D03 — Partial Differential Equations d03ra

NAG Toolbox

nag _pde 2d gen order2 rectangle (d03ra)

1 Purpose

nag pde 2d gen order2 rectangle (dO3ra) integrates a system of linear or nonlinear, time-dependent
partial differential equations (PDEs) in two space dimensions on a rectangular domain. The method of
lines is employed to reduce the PDEs to a system of ordinary differential equations (ODEs) which are
solved using a backward differentiation formula (BDF) method. The resulting system of nonlinear
equations is solved using a modified Newton method and a Bi-CGSTAB iterative linear solver with ILU
preconditioning. Local uniform grid refinement is used to improve the accuracy of the solution.
nag pde 2d gen order2 rectangle (dO3ra) originates from the VLUGR2 package (see Blom and
Verwer (1993) and Blom et al. (1996)).

2 Syntax
[ts, dt, rwk, iwk, ind, ifail] = nag_pde_2d_gen_order2_rectangle(ts, tout, dt,
xmin, xmax, ymin, ymax, nx, ny, tols, tolt, pdedef, bndary, pdeiv, monitr,

opti, optr, rwk, iwk, itrace, ind, ’'npde’, npde, ’'leniwk’, leniwk, ’‘lenlwk’,
lenlwk)

[ts, dt, rwk, iwk, ind, ifail] = d03ra(ts, tout, dt, xmin, xmax, ymin, ymax, nx,
ny, tols, tolt, pdedef, bndary, pdeiv, monitr, opti, optr, rwk, iwk, itrace,
ind, ’'npde’, npde, ’leniwk’, leniwk, ’lenlwk’, lenlwk)

Note: the interface to this routine has changed since earlier releases of the toolbox:

At Mark 22: lenrwk was removed from the interface; lenlwk was made optional.

3 Description
nag _pde 2d gen order2 rectangle (d03ra) integrates the system of PDEs:
E—(t,x,y,u,ut,uz,uy,um,umy,uyy) =0, j=1,2,...,npde, (1)
for z and y in the rectangular domain Zyin <% < Tmax, Ymin < Y < Ymax, and time interval
to <t < tot, Where the vector u is the set of solution values
u(z,y,t) = [ul(m,y, t),. .., Unpde(Z, Y, t)]T,
and u; denotes partial differentiation with respect to ¢, and similarly for w, etc.

The functions F; must be supplied by you in pdedef. Similarly the initial values of the functions
u(x,y,t) must be specified at ¢ = ¢y in pdeiv.

Note that whilst complete generality is offered by the master equations (1), nag pde 2d gen order2
rectangle (d03ra) is not appropriate for all PDEs. In particular, hyperbolic systems should not be solved
using this function. Also, at least one component of u; must appear in the system of PDEs.

The boundary conditions must be supplied by you in bndary in the form
Gj(t7x7y7 U, ut7u1’7uy) = 07 (2)
for all y when Zyi, Or Tmax and for all x when y = Ymin Or ¥ = Ymax and j=1,2,..., npde

The domain is covered by a uniform coarse base grid of size n, x n, specified by you, and nested finer
uniform subgrids are subsequently created in regions with high spatial activity. The refinement is
controlled using a space monitor which is computed from the current solution and a user-supplied space
tolerance tols. A number of optional parameters, e.g., the maximum number of grid levels at any time,

Mark 25 d03ra.l

d03ra NAG Toolbox for MATLAB Manual

and some weighting factors, can be specified in the arrays opti and optr. Further details of the
refinement strategy can be found in Section 9.

The system of PDEs and the boundary conditions are discretized in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries),
and the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF
method with variable step size. The time integration is controlled using a time monitor computed at
each grid level from the current solution and a user-supplied time tolerance tolt, and some further
optional user-specified weighting factors held in optr (see Section 9 for details). The time monitor is
used to compute a new step size, subject to restrictions on the size of the change between steps, and
(optional) user-specified maximum and minimum step sizes held in dt. The step size is adjusted so that
the remaining integration interval is an integer number times A¢. In this way a solution is obtained at
t = tout-

A modified Newton method is used to solve the nonlinear equations arising from the time integration.
You may specify (in opti) the maximum number of Newton iterations to be attempted. A Jacobian
matrix is calculated at the beginning of each time step. If the Newton process diverges or the maximum
number of iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the
Newton process is restarted. If convergence is not achieved after the (optional) user-specified maximum
number of new Jacobian evaluations, the time step is retried with At = At/4. The linear systems
arising from the Newton iteration are solved using a Bi-CGSTAB iterative method, in combination with
ILU preconditioning. The maximum number of iterations can be specified by you in opti.

