NAG Toolbox nag_pde_1d_parab_coll (d03pd)

1 Purpose

nag_pde_1d_parab_coll (d03pd) integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one space variable. The spatial discretization is performed using a Chebyshev C^{0} collocation method, and the method of lines is employed to reduce the PDEs to a system of ordinary differential equations (ODEs). The resulting system is solved using a backward differentiation formula method.

2 Syntax

```
[ts, u, x, rsave, isave, ind, user, cwsav, lwsav, iwsav, rwsav, ifail] =
nag_pde_1d_parab_coll(m, ts, tout, pdedef, bndary, u, xbkpts, npoly, uinit, acc,
rsave, isave, itask, itrace, ind, cwsav, lwsav, iwsav, rwsav, 'npde', npde,
'nbkpts', nbkpts, 'npts', npts, 'user', user)
[ts, u, x, rsave, isave, ind, user, cwsav, lwsav, iwsav, rwsav, ifail] = d03pd
(m, ts, tout, pdedef, bndary, u, xbkpts, npoly, uinit, acc, rsave, isave,
itask, itrace, ind, cwsav, lwsav, iwsav, rwsav, 'npde', npde, 'nbkpts', nbkpts,
'npts', npts, 'user', user)
```

Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 22: lrsave and lisave were removed from the interface.

3 Description

nag_pde_1d_parab_coll (d03pd) integrates the system of parabolic equations:

$$
\begin{equation*}
\sum_{j=1}^{\text {npde }} P_{i, j} \frac{\partial U_{j}}{\partial t}+Q_{i}=x^{-m} \frac{\partial}{\partial x}\left(x^{m} R_{i}\right), \quad i=1,2, \ldots, \text { npde }, \quad a \leq x \leq b, t \geq t_{0} \tag{1}
\end{equation*}
$$

where $P_{i, j}, Q_{i}$ and R_{i} depend on x, t, U, U_{x} and the vector U is the set of solution values

$$
\begin{equation*}
U(x, t)=\left[U_{1}(x, t), \ldots, U_{\text {npde }}(x, t)\right]^{\mathrm{T}} \tag{2}
\end{equation*}
$$

and the vector U_{x} is its partial derivative with respect to x. Note that $P_{i, j}, Q_{i}$ and R_{i} must not depend on $\frac{\partial U}{\partial t}$.
The integration in time is from t_{0} to $t_{\text {out }}$, over the space interval $a \leq x \leq b$, where $a=x_{1}$ and $b=x_{\text {nbkpts }}$ are the leftmost and rightmost of a user-defined set of break-points $x_{1}, x_{2}, \ldots, x_{\text {nbkpts }}$. The coordinate system in space is defined by the value of $m ; m=0$ for Cartesian coordinates, $m=1$ for cylindrical polar coordinates and $m=2$ for spherical polar coordinates.
The system is defined by the functions $P_{i, j}, Q_{i}$ and R_{i} which must be specified in pdedef.
The initial values of the functions $U(x, t)$ must be given at $t=t_{0}$, and must be specified in uinit.
The functions R_{i}, for $i=1,2, \ldots$, npde, which may be thought of as fluxes, are also used in the definition of the boundary conditions for each equation. The boundary conditions must have the form

$$
\begin{equation*}
\beta_{i}(x, t) R_{i}\left(x, t, U, U_{x}\right)=\gamma_{i}\left(x, t, U, U_{x}\right), \quad i=1,2, \ldots, \text { npde } \tag{3}
\end{equation*}
$$

where $x=a$ or $x=b$.
The boundary conditions must be specified in bndary. Thus, the problem is subject to the following restrictions:
(i) $t_{0}<t_{\text {out }}$, so that integration is in the forward direction;
(ii) $P_{i, j}, Q_{i}$ and the flux R_{i} must not depend on any time derivatives;
(iii) the evaluation of the functions $P_{i, j}, Q_{i}$ and R_{i} is done at both the break-points and internally selected points for each element in turn, that is $P_{i, j}, Q_{i}$ and R_{i} are evaluated twice at each breakpoint. Any discontinuities in these functions must therefore be at one or more of the break-points $x_{1}, x_{2}, \ldots, x_{\mathbf{n b k p t s}}$;
(iv) at least one of the functions $P_{i, j}$ must be nonzero so that there is a time derivative present in the problem;
(v) if $m>0$ and $x_{1}=0.0$, which is the left boundary point, then it must be ensured that the PDE solution is bounded at this point. This can be done by either specifying the solution at $x=0.0$ or by specifying a zero flux there, that is $\beta_{i}=1.0$ and $\gamma_{i}=0.0$. See also Section 9.

