ 0
Indicates too large a tolerance.

icintð1Þ > 0
Indicates too small a tolerance.

Note: this error is only possible in stage 1, and the circumstances under which it may occur
cannot be foreseen. In the event of a failure, it is suggested that you change the scale of the
domain of the problem and apply the function again.

ifail ¼ 2

Incorrect rank obtained by an auxiliary function; icintð1Þ contains the computed rank.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

D03 – Partial Differential Equations d03ea

Mark 25 d03ea.3

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

The accuracy of the computed solution depends upon how closely � and its normal derivative may be
approximated by constants in each interval of the boundary and upon how well the boundary contours
are represented by polygons with vert ices at the selected points xðiÞ; yðiÞð Þ, for
i ¼ 1; 2; . . . ; 2 nþMð Þ � 1 .

Consequently, in general, the accuracy increases as the boundary is subdivided into smaller and smaller
intervals and by comparing solutions for successive subdivisions one may obtain an indication of the
error in these solutions.

Alternatively, since the point of maximum error always lies on the boundary of the domain, an estimate
of the error may be obtained by computing � at a sufficient number of points on the boundary where
the true solution is known. The latter method (not applicable to the Neumann problem) is most useful in
the case where � alone is prescribed on the boundary (the Dirichlet problem).

8 Further Comments

The time taken for stage 1, which is executed once only, is roughly proportional to n2, being dominated
by the time taken to compute the coefficients. The time for each stage 2 application is proportional to n.

The intervals into which the boundary is divided need not be of equal lengths.

For many practical problems useful results may be obtained with 20 to 40 intervals per boundary
contour.

9 Example

An interior Neumann problem to solve Laplace's equation in the domain bounded externally by the
triangle with vertices 3; 0ð Þ, �3; 0ð Þ and 0; 4ð Þ, and internally by the triangle with vertices 2; 1ð Þ, (�2; 1)
and 0; 3ð Þ, given that the normal derivative of the solution � is zero on each side of each triangle and,
for uniqueness that the total integral of � around the outer triangle is 16 (the length of the contour).

This trivial example has the obvious solution � ¼ 1 throughout the domain. However it provides a
useful illustration of data input for a doubly-connected domain. The solution is computed at one corner
of each triangle and at one point inside the domain.

The program is written to handle any of the different types of problem that the function can solve. The
array dimensions must be increased for larger problems.

9.1 Program Text

function d03ea_example

fprintf(’d03ea example results\n\n’);

% This example illustrates using an interior Neumann problem to
% solve the Laplace equation in the domain bounded by two triangles.

% Stage 1: Set up phi and phid
stage1 = true;
ext = false;
dorm = false;
p = 0;
q = 0;
% Outer and inner triangles with mid-points
x = [3.0; 1.5; 0.0; -1.5; -3.0; 0.0; 3.0;

3.0;
2.0; 0.0; -2.0; -1.0; 0.0; 1.0; 2.0];

y = [0.0; 2.0; 4.0; 2.0; 0.0; 0.0; 0.0;
0.0;

d03ea NAG Toolbox for MATLAB Manual

d03ea.4 Mark 25

1.0; 1.0; 1.0; 2.0; 3.0; 2.0; 1.0];
% Some interesting Neumann conditions
phi(1:6) = [3, 4, 4, 5, 4, 3];
phid(1:6) = [0, 0, 0, 0, 0, 0];
% Integral of solution around outer triangle
alpha = 12;
[phi, phid, alpha, ifail] = ...

d03ea(...
stage1, ext, dorm, p, q, x, y, phi, phid, alpha);

% Stage 2 - solution at a set of points
stage1 = false;
phisol = zeros(401,601);
solmin = 1.e10;
solmax = -1.0e10;
i = 0;
for xx = -3:0.01:3

i = i + 1;
j = 0;
xl = 3-abs(xx);
y1 = (4/3)*xl;
for yy = 0:0.01:4

j = j + 1;
if ((yy<=y1) && ((yy<=1) || (yy>=xl)));

% In Outer triangle and outside inner triangle
[phi, phid, sol, ifail] = ...
d03ea(...

stage1, ext, dorm, xx, yy, x, y, phi, phid, alpha);
phisol(j,i) = sol;
solmax = max(solmax,sol);
solmin = min(solmin,sol);

end
end

end

fprintf(’The maximum value of solution = %8.3f\n’,solmax);
fprintf(’The minimum value of solution = %8.3f\n’,solmin);

% Plot Solution
fig1 = figure;
contourf(phisol,[solmin:-1,1,2:0.2:solmax]);
title(’Laplace Equation Solution between two triangles’);
set(gca,’XTick’,[],’XTickLabel’,[],’YTick’,[],’YTickLabel’,[]);

9.2 Program Results

d03ea example results

The maximum value of solution = 5.430
The minimum value of solution = -2.979

D03 – Partial Differential Equations d03ea

Mark 25 d03ea.5

Laplace Equation Solution between two triangles

d03ea NAG Toolbox for MATLAB Manual

d03ea.6 (last) Mark 25

	nag_pde_2d_laplace (d03ea)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Symm and Pitfield (1974)

	5 Parameters
	5.1 Compulsory Input Parameters
	stage1
	ext
	dorm
	p
	q
	x
	y
	phi
	phid
	alpha

	5.2 Optional Input Parameters
	n
	n1p1

	5.3 Output Parameters
	phi
	phid
	alpha
	ifail

	6 Error Indicators and Warnings
	ifail=1
	ifail=2
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

