
NAG Toolbox

nag_pde_3d_ellip_helmholtz (d03fa)

1 Purpose

nag_pde_3d_ellip_helmholtz (d03fa) solves the Helmholtz equation in Cartesian coordinates in three
dimensions using the standard seven-point finite difference approximation. This function is designed to
be particularly efficient on vector processors.

2 Syntax

[ff, ppeerrttrrbb, iiffaaiill] = nag_pde_3d_ellip_helmholtz(xxss, xxff, ll, llbbddccnndd, bbddxxss, bbddxxff,
yyss, yyff, mm, mmbbddccnndd, bbddyyss, bbddyyff, zzss, zzff, nn, nnbbddccnndd, bbddzzss, bbddzzff, llaammbbddaa, ff, ’lwrk’,
llwwrrkk)

[ff, ppeerrttrrbb, iiffaaiill] = d03fa(xxss, xxff, ll, llbbddccnndd, bbddxxss, bbddxxff, yyss, yyff, mm, mmbbddccnndd,
bbddyyss, bbddyyff, zzss, zzff, nn, nnbbddccnndd, bbddzzss, bbddzzff, llaammbbddaa, ff, ’lwrk’, llwwrrkk)

Note: the interface to this routine has changed since earlier releases of the toolbox:

At Mark 23: lwrk was added as an optional parameter.

3 Description

nag_pde_3d_ellip_helmholtz (d03fa) solves the three-dimensional Helmholtz equation in Cartesian
coordinates:

@2u

@x2
þ @2u

@y2
þ @2u

@z2
þ �u ¼ f x; y; zð Þ:

This function forms the system of linear equations resulting from the standard seven-point finite
difference equations, and then solves the system using a method based on the fast Fourier transform
(FFT) described by Swarztrauber (1984). This function is based on the function HW3CRT from
FISHPACK (see Swarztrauber and Sweet (1979)).

More precisely, the function replaces all the second derivatives by second-order central difference
approximations, resulting in a block tridiagonal system of linear equations. The equations are modified
to allow for the prescribed boundary conditions. Either the solution or the derivative of the solution
may be specified on any of the boundaries, or the solution may be specified to be periodic in any of the
three dimensions. By taking the discrete Fourier transform in the x- and y-directions, the equations are
reduced to sets of tridiagonal systems of equations. The Fourier transforms required are computed using
the multiple FFT functions found in Chapter C06.

4 References

Swarztrauber P N (1984) Fast Poisson solvers Studies in Numerical Analysis (ed G H Golub)
Mathematical Association of America

Swarztrauber P N and Sweet R A (1979) Efficient Fortran subprograms for the solution of separable
elliptic partial differential equations ACM Trans. Math. Software 5 352–364
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5 Parameters

5.1 Compulsory Input Parameters

1: xs – REAL (KIND=nag_wp)

The lower bound of the range of x, i.e., xs � x � xf.

Constraint: xs < xf .

2: xf – REAL (KIND=nag_wp)

The upper bound of the range of x, i.e., xs � x � xf.

Constraint: xs < xf .

3: l – INTEGER

The number of panels into which the interval (xs,xf) is subdivided. Hence, there will be lþ 1
grid points in the x-direction given by xi ¼ xsþ i � 1ð Þ � �x, for i ¼ 1; 2; . . . ; lþ 1, where
�x ¼ xf � xsð Þ=l is the panel width.

Constraint: l � 5.

4: lbdcnd – INTEGER

Indicates the type of boundary conditions at x ¼ xs and x ¼ xf .

lbdcnd ¼ 0
If the solution is periodic in x, i.e., u xs; y; zð Þ ¼ u xf; y; zð Þ.

lbdcnd ¼ 1
If the solution is specified at x ¼ xs and x ¼ xf.

lbdcnd ¼ 2
If the solution is specified at x ¼ xs and the derivative of the solution with respect to x is
specified at x ¼ xf .

lbdcnd ¼ 3
If the derivative of the solution with respect to x is specified at x ¼ xs and x ¼ xf.

lbdcnd ¼ 4
If the derivative of the solution with respect to x is specified at x ¼ xs and the solution is
specified at x ¼ xf .

Constraint: 0 � lbdcnd � 4.

5: bdxsðldf2; nþ 1Þ – REAL (KIND=nag_wp) array

ldf2, the first dimension of the array, must satisfy the constraint ldf2 � mþ 1.

The values of the derivative of the solution with respect to x at x ¼ xs. When lbdcnd ¼ 3 or 4,
bdxsðj; kÞ ¼ ux xs; yj; zk

� �
, for j ¼ 1; 2; . . . ;mþ 1 and k ¼ 1; 2; . . . ;nþ 1.