The parabolic equations are approximated by a system of ODEs in time for the values of U_{i} at the mesh points. This ODE system is obtained by approximating the PDE solution between each pair of breakpoints by a Chebyshev polynomial of degree npoly. The interval between each pair of break-points is treated by nag_pde_1d_parab_coll (d03pd) as an element, and on this element, a polynomial and its space and time derivatives are made to satisfy the system of PDEs at npoly -1 spatial points, which are chosen internally by the code and the break-points. In the case of just one element, the break-points are the boundaries. The user-defined break-points and the internally selected points together define the mesh. The smallest value that npoly can take is one, in which case, the solution is approximated by piecewise linear polynomials between consecutive break-points and the method is similar to an ordinary finite element method.

In total there are $(\mathbf{n b k p t s}-1) \times$ npoly +1 mesh points in the spatial direction, and npde $\times(($ nbkpts -1$) \times$ npoly +1$)$ ODEs in the time direction; one ODE at each break-point for each PDE component and (npoly - 1) ODEs for each PDE component between each pair of breakpoints. The system is then integrated forwards in time using a backward differentiation formula method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software Systems (eds J C Mason and M G Cox) 59-72 Chapman and Hall
Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic systems of PDEs ACM Trans. Math. Software 17 178-206
Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel by a suction at porous walls Fluid Dynamics Research 4

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
The coordinate system used:
$\mathbf{m}=0$
Indicates Cartesian coordinates.
$\mathbf{m}=1$
Indicates cylindrical polar coordinates.
$\mathbf{m}=2$
Indicates spherical polar coordinates.
Constraint: $\mathbf{m}=0,1$ or 2 .

2: \quad ts - REAL (KIND=nag_wp)
The initial value of the independent variable t.
Constraint: ts $<$ tout.
3: \quad tout - REAL $\left(K I N D=n a g _w p\right)$
The final value of t to which the integration is to be carried out.
4: pdedef - SUBROUTINE, supplied by the user.
pdedef must compute the values of the functions $P_{i, j}, Q_{i}$ and R_{i} which define the system of PDEs. The functions may depend on x, t, U and U_{x} and must be evaluated at a set of points.
[p, q, r, ires, user] = pdedef(npde, t, x, nptl, u, ux, ires, user)

Input Parameters

1: npde - INTEGER
The number of PDEs in the system.
2: $\quad \mathbf{t}$ - REAL (KIND=nag_wp)
The current value of the independent variable t.
3: $\quad \mathbf{x}(\mathbf{n p t l})-$ REAL (KIND=nag_wp) array
Contains a set of mesh points at which $P_{i, j}, Q_{i}$ and R_{i} are to be evaluated. $\mathbf{x}(1)$ and $\mathbf{x}(\mathbf{n p t l})$ contain successive user-supplied break-points and the elements of the array will satisfy $\mathbf{x}(1)<\mathbf{x}(2)<\cdots<\mathbf{x}(\mathbf{n p t l})$.

4: nptl - INTEGER
The number of points at which evaluations are required (the value of npoly +1).
5: $\quad \mathbf{u}(\mathbf{n p d e}, \mathbf{n p t l})$ - REAL (KIND=nag_wp) array
$\mathbf{u}(i, j)$ contains the value of the component $U_{i}(x, t)$ where $x=\mathbf{x}(j)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.

6: ux(npde, nptl) - REAL (KIND=nag_wp) array
$\mathbf{u x}(i, j)$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial x}$ where $x=\mathbf{x}(j)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.

7: ires - INTEGER
Set to -1 or 1 .
8: user - INTEGER array
pdedef is called from nag_pde_1d_parab_coll (d03pd) with the object supplied to nag_pde_1d_parab_coll (d03pd).

Output Parameters

1: $\quad \mathbf{p}(\mathbf{n p d e}, \mathbf{n p d e}, \mathbf{n p t l})$ - REAL (KIND=nag_wp) array
$\mathbf{p}(i, j, k)$ must be set to the value of $P_{i, j}\left(x, t, U, U_{x}\right)$ where $x=\mathbf{x}(k)$, for $i=1,2, \ldots$, npde, $j=1,2, \ldots$, npde and $k=1,2, \ldots$, nptl.

