
NAG Toolbox

nag_pde_2d_ellip_discret (d03ee)

1 Purpose

nag_pde_2d_ellip_discret (d03ee) discretizes a second-order elliptic partial differential equation (PDE)
on a rectangular region.

2 Syntax

[aa, rrhhss, iiffaaiill] = nag_pde_2d_ellip_discret(xxmmiinn, xxmmaaxx, yymmiinn, yymmaaxx, ppddeeff, bbnnddyy,
nnggxx, nnggyy, sscchheemmee)

[aa, rrhhss, iiffaaiill] = d03ee(xxmmiinn, xxmmaaxx, yymmiinn, yymmaaxx, ppddeeff, bbnnddyy, nnggxx, nnggyy, sscchheemmee)

3 Description

nag_pde_2d_ellip_discret (d03ee) discretizes a second-order linear elliptic partial differential equation
of the form

� x; yð Þ@
2U

@x2
þ � x; yð Þ @

2U

@x@y
þ � x; yð Þ@

2U

@y2
þ � x; yð Þ@U

@x
þ � x; yð Þ@U

@y
þ � x; yð ÞU ¼  x; yð Þ ð1Þ

on a rectangular region

xA � x � xB
yA � y � yB

subject to boundary conditions of the form

a x; yð ÞU þ b x; yð Þ@U
@n

¼ c x; yð Þ

where
@U

@n
denotes the outward pointing normal derivative on the boundary. Equation (1) is said to be

elliptic if

4� x; yð Þ� x; yð Þ � � x; yð Þð Þ2

for all points in the rectangular region. The linear equations produced are in a form suitable for passing
directly to the multigrid function nag_pde_2d_ellip_mgrid (d03ed).

The equation is discretized on a rectangular grid, with nx grid points in the x-direction and ny grid
points in the y-direction. The grid spacing used is therefore

hx ¼ xB � xAð Þ= nx � 1ð Þ
hy ¼ yB � yAð Þ= ny � 1

� �
and the coordinates of the grid points xi; yj

� �
are

xi ¼ xA þ i� 1ð Þhx; i ¼ 1; 2; . . . ; nx;
yj ¼ yA þ j� 1ð Þhy; j ¼ 1; 2; . . . ; ny:

At each grid point xi; yj
� �

six neighbouring grid points are used to approximate the partial differential
equation, so that the equation is discretized on the seven-point stencil shown in Figure 1.
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Figure 1

For convenience the approximation uij to the exact solution U xi; yj
� �

is denoted by uO, and the
neighbouring approximations are labelled according to points of the compass as shown. Where
numerical labels for the seven points are required, these are also shown.

The following approximations are used for the second derivatives:

@2U

@x2
’ 1

h2x
uE � 2uO þ uWð Þ

@2U

@y2
’ 1

h2y
uN � 2uO þ uSð Þ

@2U

@x@y
’ 1

2hxhy
uN � uNW þ uE � 2uO þ uW � uSE þ uSð Þ:

Two possible schemes may be used to approximate the first derivatives:

Central Differences

@U

@x
’ 1

2hx
uE � uWð Þ

@U

@y
’ 1

2hy
uN � uSð Þ

Upwind Differences

@U

@x
’ 1

hx
uO � uWð Þ if � x; yð Þ > 0

@U

@x
’ 1

hx
uE � uOð Þ if � x; yð Þ < 0

@U

@y
’ 1

hy
uN � uOð Þ if � x; yð Þ > 0

@U

@y
’ 1

hy
uO � uSð Þ if � x; yð Þ < 0:

Central differences are more accurate than upwind differences, but upwind differences may lead to a
more diagonally dominant matrix for those problems where the coefficients of the first derivatives are
significantly larger than the coefficients of the second derivatives.

The approximations used for the first derivatives may be written in a more compact form as follows:

@U

@x
’ 1

2hx
kx � 1ð ÞuW � 2kxuO þ kx þ 1ð ÞuEð Þ

@U

@y
’ 1

2hy
ky � 1
� �

uS � 2kyuO þ ky þ 1
� �

uN
� �

where kx ¼ sign � and ky ¼ sign � for upwind differences, and kx ¼ ky ¼ 0 for central differences.