When lbdcnd has any other value, bdxs is not referenced.

6: bdxfðldf2; nþ 1Þ – REAL (KIND=nag_wp) array

ldf2, the first dimension of the array, must satisfy the constraint ldf2 � mþ 1.

The values of the derivative of the solution with respect to x at x ¼ xf. When lbdcnd ¼ 2 or 3,
bdxfðj; kÞ ¼ ux xf; yj ; zk

� �
, for j ¼ 1; 2; . . . ;mþ 1 and k ¼ 1; 2; . . . ; nþ 1.

When lbdcnd has any other value, bdxf is not referenced.
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7: ys – REAL (KIND=nag_wp)

The lower bound of the range of y, i.e., ys � y � yf.

Constraint: ys < yf .

8: yf – REAL (KIND=nag_wp)

The upper bound of the range of y, i.e., ys � y � yf.

Constraint: ys < yf .

9: m – INTEGER

The number of panels into which the interval (ys,yf) is subdivided. Hence, there will be mþ 1
grid points in the y-direction given by yj ¼ ysþ j � 1ð Þ � �y, for j ¼ 1; 2; . . . ;mþ 1, where
�y ¼ yf � ysð Þ=m is the panel width.

Constraint: m � 5.

10: mbdcnd – INTEGER

Indicates the type of boundary conditions at y ¼ ys and y ¼ yf.

mbdcnd ¼ 0
If the solution is periodic in y, i.e., u x; yf; zð Þ ¼ u x; ys; zð Þ.

mbdcnd ¼ 1
If the solution is specified at y ¼ ys and y ¼ yf.

mbdcnd ¼ 2
If the solution is specified at y ¼ ys and the derivative of the solution with respect to y is
specified at y ¼ yf.

mbdcnd ¼ 3
If the derivative of the solution with respect to y is specified at y ¼ ys and y ¼ yf.

mbdcnd ¼ 4
If the derivative of the solution with respect to y is specified at y ¼ ys and the solution is
specified at y ¼ yf.

Constraint: 0 � mbdcnd � 4.

11: bdysðldf ; nþ 1Þ – REAL (KIND=nag_wp) array

ldf , the first dimension of the array, must satisfy the constraint ldf � lþ 1.

The values of the derivative of the solution with respect to y at y ¼ ys. When mbdcnd ¼ 3 or 4,
bdysði; kÞ ¼ uy xi; ys; zkð Þ, for i ¼ 1; 2; . . . ; lþ 1 and k ¼ 1; 2; . . . ; nþ 1.

When mbdcnd has any other value, bdys is not referenced.

12: bdyfðldf ;nþ 1Þ – REAL (KIND=nag_wp) array

ldf , the first dimension of the array, must satisfy the constraint ldf � lþ 1.

The values of the derivative of the solution with respect to y at y ¼ yf . When mbdcnd ¼ 2 or 3,
bdyfði; kÞ ¼ uy xi; yf; zkð Þ, for i ¼ 1; 2; . . . ; lþ 1 and k ¼ 1; 2; . . . ; nþ 1.

When mbdcnd has any other value, bdyf is not referenced.

13: zs – REAL (KIND=nag_wp)

The lower bound of the range of z, i.e., zs � z � zf .

Constraint: zs < zf.

D03 – Partial Differential Equations d03fa

Mark 25 d03fa.3



14: zf – REAL (KIND=nag_wp)

The upper bound of the range of z, i.e., zs � z � zf .

Constraint: zs < zf.

15: n – INTEGER

The number of panels into which the interval (zs,zf) is subdivided. Hence, there will be nþ 1
grid points in the z-direction given by zk ¼ zsþ k � 1ð Þ � �z, for k ¼ 1; 2; . . . ; nþ 1, where
�z ¼ zf � zsð Þ=n is the panel width.

Constraint: n � 5.

16: nbdcnd – INTEGER

Specifies the type of boundary conditions at z ¼ zs and z ¼ zf.

nbdcnd ¼ 0
if the solution is periodic in z, i.e., u x; y; zfð Þ ¼ u x; y; zsð Þ.

nbdcnd ¼ 1
if the solution is specified at z ¼ zs and z ¼ zf.

nbdcnd ¼ 2
if the solution is specified at z ¼ zs and the derivative of the solution with respect to z is
specified at z ¼ zf.

nbdcnd ¼ 3
if the derivative of the solution with respect to z is specified at z ¼ zs and z ¼ zf .

nbdcnd ¼ 4
if the derivative of the solution with respect to z is specified at z ¼ zs and the solution is
specified at z ¼ zf.

Constraint: 0 � nbdcnd � 4.