2: $\mathbf{q}(\mathbf{n p d e}, \mathbf{n p t l})$ - REAL (KIND=$=$ nag_wp) array
$\mathbf{q}(i, j)$ must be set to the value of $Q_{i}\left(x, t, U, U_{x}\right)$ where $x=\mathbf{x}(j)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.

3: $\quad \mathbf{r}(\mathbf{n p d e}, \mathbf{n p t l})$ - REAL (KIND=nag_wp) array
$\mathbf{r}(i, j)$ must be set to the value of $R_{i}\left(x, t, U, U_{x}\right)$ where $x=\mathbf{x}(j)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, nptl.

4: ires - INTEGER
Should usually remain unchanged. However, you may set ires to force the integration function to take certain actions as described below:
ires $=2$
Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to ifail $=6$. ires $=3$

Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires $=3$ when a physically meaningless input or output value has been generated. If you consecutively set ires $=3$, then nag_pde_1d_parab_coll (d03pd) returns to the calling function with the error indicator set to ifail $=4$.

5: user - INTEGER array
bndary - SUBROUTINE, supplied by the user.
bndary must compute the functions β_{i} and γ_{i} which define the boundary conditions as in equation (3).

```
[beta, gamma, ires, user] = bndary(npde, t, u, ux, ibnd, ires, user)
```


Input Parameters

npde - INTEGER
The number of PDEs in the system.
2: $\quad \mathbf{t}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
The current value of the independent variable t.

$\mathbf{u}(i)$ contains the value of the component $U_{i}(x, t)$ at the boundary specified by ibnd, for $i=1,2, \ldots$, npde.

4: $\mathbf{u x}($ npde $)-$ REAL (KIND $=$ nag_wp $)$ array
$\mathbf{u x}(i)$ contains the value of the component $\frac{\partial U_{i}(x, t)}{\partial x}$ at the boundary specified by ibnd, for $i=1,2, \ldots$, npde.

5: ibnd - INTEGER
Specifies which boundary conditions are to be evaluated.
ibnd $=0$
bndary must set up the coefficients of the left-hand boundary, $x=a$.
ibnd $\neq 0$ bndary must set up the coefficients of the right-hand boundary, $x=b$.

6: ires - INTEGER
Set to -1 or 1 .

7: user - INTEGER array
bndary is called from nag_pde_1d_parab_coll (d03pd) with the object supplied to nag_pde_1d_parab_coll (d03pd).

Output Parameters

beta(npde) - REAL (KIND=nag_wp) array
beta (i) must be set to the value of $\beta_{i}(x, t)$ at the boundary specified by ibnd, for $i=1,2, \ldots$, npde.
gamma(npde) - REAL (KIND=nag_wp) array
$\operatorname{gamma}(i)$ must be set to the value of $\gamma_{i}\left(x, t, U, U_{x}\right)$ at the boundary specified by ibnd, for $i=1,2, \ldots$, npde.

3: ires - INTEGER
Should usually remain unchanged. However, you may set ires to force the integration function to take certain actions as described below: ires $=2$

Indicates to the integrator that control should be passed back immediately to the calling (sub)routine with the error indicator set to ifail $=6$.
ires $=3$
Indicates to the integrator that the current time step should be abandoned and a smaller time step used instead. You may wish to set ires $=3$ when a physically meaningless input or output value has been generated. If you consecutively set ires $=3$, then nag_pde_1d_parab_coll (d03pd) returns to the calling function with the error indicator set to ifail $=4$.
user - INTEGER array
u(npde, npts) - REAL (KIND=nag_wp) array
If ind $=1$ the value of \mathbf{u} must be unchanged from the previous call.
7: \quad xbkpts(nbkpts) - REAL (KIND=nag_wp) array
The values of the break-points in the space direction. xbkpts(1) must specify the left-hand boundary, a, and xbkpts(nbkpts) must specify the right-hand boundary, b.
Constraint: xbkpts $(1)<$ xbkpts $(2)<\cdots<$ xbkpts(nbkpts).
8: npoly - INTEGER
The degree of the Chebyshev polynomial to be used in approximating the PDE solution between each pair of break-points.
Constraint: $1 \leq$ npoly ≤ 49.
uinit - SUBROUTINE, supplied by the user.
uinit must compute the initial values of the PDE components $U_{i}\left(x_{j}, t_{0}\right)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, npts.

$$
\text { [u, user] = uinit(npde, npts, } x \text {, user) }
$$

Input Parameters

1: npde - INTEGER
The number of PDEs in the system.
2: npts - INTEGER
The number of mesh points in the interval $[a, b]$.
3: $\quad \mathbf{x}(\mathbf{n p t s})-$ REAL (KIND=$=$ nag_wp) array
$\mathbf{x}(j)$, contains the values of the j th mesh point, for $j=1,2, \ldots$, npts.