At all points in the rectangular domain, including the boundary, the coefficients in the partial
differential equation are evaluated by calling pdef, and applying the approximations. This leads to a
seven-diagonal system of linear equations of the form:
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A6
ijui�1;jþ1 þ A7

ijui;jþ1

þ A3
ijui�1;j þ A4

ijuij þ A5
ijuiþ1;j

þ A1
ijui;j�1 þ A2

ijuiþ1;j�1 ¼ fij; i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny;

where the coefficients are given by

A1
ij ¼ � xi; yj

� �
1

2hxhy
þ � xi; yj
� � 1

h2y
þ � xi; yj
� �

1
2hy

ky � 1
� �

A2
ij ¼ �� xi; yj

� �
1

2hxhy

A3
ij ¼ � xi; yj

� � 1
h2x

þ � xi; yj
� �

1
2hxhy

þ � xi; yj
� �

1
2hx

kx � 1ð Þ

A4
ij ¼ �� xi; yj

� � 2
h2x

� � xi; yj
� �

1
hxhy

� � xi; yj
� � 2

h2y
� � xi; yj
� �ky

hx
� � xi; yj
� �ky

hy
� � xi; yj

� �
A5
ij ¼ � xi; yj

� � 1
h2x

þ � xi; yj
� �

1
2hxhy

þ � xi; yj
� �

1
2hx

kx þ 1ð Þ
A6
ij ¼ �� xi; yj

� �
1

2hxhy

A7
ij ¼ � xi; yj

� �
1

2hxhy
þ � xi; yj
� � 1

h2y
þ � xi; yj
� �

1
2hy

ky þ 1
� �

fij ¼  xi; yj
� �

These equations then have to be modified to take account of the boundary conditions. These may be
Dirichlet (where the solution is given), Neumann (where the derivative of the solution is given), or
mixed (where a linear combination of solution and derivative is given).

If the boundary conditions are Dirichlet, there are an infinity of possible equations which may be
applied:

�uij ¼ �fij; � 6¼ 0: ð2Þ
If nag_pde_2d_ellip_mgrid (d03ed) is used to solve the discretized equations, it turns out that the
choice of � can have a dramatic effect on the rate of convergence, and the obvious choice � ¼ 1 is not
the best. Some choices may even cause the multigrid method to fail altogether. In practice it has been
found that a value of the same order as the other diagonal elements of the matrix is best, and the
following value has been found to work well in practice:

� ¼ min ij � 2

h2x
þ 2

h2y

( )
; A4

ij

 !
:

If the boundary conditions are either mixed or Neumann (i.e., B 6¼ 0 on return from bndy), then one of
the points in the seven-point stencil lies outside the domain. In this case the normal derivative in the
boundary conditions is used to eliminate the ‘fictitious’ point, uoutside:

@U

@n
’ 1

2h
uoutside � uinsideð Þ: ð3Þ

It should be noted that if the boundary conditions are Neumann and � x; yð Þ � 0, then there is no unique
solution. The function returns with ifail ¼ 5 in this case, and the seven-diagonal matrix is singular.

The four corners are treated separately. bndy is called twice, once along each of the edges meeting at
the corner. If both boundary conditions at this point are Dirichlet and the prescribed solution values
agree, then this value is used in an equation of the form (2). If the prescribed solution is discontinuous
at the corner, then the average of the two values is used. If one boundary condition is Dirichlet and the
other is mixed, then the value prescribed by the Dirichlet condition is used in an equation of the form
given above. Finally, if both conditions are mixed or Neumann, then two ‘fictitious’ points are
eliminated using two equations of the form (3).

It is possible that equations for which the solution is known at all points on the boundary, have
coefficients which are not defined on the boundary. Since this function calls pdef at all points in the
domain, including boundary points, arithmetic errors may occur in pdef which this function cannot trap.
If you have an equation with Dirichlet boundary conditions (i.e., B ¼ 0 at all points on the boundary),
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but with PDE coefficients which are singular on the boundary, then nag_pde_2d_ellip_mgrid (d03ed)
could be called directly only using interior grid points at your discretization.

After the equations have been set up as described above, they are checked for diagonal dominance. That
is to say,

A4
ij

��� ��� >X
k6¼4

Ak
ij

��� ���; i ¼ 1; 2; . . . ; nx and j ¼ 1; 2; . . . ; ny:

If this condition is not satisfied then the function returns with ifail ¼ 6. The multigrid functionnag_
pde_2d_ellip_mgrid (d03ed) may still converge in this case, but if the coefficients of the first
derivatives in the partial differential equation are large compared with the coefficients of the second
derivative, you should consider using upwind differences (scheme ¼ U ).

Since this function is designed primarily for use with nag_pde_2d_ellip_mgrid (d03ed), this document
should be read in conjunction with the document for that function.

4 References

Wesseling P (1982) MGD1 – a robust and efficient multigrid method Multigrid Methods. Lecture Notes
in Mathematics 960 614–630 Springer–Verlag

5 Parameters

5.1 Compulsory Input Parameters

1: xmin – REAL (KIND=nag_wp)
2: xmax – REAL (KIND=nag_wp)

The lower and upper x coordinates of the rectangular region respectively, xA and xB.

Constraint: xmin < xmax.

3: ymin – REAL (KIND=nag_wp)
4: ymax – REAL (KIND=nag_wp)

The lower and upper y coordinates of the rectangular region respectively, yA and yB.