17: bdzsðldf ;mþ 1Þ – REAL (KIND=nag_wp) array

ldf , the first dimension of the array, must satisfy the constraint ldf � lþ 1.

The values of the derivative of the solution with respect to z at z ¼ zs. When nbdcnd ¼ 3 or 4,
bdzsði; jÞ ¼ uz xi; yj; zs

� �
, for i ¼ 1; 2; . . . ; lþ 1 and j ¼ 1; 2; . . . ;mþ 1.

When nbdcnd has any other value, bdzs is not referenced.

18: bdzfðldf ;mþ 1Þ – REAL (KIND=nag_wp) array

ldf , the first dimension of the array, must satisfy the constraint ldf � lþ 1.

The values of the derivative of the solution with respect to z at z ¼ zf. When nbdcnd ¼ 2 or 3,
bdzfði; jÞ ¼ uz xi; yj; zf

� �
, for i ¼ 1; 2; . . . ; lþ 1 and j ¼ 1; 2; . . . ;mþ 1.

When nbdcnd has any other value, bdzf is not referenced.

19: lambda – REAL (KIND=nag_wp)

The constant � in the Helmholtz equation. For certain positive values of � a solution to the
differential equation may not exist, and close to these values the solution of the discretized
problem will be extremely ill-conditioned. If � > 0, then nag_pde_3d_ellip_helmholtz (d03fa)
will set ifail ¼ 3, but will still attempt to find a solution. However, since in general the values of
� for which no solution exists cannot be predicted a priori, you are advised to treat any results
computed with � > 0 with great caution.

20: fðldf ; ldf2; nþ 1Þ – REAL (KIND=nag_wp) array

ldf , the first dimension of the array, must satisfy the constraint ldf � lþ 1.
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The values of the right-side of the Helmholtz equation and boundary values (if any).

fði; j; kÞ ¼ f xi; yj; zk
� �

i ¼ 2; 3; . . . ; l; j ¼ 2; 3; . . . ;m and k ¼ 2; 3; . . . ;n:

On the boundaries f is defined by

lbdcnd fð1; j; kÞ fðlþ 1; j; kÞ
0 f xs; yj; zk

� �
f xs; yj; zk
� �

1 u xs; yj; zk
� �

u xf; yj; zk
� �

2 u xs; yj; zk
� �

f xf; yj; zk
� �

j ¼ 1; 2; . . . ;mþ 1
3 f xs; yj; zk

� �
f xf; yj; zk
� �

k ¼ 1; 2; . . . ; nþ 1
4 f xs; yj; zk

� �
u xf; yj; zk
� �

mbdcnd fði; 1; kÞ fði;mþ 1; kÞ
0 f xi; ys; zkð Þ f xi; ys; zkð Þ
1 u ys; xi; zkð Þ u yf; xi; zkð Þ
2 u xi; ys; zkð Þ f xi; yf; zkð Þ i ¼ 1; 2; . . . ; lþ 1
3 f xi; ys; zkð Þ f xi; yf; zkð Þ k ¼ 1; 2; . . . ; nþ 1
4 f xi; ys; zkð Þ u xi; yf; zkð Þ

nbdcnd fði; j; 1Þ fði; j; nþ 1Þ
0 f xi; yj; zs

� �
f xi; yj; zs
� �

1 u xi; yj; zs
� �

u xi; yj; zf
� �

2 u xi; yj; zs
� �

f xi; yj; zf
� �

i ¼ 1; 2; . . . ; lþ 1
3 f xi; yj; zs

� �
f xi; yj; zf
� �

j ¼ 1; 2; . . . ;mþ 1
4 f xi; yj; zs

� �
u xi; yj; zf
� �

Note: if the table calls for both the solution u and the right-hand side f on a boundary, then the
solution must be specified.

5.2 Optional Input Parameters

1: lwrk – INTEGER

Default: 2� nþ 1ð Þ �max l;mð Þ þ 3� lþ 3�mþ 4� nþ 6

The dimension of the array w. 2� nþ 1ð Þ �max l;mð Þ þ 3� lþ 3�mþ 4� nþ 6 is an upper
bound on the required size of w. If lwrk is too small, the function exits with ifail ¼ 2, and if on
entry ifail ¼ 0 or �1, a message is output giving the exact value of lwrk required to solve the
current problem.

5.3 Output Parameters

1: fðldf ; ldf2; nþ 1Þ – REAL (KIND=nag_wp) array

ldf2 ¼ mþ 1.

Contains the solution u i; j; kð Þ of the finite difference approximation for the grid point xi; yj ; zk
� �

,
for i ¼ 1; 2; . . . ; lþ 1, j ¼ 1; 2; . . . ;mþ 1 and k ¼ 1; 2; . . . ; nþ 1.