4: user - INTEGER array
uinit is called from nag_pde_1d_parab_coll (d03pd) with the object supplied to nag_pde_1d_parab_coll (d03pd).

Output Parameters

1: $\quad \mathbf{u}($ npde, $\mathbf{n p t s})$ - REAL (KIND=nag_wp) array
$\mathbf{u}(i, j)$ must be set to the initial value $U_{i}\left(x_{j}, t_{0}\right)$, for $i=1,2, \ldots$, npde and $j=1,2, \ldots$, npts.

2: user - INTEGER array
acc - REAL (KIND=nag_wp)
A positive quantity for controlling the local error estimate in the time integration. If $E(i, j)$ is the estimated error for U_{i} at the j th mesh point, the error test is:

$$
|E(i, j)|=\mathbf{a c c} \times(1.0+|\mathbf{u}(i, j)|)
$$

Constraint: acc >0.0.

11: \quad rsave(lrsave) - REAL (KIND=nag_wp) array
lrsave, the dimension of the array, must satisfy the constraint lrsave $\geq 11 \times$ npde \times npts $+50+$ nwkres + lenode .
If ind $=0$, rsave need not be set on entry.
If ind $=1$, rsave must be unchanged from the previous call to the function because it contains required information about the iteration.
isave(lisave) - INTEGER array
lisave, the dimension of the array, must satisfy the constraint lisave \geq npde \times npts +24 .
If ind $=0$, isave need not be set on entry.
If ind $=1$, isave must be unchanged from the previous call to the function because it contains required information about the iteration. In particular:
isave(1)
Contains the number of steps taken in time.
isave(2)
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
isave(3)
Contains the number of Jacobian evaluations performed by the time integrator.
isave (4)
Contains the order of the last backward differentiation formula method used.
isave (5)
Contains the number of Newton iterations performed by the time integrator. Each iteration involves an ODE residual evaluation followed by a back-substitution using the $L U$ decomposition of the Jacobian matrix.

13: itask - INTEGER
Specifies the task to be performed by the ODE integrator.
itask $=1$
Normal computation of output values \mathbf{u} at $t=$ tout.
$\boldsymbol{i t a s k}=2$
One step and return.
itask $=3$
Stop at first internal integration point at or beyond $t=$ tout.
Constraint: itask $=1,2$ or 3 .
14: itrace - INTEGER
The level of trace information required from nag_pde_1d_parab_coll (d03pd) and the underlying ODE solver. itrace may take the value $-1,0,1,2$ or 3 .
itrace $=-1$
No output is generated.

itrace $=0$

Only warning messages from the PDE solver are printed on the current error message unit (see nag_file_set_unit_error (x04aa)).

itrace >0

Output from the underlying ODE solver is printed on the current advisory message unit (see nag_file_set_unit_advisory (x04ab)). This output contains details of Jacobian entries, the nonlinear iteration and the time integration during the computation of the ODE system.
If itrace <-1, then -1 is assumed and similarly if itrace >3, then 3 is assumed.
The advisory messages are given in greater detail as itrace increases. You are advised to set itrace $=0$, unless you are experienced with Sub-chapter D02M-N.

```
ind - INTEGER
```

Indicates whether this is a continuation call or a new integration.
ind $=0$
Starts or restarts the integration in time.
ind $=1$
Continues the integration after an earlier exit from the function. In this case, only the arguments tout and ifail should be reset between calls to nag_pde_1d_parab_coll (d03pd).
Constraint: ind $=0$ or 1 .
16: $\mathbf{c w s a v}(10)-\operatorname{CHARACTER}$ (80) array
17: $\quad \operatorname{lwsav}(\mathbf{1 0 0})$ - LOGICAL array
18: iwsav(505) - INTEGER array

19: \quad rwsav $(1100)-$ REAL $\left(K I N D=n a g _w p\right)$ array

5.2 Optional Input Parameters

1: npde - INTEGER
Default: the first dimension of the array \mathbf{u}.
The number of PDEs in the system to be solved.
Constraint: npde ≥ 1.
2: nbkpts - INTEGER
Default: the dimension of the array xbkpts.
The number of break-points in the interval $[a, b]$.
Constraint: nbkpts ≥ 2.
3: npts - INTEGER
Default: the second dimension of the array \mathbf{u}.
The number of mesh points in the interval $[a, b]$.
Constraint: $\mathbf{n p t s}=($ nbkpts -1$) \times$ npoly +1.
4: user - INTEGER array
user is not used by nag_pde_1d_parab_coll (d03pd), but is passed to pdedef, bndary and uinit. Note that for large objects it may be more efficient to use a global variable which is accessible from the m-files than to use user.