Constraint: ymin < ymax.

5: pdef – SUBROUTINE, supplied by the user.

pdef must evaluate the functions � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ and  x; yð Þ
which define the equation at a general point x; yð Þ.

[alpha, beta, gamma, delta, epslon, phi, psi] = pdef(x, y)

Input Parameters

1: x – REAL (KIND=nag_wp)
2: y – REAL (KIND=nag_wp)

The x and y coordinates of the point at which the coefficients of the partial differential
equation are to be evaluated.
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Output Parameters

1: alpha – REAL (KIND=nag_wp)
2: beta – REAL (KIND=nag_wp)
3: gamma – REAL (KIND=nag_wp)
4: delta – REAL (KIND=nag_wp)
5: epslon – REAL (KIND=nag_wp)
6: phi – REAL (KIND=nag_wp)
7: psi – REAL (KIND=nag_wp)

alpha, beta, gamma, delta, epslon, phi and psi must be set to the values of � x; yð Þ,
� x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ, � x; yð Þ and  x; yð Þ respectively at the point specified by
x and y.

6: bndy – SUBROUTINE, supplied by the user.

bndy must evaluate the functions a x; yð Þ, b x; yð Þ, and c x; yð Þ involved in the boundary
conditions.

[a, b, c] = bndy(x, y, ibnd)

Input Parameters

1: x – REAL (KIND=nag_wp)
2: y – REAL (KIND=nag_wp)

The x and y coordinates of the point at which the boundary conditions are to be
evaluated.

3: ibnd – INTEGER

Specifies on which boundary the point (x,y) lies. ibnd ¼ 0, 1, 2 or 3 according as the
point lies on the bottom, right, top or left boundary.

Output Parameters

1: a – REAL (KIND=nag_wp)
2: b – REAL (KIND=nag_wp)
3: c – REAL (KIND=nag_wp)

a, b and c must be set to the values of the functions appearing in the boundary
conditions.

7: ngx – INTEGER
8: ngy – INTEGER

The number of interior grid points in the x- and y-directions respectively, nx and ny. If the seven-
diagonal equations are to be solved by nag_pde_2d_ellip_mgrid (d03ed), then ngx� 1 and
ngy� 1 should preferably be divisible by as high a power of 2 as possible.

Constraints:

ngx � 3;
ngy � 3.

9: scheme – CHARACTER(1)

The type of approximation to be used for the first derivatives which occur in the partial
differential equation.

scheme ¼ C
Central differences are used.
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scheme ¼ U
Upwind differences are used.

Constraint: scheme ¼ C or U .

Note: generally speaking, if at least one of the coefficients multiplying the first derivatives (delta
or epslon as returned by pdef) are large compared with the coefficients multiplying the second
derivatives, then upwind differences may be more appropriate. Upwind differences are less
accurate than central differences, but may result in more rapid convergence for strongly
convective equations. The easiest test is to try both schemes.

5.2 Optional Input Parameters

None.

5.3 Output Parameters

1: aðlda; 7Þ – REAL (KIND=nag_wp) array

aði; jÞ, for i ¼ 1; 2; . . . ;ngx� ngy and j ¼ 1; 2; . . . ; 7, contains the seven-diagonal linear
equations produced by the discretization described above. If lda > ngx� ngy, the remaining
elements are not referenced by the function, but if lda � 4� ngxþ 1ð Þ � ngyþ 1ð Þð Þ=3 then the
array a can be passed directly to nag_pde_2d_ellip_mgrid (d03ed), where these elements are used
as workspace.

2: rhsðldaÞ – REAL (KIND=nag_wp) array

The first ngx� ngy elements contain the right-hand sides of the seven-diagonal linear equations
produced by the discretization described above. If lda > ngx� ngy, the remaining elements are
not referenced by the function, but if lda � 4� ngyþ 1ð Þ � ngyþ 1ð Þð Þ=3 then the array rhs can
be passed directly to nag_pde_2d_ellip_mgrid (d03ed), where these elements are used as
workspace.

3: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Note: nag_pde_2d_ellip_discret (d03ee) may return useful information for one or more of the following
detected errors or warnings.

Errors or warnings detected by the function:

ifail ¼ 1

On entry, xmin � xmax,
or ymin � ymax,
or ngx < 3,
or ngy < 3,
or lda < ngx� ngy,
or scheme is not one of `C' or `U'.

ifail ¼ 2

At some point on the boundary there is a derivative in the boundary conditions (b 6¼ 0 on return

from bndy) and there is a nonzero coefficient of the mixed derivative
@2U

@x@y
(beta 6¼ 0 on return

from pdef).
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ifail ¼ 3

A null boundary has been specified, i.e., at some point both a and b are zero on return from a
call to bndy.

ifail ¼ 4 (warning)

The equation is not elliptic, i.e., 4� alpha� gamma < beta2 after a call to pdef. The
discretization has been completed, but the convergence of nag_pde_2d_ellip_mgrid (d03ed)
cannot be guaranteed.

ifail ¼ 5 (warning)

The boundary conditions are purely Neumann (only the derivative is specified) and there is, in
general, no unique solution.

ifail ¼ 6 (warning)

The equations were not diagonally dominant. (See Section 3.)