The solution at all grid levels is stored in the workspace arrays, along with other information needed for
a restart (i.e., a continuation call). It is not intended that you extract the solution from these arrays,
indeed the necessary information regarding these arrays is not included. The user-supplied monitor
monitr should be used to obtain the solution at particular levels and times. monitr is called at the end
of every time step, with the last step being identified via the input argument tlast.

Within pdeiv, pdedef, bndary and monitr the data structure is as follows. Each point on a particular
grid is given an index (ranging from 1 to the total number of points on the grid) and all coordinate or
solution information is stored in arrays according to this index, e.g., x(¢) and y(¢) contain the x- and y
coordinate of point 4, and u(z, j) contains the jth solution component u; at point 3.

Further details of the underlying algorithm can be found in Section 9 and in Blom and Verwer (1993)
and Blom et al. (1996) and the references therein.

4 References

Adjerid S and Flaherty J E (1988) A local refinement finite element method for two-dimensional
parabolic systems SIAM J. Sci. Statist. Comput. 9 792-811

Blom J G, Trompert R A and Verwer J G (1996) Algorithm 758. VLUGR2: A vectorizable adaptive
grid solver for PDEs in 2D Trans. Math. Software 22 302—328

Blom J G and Verwer J G (1993) VLUGR2: A vectorized local uniform grid refinement code for PDEs
in 2D Report NM-R9306 CWI, Amsterdam

Brown P N, Hindmarsh A C and Petzold L R (1994) Using Krylov methods in the solution of large
scale differential-algebraic systems SIAM J. Sci. Statist. Comput. 15 1467—-1488

Trompert R A (1993) Local uniform grid refinement and systems of coupled partial differential
equations Appl. Numer. Maths 12 331-355

Trompert R A and Verwer J G (1993) Analysis of the implicit Euler local uniform grid refinement
method SIAM J. Sci. Comput. 14 259-278

d03ra.2 Mark 25

D03 — Partial Differential Equations d03ra

5
5.1

Parameters

Compulsory Input Parameters

ts — REAL (KIND=nag_wp)

The initial value of the independent variable t.

Constraint: ts < tout.

tout — REAL (KIND=nag_wp)

The final value of ¢ to which the integration is to be carried out.

dt(3) — REAL (KIND=nag_wp) array
The initial, minimum and maximum time step sizes respectively.

dt(1)
Specifies the initial time step size to be used on the first entry, i.e., when ind = 0. If
dt(1) = 0.0 then the default value dt(1) =0.01 x (tout —ts) is used. On subsequent
entries (ind = 1), the value of dt(1) is not referenced.

dt(2)
Specifies the minimum time step size to be attempted by the integrator. If dt(2) = 0.0 the
default value dt(2) = 10.0 x machine precision is used.

dt(3)
Specifies the maximum time step size to be attempted by the integrator. If dt(3) = 0.0 the
default value dt(3) = tout — ts is used.
Constraints:
if ind = 0, dt(1) > 0.0;
if ind = 0 and dt(1) > 0.0,
10.0 x machine precision x max([ts|, [tout|) < dt(1) < tout — ts and
dt(2) < dt(1) < dt(3), where the values of dt(2) and dt(3) will have been reset to their

default values if zero on entry;
0 < dt(2) < dt(3).

xmin — REAL (KIND=nag_wp)
xmax — REAL (KIND=nag_wp)

The extents of the rectangular domain in the z-direction, i.e., the x coordinates of the left and
right boundaries respectively.

Constraint: xmin < xmax and xmax must be sufficiently distinguishable from xmin for the
precision of the machine being used.

ymin — REAL (KIND=nag wp)

ymax — REAL (KIND=nag wp)

The extents of the rectangular domain in the y-direction, i.e., the y coordinates of the lower and
upper boundaries respectively.

Constraint: ymin < ymax and ymax must be sufficiently distinguishable from ymin for the
precision of the machine being used.

nx — INTEGER

The number of grid points in the z-direction (including the boundary points).

Constraint: nx > 4.

Mark 25 d03ra.3

d03ra NAG Toolbox for MATLAB Manual

9: ny — INTEGER
The number of grid points in the y-direction (including the boundary points).

Constraint: ny > 4.