5.3 Output Parameters

1: \quad ts - REAL (KIND=nag_wp)
The value of t corresponding to the solution values in \mathbf{u}. Normally $\mathbf{t s}=$ tout.
u(npde, npts) - REAL (KIND=nag_wp) array
$\mathbf{u}(i, j)$ will contain the computed solution at $t=\mathbf{t s}$.

The mesh points chosen by nag_pde_1d_parab_coll (d03pd) in the spatial direction. The values of \mathbf{x} will satisfy $\mathbf{x}(1)<\mathbf{x}(2)<\cdots<\mathbf{x}($ npts $)$.
rsave(lrsave) - REAL (KIND=nag_wp) array
If ind $=1$, rsave must be unchanged from the previous call to the function because it contains required information about the iteration.

5: isave(lisave) - INTEGER array
If ind $=1$, isave must be unchanged from the previous call to the function because it contains required information about the iteration. In particular:
isave(1)
Contains the number of steps taken in time.
isave (2)
Contains the number of residual evaluations of the resulting ODE system used. One such evaluation involves computing the PDE functions at all the mesh points, as well as one evaluation of the functions in the boundary conditions.
isave (3)
Contains the number of Jacobian evaluations performed by the time integrator.
isave (4)
Contains the order of the last backward differentiation formula method used.
isave(5)
Contains the number of Newton iterations performed by the time integrator. Each iteration involves an ODE residual evaluation followed by a back-substitution using the $L U$ decomposition of the Jacobian matrix.

6: ind - INTEGER
ind $=1$.
user - INTEGER array
$\operatorname{cwsav}(10)$ - CHARACTER(80) array
$\operatorname{lwsav}(100)$ - LOGICAL array
iwsav(505) - INTEGER array
$\operatorname{rwsav}(1100)-$ REAL (KIND=nag_wp) array
ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$
\text { ifail }=1
$$

On entry, tout \leq ts,
or tout - ts is too small,
or $\quad \operatorname{itask} \neq 1,2$ or 3 ,
or $\quad \mathbf{m} \neq 0,1$ or 2 ,
or $\quad \mathbf{m}>0$ and $\operatorname{xbkpts}(1)<0.0$,
or npde <1,
or nbkpts <2,
or \quad npoly <1 or npoly >49,
or \quad npts $\neq($ nbkpts -1$) \times$ npoly +1 ,
or \quad acc ≤ 0.0,
or \quad ind $\neq 0$ or 1 ,
or break-points xbkpts (i) are not ordered,
or lrsave is too small,
or lisave is too small.

ifail $=2($ warning $)$

The underlying ODE solver cannot make any further progress across the integration range from the current point $t=\mathbf{t s}$ with the supplied value of acc. The components of \mathbf{u} contain the computed values at the current point $t=\mathbf{t s}$.

ifail $=3$ (warning)

In the underlying ODE solver, there were repeated errors or corrector convergence test failures on an attempted step, before completing the requested task. The problem may have a singularity or acc is too small for the integration to continue. Integration was successful as far as $t=\mathbf{t s}$.

ifail $=4$

In setting up the ODE system, the internal initialization function was unable to initialize the derivative of the ODE system. This could be due to the fact that ires was repeatedly set to 3 in at least pdedef or bndary, when the residual in the underlying ODE solver was being evaluated.

ifail $=5$

In solving the ODE system, a singular Jacobian has been encountered. You should check your problem formulation.

$$
\text { ifail }=6(\text { warning })
$$

When evaluating the residual in solving the ODE system, ires was set to 2 in at least pdedef or bndary. Integration was successful as far as $t=\mathbf{t s}$.

ifail $=7$

The value of acc is so small that the function is unable to start the integration in time.

ifail $=8$

In one of pdedef or bndary, ires was set to an invalid value.

```
ifail = 9 (nag_ode_ivp_stiff_imp_revcom (d02nn))
```