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

Not applicable.

8 Further Comments

If this function is used as a preprocessor to the multigrid function nag_pde_2d_ellip_mgrid (d03ed) it
should be noted that the rate of convergence of that function is strongly dependent upon the number of
levels in the multigrid scheme, and thus the choice of ngx and ngy is very important.

9 Example

The program solves the elliptic partial differential equation

@2U

@x2
þ @2U

@y2
þ 50

@U

@x
þ @U

@y

� �
¼ f x; yð Þ

on the unit square 0 � x, y � 1, with boundary conditions

@U

@n
given on x ¼ 0 and y ¼ 0,

U given on x ¼ 1 and y ¼ 1.

The function f x; yð Þ and the exact form of the boundary conditions are derived from the exact solution
U x; yð Þ ¼ sinx sin y.

The equation is first solved using central differences. Since the coefficients of the first derivatives are
large, the linear equations are not diagonally dominated, and convergence is slow. The equation is
solved a second time with upwind differences, showing that convergence is more rapid, but the solution
is less accurate.
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9.1 Program Text

function d03ee_example

% d03ee example: Solve elliptic equation by discretising using d02ee
% and solving the disretised system using d03ed.

fprintf(’d03ee example results\n\n’);

% u= sin(kx)sin(ly)
global k l;
k = 4; l = 5;

% Discretise on unit square usind d03ee
xmin = 0; xmax = 1;
ymin = 0; ymax = 1;
ngx = nag_int(33); ngy = ngx;
scheme = ’Upwind’;
[a, rhs, ifail] = ...
d03ee( ...

xmin, xmax, ymin, ymax, @pdef, @bndy, ngx, ngy, scheme);

% Solve using d03ed
maxit = nag_int(100); acc = 0.0001; iout = nag_int(0);
ub = zeros(ngx*ngy, 1);
[a, rhs, ub, resid, u, numit, ifail] = ...
d03ed( ...

ngx, ngy, a, rhs, ub, maxit, acc, iout);

fprintf(’Number of iterations to solution = %2d.\n’, numit);
fprintf(’Maximum residual %8.1e\n’,resid(numit));

% plot solution
u2 = u(1:ngx*ngy);
umat = reshape(u2,ngx,ngy);
hx = 1/double(ngx+1);
hy = hx;
x(1:ngx) = hx:hx:1-hx;
y(1:ngy) = hy:hy:1-hy;
[xs,ys] = meshgrid(y,x);

fig1 = figure;
meshc(xs,ys,umat);

xlabel(’x’); ylabel(’y’); zlabel (’u(x,y)’);
exact = sprintf(’u = sin %dx sin %dy’,k,l);
title({’d03ee example: U_{xx}+U_{yy}+50(U_x+U_y) = f;’,exact});
view(-24,28);

function [alpha, beta, gamma, delta, epsilon, phi, psi] = pdef(x,y)
global k l;
u = sin(k*x)*cos(l*y);
ux = k*cos(k*x)*sin(l*y); uy = l*sin(k*x)*cos(l*y);
uxx = -k*k*u; uyy = -l*l*u;
uxy = k*l*cos(k*x)*cos(l*y);
alpha = 1; beta = 0; gamma = 1; delta = 50; epsilon = 50;
phi = 0;
psi = alpha*uxx + beta*uxy + gamma*uyy + delta*ux + epsilon*uy + phi*u;

function [a, b, c] = bndy(x, y, ibnd)
global k l;
u = sin(k*x)*sin(l*y);
if (ibnd == 2 || ibnd == 1)

% Solution prescribed
a = 1;
b = 0;
c = u;

elseif (ibnd == 0)
% Derivative prescribed: uy(y=0) = l*sin(k*x)
a = 0;
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b = 1;
c = -l*sin(k*x);

elseif (ibnd == 3)
% Derivative prescribed: ux(x=0) = k*sin(l*y)
a = 0;
b = 1;
c = -k*sin(l*y);

end

9.2 Program Results

d03ee example results

Number of iterations to solution = 5.
Maximum residual -3.4e-09

0.90.80.7

d03ee example:  U
xx

+U
yy

+50(U
x
+U

y
) = f;

u = sin 4x sin 5y

0.60.50.4

x
0.30.20.1

0.2

0.4

y

0.6

0.8

0.6

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

u(
x,

y)
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