10: tols — REAL (KIND=nag_wp)
The space tolerance used in the grid refinement strategy (o in equation (4)). See Section 9.2.

Constraint: tols > 0.0.

11: tolt — REAL (KIND=nag_wp)
The time tolerance used to determine the time step size (7 in equation (7)). See Section 9.3.

Constraint: tolt > 0.0.

12: pdedef — SUBROUTINE, supplied by the user.

pdedef must evaluate the functions F}, for j =1,2,... ,npde, in equation (1) which define the
system of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the
domain. Values at points on the boundaries of the domain are ignored and will be overwritten by
bndary. pdedef is called for each subgrid in turn.

[res] = pdedef (npts, npde, t, X, y, u, ut, ux, uy, uxx, uxy, uyy)

Input Parameters
1: npts — INTEGER

The number of grid points in the current grid.

2: npde — INTEGER
The number of PDEs in the system.

3: t — REAL (KIND=nag_wp)

The current value of the independent variable .
4: x(npts) — REAL (KIND=nag_wp) array

x(7) contains the x coordinate of the ith grid point, for i =1,2,..., npts.
5: y(npts) — REAL (KIND=nag_wp) array

y(i) contains the y coordinate of the ith grid point, for i =1,2,..., npts.

6: u(npts, npde) — REAL (KIND=nag_wp) array

u(i,7) contains the value of the jth PDE component at the ith grid point, for
1=1,2,...,npts and j = 1,2,..., npde.

7 ut(npts, npde) — REAL (KIND=nag_wp) array

du

ot
1=1,2,...,npts and j = 1,2,..., npde.

ut(i,7) contains the value of — for the jth PDE component at the ith grid point, for

8: ux(npts, npde) — REAL (KIND=nag_wp) array

0
ux(7,j) contains the value of a—u for the jth PDE component at the sth grid point, for
47

1=1,2,...,npts and j = 1,2,..., npde.

d03ra.4 Mark 25

D03 — Partial Differential Equations d03ra

1:

11:

12:

Output Parameters

uy(npts, npde) — REAL (KIND=nag_wp) array

ou
dy
1=1,2,...,npts and j = 1,2,..., npde.

uy(i,j) contains the value of for the jth PDE component at the ith grid point, for

uxx(npts, npde) — REAL (KIND=nag_wp) array
82
uxx(i,j) contains the value of 0—126 for the jth PDE component at the ith grid point, for
x

i=1,2,...,npts and j=1,2,... npde.

uxy(npts, npde) — REAL (KIND=nag_wp) array
9*u

uxy(4,7) contains the value of Erm for the jth PDE component at the ith grid point, for
x0Y

1=1,2,...,npts and j = 1,2,..., npde.

uyy(npts, npde) — REAL (KIND=nag_wp) array

82
uyy(i,7) contains the value of 8—7; for the jth PDE component at the ith grid point, for
Y

i=1,2,...,npts and j=1,2,... npde.

res(npts, npde) — REAL (KIND=nag_wp) array

res(i,j) must contain the value of Fj, for j=1,2,..., npde, at the ith grid point, for
i=1,2,...,npts, although the residuals at boundary points will be ignored (and
overwritten later on) and so they need not be specified here.

13: bndary — SUBROUTINE, supplied by the user.

bndary must evaluate the functions G, for j = 1,2,...,npde, in equation (2) which define the
boundary conditions at all boundary points of the domain. Residuals at interior points must not
be altered by this function.

1:

Mark 25

Input Parameters

[res] = bndary(npts, npde, t, x, y, u, ut, ux, uy, nbpts, lbnd, res)

npts — INTEGER

The number of grid points in the current grid.

npde — INTEGER
The number of PDEs in the system.

t — REAL (KIND=nag_wp)

The current value of the independent variable t.

x(npts) — REAL (KIND=nag_wp) array

x(7) contains the = coordinate of the ith grid point, for i =1,2,... npts.

y(npts) — REAL (KIND=nag_wp) array

y(i) contains the y coordinate of the ith grid point, for i =1,2,..., npts.

d03ra.5

d03ra

10:

12:

Output Parameters

1:

NAG Toolbox for MATLAB Manual

u(npts, npde) — REAL (KIND=nag_wp) array

u(i,7) contains the value of the jth PDE component at the ith grid point, for
i=1,2,...,npts and j=1,2,... npde.

ut(npts, npde) — REAL (KIND=nag_wp) array

du

ot
i=1,2,...,npts and j=1,2,... npde.

ut(7,j) contains the value of for the jth PDE component at the ith grid point, for

ux(npts, npde) — REAL (KIND=nag_wp) array

0
ux(i,7) contains the value of a—u for the jth PDE component at the ith grid point, for
z

i=1,2,...,npts and j=1,2,... npde.
uy(npts, npde) — REAL (KIND=nag_ wp) array

: 0 . :
uy(i,7) contains the value of a—u for the jth PDE component at the ith grid point, for
Y
i=1,2,...,npts and j=1,2,... npde.

nbpts — INTEGER

The number of boundary points in the grid.