A serious error has occurred in an internal call to the specified function. Check the problem specification and all arguments and array dimensions. Setting itrace $=1$ may provide more information. If the problem persists, contact NAG.

ifail $=10($ warning $)$

The required task has been completed, but it is estimated that a small change in acc is unlikely to produce any change in the computed solution. (Only applies when you are not operating in one step mode, that is when $\operatorname{itask} \neq 2$.)

ifail $=11$

An error occurred during Jacobian formulation of the ODE system (a more detailed error description may be directed to the current error message unit).

ifail $=12$

Not applicable.

$$
\text { ifail }=13
$$

Not applicable.

ifail $=14$

The flux function R_{i} was detected as depending on time derivatives, which is not permissible.

$$
\text { ifail }=-99
$$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

ifail $=-999$

Dynamic memory allocation failed.

7 Accuracy

nag_pde_1d_parab_coll (d03pd) controls the accuracy of the integration in the time direction but not the accuracy of the approximation in space. The spatial accuracy depends on the degree of the polynomial approximation npoly, and on both the number of break-points and on their distribution in space. In the time integration only the local error over a single step is controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the effect of varying the accuracy argument, acc.

8 Further Comments

nag_pde_1d_parab_coll (d03pd) is designed to solve parabolic systems (possibly including elliptic equations) with second-order derivatives in space. The argument specification allows you to include equations with only first-order derivatives in the space direction but there is no guarantee that the method of integration will be satisfactory for such systems. The position and nature of the boundary conditions in particular are critical in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

9 Example

The problem consists of a fourth-order PDE which can be written as a pair of second-order ellipticparabolic PDEs for $U_{1}(x, t)$ and $U_{2}(x, t)$,

$$
\begin{gather*}
0=\frac{\partial^{2} U_{1}}{\partial x^{2}}-U_{2} \tag{4}\\
\frac{\partial U_{2}}{\partial t}=\frac{\partial^{2} U_{2}}{\partial x^{2}}+U_{2} \frac{\partial U_{1}}{\partial x}-U_{1} \frac{\partial U_{2}}{\partial x} \tag{5}
\end{gather*}
$$

where $-1 \leq x \leq 1$ and $t \geq 0$. The boundary conditions are given by

$$
\begin{gathered}
\frac{\partial U_{1}}{\partial x}=0 \quad \text { and } \quad U_{1}=1 \quad \text { at } x=-1, \quad \text { and } \\
\frac{\partial U_{1}}{\partial x}=0 \quad \text { and } \quad U_{1}=-1 \quad \text { at } x=1
\end{gathered}
$$

The initial conditions at $t=0$ are given by

$$
U_{1}=-\sin \frac{\pi x}{2} \quad \text { and } \quad U_{2}=\frac{\pi^{2}}{4} \sin \frac{\pi x}{2}
$$

The absence of boundary conditions for $U_{2}(x, t)$ does not pose any difficulties provided that the derivative flux boundary conditions are assigned to the first PDE (4) which has the correct flux, $\frac{\partial U_{1}}{\partial x}$. The conditions on $U_{1}(x, t)$ at the boundaries are assigned to the second PDE by setting $\beta_{2}=0.0$ in equation (3) and placing the Dirichlet boundary conditions on $U_{1}(x, t)$ in the function γ_{2}.