2: pertrb – REAL (KIND=nag_wp)

pertrb ¼ 0, unless a solution to Poisson's equation � ¼ 0ð Þ is required with a combination of
periodic or derivative boundary conditions (lbdcnd, mbdcnd and nbdcnd ¼ 0 or 3). In this case
a solution may not exist. pertrb is a constant, calculated and subtracted from the array f, which
ensures that a solution exists. nag_pde_3d_ellip_helmholtz (d03fa) then computes this solution,
which is a least squares solution to the original approximation. This solution is not unique and is
unnormalized. The value of pertrb should be small compared to the right-hand side f, otherwise
a solution has been obtained to an essentially different problem. This comparison should always
be made to ensure that a meaningful solution has been obtained.
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3: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

On entry, xs � xf,
or l < 5,
or lbdcnd < 0,
or lbdcnd > 4,
or ys � yf,
or m < 5,
or mbdcnd < 0,
or mbdcnd > 4,
or zs � zf,
or n < 5,
or nbdcnd < 0,
or nbdcnd > 4,
or ldf < lþ 1,
or ldf2 < mþ 1.

ifail ¼ 2

On entry, lwrk is too small.

ifail ¼ 3 (warning)

On entry, � > 0.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

Not applicable.

8 Further Comments

The execution time is roughly proportional to l�m� n� log2 lþ log2 mþ 5ð Þ, but also depends on
input arguments lbdcnd and mbdcnd.

9 Example

This example solves the Helmholz equation

@2u

@x2
þ @2u

@y2
þ @2u

@z2
þ �u ¼ f x; y; zð Þ

for x; y; zð Þ 2 0; 1½ � � 0; 2�½ � � 0; �2
� �

, where � ¼ �2, and f x; y; zð Þ is derived from the exact solution
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u x; y; zð Þ ¼ x4 sin y cos z:

The equation is subject to the following boundary conditions, again derived from the exact solution
given above.

u 0; y; zð Þ and u 1; y; zð Þ are prescribed (i.e., lbdcnd ¼ 1).

u x; 0; zð Þ ¼ u x; 2�; zð Þ (i.e., mbdcnd ¼ 0).

u x; y; 0ð Þ and ux x; y; �2
� �

are prescribed (i.e., nbdcnd ¼ 2).

9.1 Program Text

function d03fa_example

fprintf(’d03fa example results\n\n’);

xs = 0; xf = 1; l = 16;
ys = 0; yf = 2*pi; m = 32;
zs = 0; zf = pi/2; n = 20;

bdxs = zeros(m+1, n+1); bdxf = zeros(m+1, n+1);
bdys = zeros(l+1, n+1); bdyf = zeros(l+1, n+1);
bdzs = zeros(l+1, m+1); bdzf = zeros(l+1, m+1);

lbdcnd = nag_int(1);
mbdcnd = nag_int(0);
nbdcnd = nag_int(2);
lambda = -2;

% Define the grid points for later use.
dx = (xf-xs)/l; x = [xs:dx:xf];
dy = (yf-ys)/m; y = [ys:dy:yf];
dz = (zf-zs)/n; z = [zs:dz:zf];

% Define the array of derivative boundary values (z only here).
XY = [x.^4]’*sin(y);
bdzf = -XY;

% Define the f array including boundary conditions.
YZ = [sin(y)]’*cos(z);
for i = 1:l

f(i,:,:) = (4*x(i)^2*(3-x(i)^2))*YZ;
g(i,:,:) = x(i)^4*YZ;

end
g(l+1,:,:) = YZ;
f(1,:,:) = 0;
f(l+1,:,:) = YZ;
f(:,:,1) = XY;

[u, pertrb, ifail] = d03fa( ...
xs, xf, nag_int(l), lbdcnd, bdxs, bdxf, ...
ys, yf, nag_int(m), mbdcnd, bdys, bdyf, ...
zs, zf, nag_int(n), nbdcnd, bdzs, bdzf, lambda, f);

% calculate error
maxerr = max(max(max(abs(u - g))));
fprintf(’Maximum error in computed solution = %10.3e\n’,maxerr);

fig1 = figure;
[xs,ys,zs] = meshgrid(y,x,z);
slice(xs,ys,zs,u,[1.8 5],[0.95],[0.78]);
axis([y(1) y(end) x(1) x(end) 0 2]);
xlabel(’y’); ylabel(’x’); zlabel(’z’);
title(’Helholtz Equation solution in a box’);
view(111, 26);
h = colorbar;
ylabel(h, ’u(x,y,z)’)
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9.2 Program Results

d03fa example results

Maximum error in computed solution = 5.177e-04
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