9.1 Program Text

```
    function dO3pd_example
```

fprintf('do3pd example results\n\n');
\% Solution of an elliptic-parabolic pair of PDEs
\% (derived from a fourth-order PDE).
\% Set values for problem parameters.
npde = 2;
\% Number of points on interpolated mesh, number of break points.
intpts $=6$;
nbkpts = 10;

```
% Order of Chebyshev polynomial.
npoly = nag_int(3);
npts = (nbkpts-1)*npoly + 1;
lisave = npde*npts + 24;
% Define some arrays.
rsave = zeros(4000, 1);
u = zeros(npde, npts);
isave = zeros(lisave, 1, nag_int_name);
lwsav = false(100, 1);
iwsav = zeros(505, 1, nag_int_name);
rwsav = zeros(1100, 1);
cwsav = {''; ''; ''; ''; ''; ''; ''; ''; ''; ''};
% Set up the points on the interpolation grid.
xinterp = [-1:0.4:1];
% Number of output points in time.
niter = 20;
% Prepare to store plotting results.
tsav = zeros(niter, 1);
usav = zeros(2, niter, npts);
isav = 0;
% Set the break points.
hx = 2/(nbkpts-1);
xbkpts = [-1:hx:1];
% Set initial conditions.
m = nag_int(0);
ts = 0.0;
tout = 0.1e-4;
acc = 1.0e-4;
itask = nag_int(1);
itrace = nag_int(0);
ind0 = nag_int(0);
alpha = -log(tout)/(niter-1);
% Output algorithmic details and interpolation points.
fprintf('polynomial degree = %4d no. of elements = %4d\n', npoly, nbkpts-1);
fprintf('accuracy requirement = %10.3e number of points = %5d', acc, npts);
fprintf('\n\n t / x ');
fprintf('%8.4f', xinterp);
fprintf('\n\n');
% Loop over exponentially increasing endpoints of integration 0.0001 --> 1.
% Set itask = 1: normal computation of output values at t = tout.
for iter = 1:niter
    tout = exp(alpha*(iter - niter));
% (re)start integration in time: indO=O.
[ts, u, x, rsave, isave, ind, user, cwsav, lwsav, iwsav, rwsav, ifail] = ...
d03pd( .. 
m, ts, tout, @pdedef, ...
@bndary, u, xbkpts, npoly, @uinit, ...
acc, rsave, isave, itask, itrace, ind0, ...
cwsav, lwsav, iwsav, rwsav);
% Interpolation onto coarser grid for display
itype = nag_int(1);
[uinterp, rsave, ifail] = d03py( ...
                                    u, xbkpts, npoly, xinterp, itype, rsave);
% Output interpolated results for this time step.
fprintf('%7.4f u(1)', ts);
fprintf('%8.4f', uinterp(1,:,1));
fprintf('\n u(2)');
```

```
    fprintf('%8.4f', uinterp(2,:,1));
    fprintf('\n\n');
    % Save this timestep for plotting.
    isav = isav+1;
    tsav(isav) = ts;
    usav(1:2,isav,1:npts) = u(1:2,1:npts);
end
% Output some statistics.
fprintf(' Number of integration steps in time = %6d\n', isave(1));
fprintf(' Number of function evaluations = %6d\n', isave(2));
fprintf(' Number of Jacobian evaluations = %6d\n', isave(3));
fprintf(' Number of iterations = %6d\n', isave(5));
% Plot results.
figl = figure;
plot_results(x, tsav, squeeze(usav(1,:,:)), 'u_1');
fig2 = figure;
plot_results(x, tsav, squeeze(usav(2,:,:)), 'u_2');
function [p, q, r, ires, user] = pdedef(npde, t, x, nptl, u, ux, ires, user)
    p = zeros(npde, npde, nptl);
    q = zeros(npde, nptl);
    r = zeros(npde, nptl);
    for i = 1:double(nptl)
        q(1,i) = u(2,i);
        q(2,i) = u(1,i)*ux(2,i) - ux(1,i)*u(2,i);
        r(1,i) = ux(1,i);
        r(2,i) = ux(2,i);
        p(2,2,i) = 1;
    end;
function [beta, gamma, ires, user] = bndary(npde, t, u, ux, ibnd, ires, user)
    beta = zeros(npde, 1);
    gamma = zeros(npde, 1);
    beta(1) = 1;
    beta(2) = 0;
    gamma(1) = 0;
    if (ibnd == 0)
        gamma(2) = u(1) - 1;
    else
        gamma(2) = u(1) + 1;
    end
function [u, user] = uinit(npde, npts, x, user)
    u = zeros(npde, npts);
    piby2 = pi/2;
    u(1,:) = -sin(piby2*x);
    u(2,:) = -piby2*piby2*u(1,:);
function plot_results(x, t, u, ident)
    % Plot array as a mesh.
    mesh(x, t, u);
    set(gca, 'YScale', 'log');
    set(gca, 'YTick', [0.00001 0.0001 0.001 0.01 0.1 1]);
    set(gca, 'YMinorGrid', 'off');
    set(gca, 'YMinorTick', 'off');
    % Label the axes, and set the title.
    xlabel('x');
    ylabel('t');
    zlabel([ident,'(x,t)']);
    title({['Solution',ident,' of elliptic-parabolic pair'], ...
        'using Chebyshev Collocation and BDF'});
```

\% Set the axes limits tight to the x and y range.
axis([x(1) $x(e n d) t(1) t(e n d)])$;
\% Set the view to something nice (determined empirically). view(-165, 44);

9.2 Program Results

dO3pd example results

polynomial degree = accuracy requirement =			$\begin{aligned} & 3 \mathrm{nc} \\ &=\quad 1.000 \end{aligned}$	3 no. of elements =		$\stackrel{9}{\text { points }}$	28
t / x		-1.0000	-0.6000	-0.2000	0.2000	0.6000	1.0000
0.0000	u (1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	$u(2)$	-2.4690	-1.9961	-0.7624	0.7624	1.9961	2.4690
0.0000	u (1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	$u(2)$	-2.4687	-1.9961	-0.7624	0.7624	1.9961	2.4687
0.0000	u (1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	u (2)	-2.4700	-1.9961	-0.7624	0.7624	1.9961	2.4700
0.0001	u (1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	$u(2)$	-2.4724	-1.9960	-0.7624	0.7624	1.9960	2.4724
0.0001	u (1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	$u(2)$	-2.4767	-1.9959	-0.7624	0.7624	1.9959	2.4767
0.0002	u (1)	1.0000	0.8090	0.3090	-0.3090	-0.8090	-1.0000
	$u(2)$	-2.4840	-1.9957	-0.7623	0.7623	1.9957	2.4840
0.0004	u (1)	1.0000	0.8089	0.3090	-0.3090	-0.8089	-1.0000
	$u(2)$	-2.4960	-1.9953	-0.7621	0.7621	1.9953	2.4960
0.0007	u (1)	1.0000	0.8089	0.3089	-0.3089	-0.8089	-1.0000
	u (2)	-2.5142	-1.9946	-0.7619	0.7619	1.9946	2.5142
0.0013	u (1)	1.0000	0.8087	0.3089	-0.3089	-0.8087	-1.0000
	$u(2)$	-2.5374	-1.9933	-0.7614	0.7614	1.9933	2.5374
0.0023	u (1)	1.0000	0.8085	0.3087	-0.3087	-0.8085	-1.0000
	u (2)	-2.5611	-1.9910	-0.7605	0.7605	1.9910	2.5611
0.0043	u (1)	1.0000	0.8081	0.3085	-0.3085	-0.8081	-1.0000
	$u(2)$	-2.5869	-1.9866	-0.7588	0.7588	1.9866	2.5869
0.0078	u (1)	1.0000	0.8074	0.3081	-0.3081	-0.8074	-1.0000
	$u(2)$	-2.6183	-1.9787	-0.7558	0.7558	1.9787	2.6183
0.0144	u (1)	1.0000	0.8063	0.3075	-0.3075	-0.8063	-1.0000
	$u(2)$	-2.6604	-1.9643	-0.7503	0.7503	1.9643	2.6604
0.0264	u (1)	1.0000	0.8045	0.3064	-0.3064	-0.8045	-1.0000
	$u(2)$	-2.7128	-1.9394	-0.7402	0.7402	1.9394	2.7128
0.0483	u (1)	1.0000	0.8020	0.3046	-0.3046	-0.8020	-1.0000
	$u(2)$	-2.7723	-1.9042	-0.7222	0.7222	1.9042	2.7723
0.0886	u (1)	1.0000	0.7990	0.3022	-0.3022	-0.7990	-1.0000
	$u(2)$	-2.8331	-1.8684	-0.6915	0.6915	1.8684	2.8331
0.1624	$u(1)$	1.0000	0.7962	0.2996	-0.2996	-0.7962	-1.0000
	$u(2)$	-2.8840	-1.8423	-0.6512	0.6512	1.8423	2.8840
0.2976	u (1)	1.0000	0.7944	0.2978	-0.2978	-0.7944	-1.0000
	$u(2)$	-2.9140	-1.8287	-0.6218	0.6218	1.8287	2.9140
0.5456	u (1)	1.0000	0.7939	0.2973	-0.2973	-0.7939	-1.0000

	$u(2)$	-2.9225	-1.8250	-0.6129	0.6129	1.8250	2.9225
1.0000	$u(1)$	1.0000	0.7939	0.2972	-0.2972	-0.7939	-1.0000
	$u(2)$	-2.9233	-1.8247	-0.6120	0.6120	1.8247	2.9233

Number of integration steps in time	$=$	38
Number of function evaluations	$=$	237
Number of Jacobian evaluations	$=$	9
Number of iterations	$=$	89

Solution u ${ }_{1}$ of elliptic-parabolic pair using Chebyshev Collocation and BDF