Ibnd(nbpts) — INTEGER array

Ibnd(7) contains the grid index for the ith boundary point, for i=1,2,..., nbpts.
Hence the ith boundary point has coordinates x(lbnd(7)) and y(lbnd(:)), and the
corresponding solution values are u(lbnd(7), npde), etc.

res(npts, npde) — REAL (KIND=nag_wp) array

res(i,j) contains the value of Fj, for i=1,2,...,npde, at the ith grid point, for
i=1,2,...,npts, as returned by pdedef. The residuals at the boundary points will be
overwritten and so need not have been set by pdedef.

res(npts, npde) — REAL (KIND=nag_wp) array

res(lbnd(i), j) must contain the value of G, for j =1,2,...,npde, at the ith boundary
point, for i =1,2,...,nbpts.

Note: elements of res corresponding to interior points must not be altered.

14: pdeiv — SUBROUTINE, supplied by the user.

pdeiv must specify the initial values of the PDE components w at all points in the grid. pdeiv is
not referenced if, on entry, ind = 1.

d03ra.6

Input Parameters

1:

[u] = pdeiv(npts, npde, t, x, V)

npts — INTEGER

The number of grid points in the grid.

Mark 25

D03 — Partial Differential Equations d03ra

15:

2: npde — INTEGER
The number of PDEs in the system.

3: t — REAL (KIND=nag_wp)
The (initial) value of the independent variable t.
4: x(npts) — REAL (KIND=nag_wp) array
x(7) contains the x coordinate of the ith grid point, for i =1,2,..., npts.

5: y(npts) — REAL (KIND=nag_ wp) array
y(i) contains the y coordinate of the ith grid point, for i =1,2,..., npts.

Output Parameters
1: u(npts,npde) — REAL (KIND=nag wp) array

u(i,7) must contain the value of the jth PDE component at the ith grid point, for
1=1,2,...,npts and j = 1,2,..., npde.

monitr — SUBROUTINE, supplied by the user.

monitr is called by nag pde 2d gen order2 rectangle (d03ra) at the end of every successful
time step, and may be used to examine or print the solution or perform other tasks such as error
calculations, particularly at the final time step, indicated by the argument tlast. The input
arguments contain information about the grid and solution at all grid levels used.

monitr can also be used to force an immediate tidy termination of the solution process and return
to the calling program.

[ierr] = monitr(npde, t, dt, dtnew, tlast, nlev, ngpts, xpts, ypts, lsol,
sol, ierr)

Input Parameters
l: npde — INTEGER
The number of PDEs in the system.

2: t — REAL (KIND=nag_wp)

The current value of the independent variable ¢, i.e., the time at the end of the
integration step just completed.

3: dt — REAL (KIND=nag_wp)

The current time step size At, i.e., the time step size used for the integration step just
completed.

4: dtnew — REAL (KIND=nag_wp)

The step size that will be used for the next time step.

5: tlast — LOGICAL

Indicates if intermediate or final time step. tlast = false for an intermediate step,
tlast = true for the last call to monitr before returning to your program.

6: nlev — INTEGER

The number of grid levels used at time t.

Mark 25 d03ra.7

d03ra

16:

NAG Toolbox for MATLAB Manual

7 ngpts(nlev) — INTEGER array

ngpts(/) contains the number of grid points at level [, for [=1,2,..., nlev.

8: xpts(lpts) — REAL (KIND=nag_wp) array

Contains the = coordinates of the grid points in each level in turn, i.e., x(7), for
i=1,2,...,ngpts(]) and [=1,2,... nlev.

So for level [, x(i) = xpts(k + i), where k£ = ngpts(1) + ngpts(2) + - - - + ngpts({ — 1),
for i=1,2,...,ngpts(l) and [=1,2,... nlev.
9: ypts(lpts) — REAL (KIND=nag_wp) array

Contains the y coordinates of the grid points in each level in turn, i.e., y(7), for
i=1,2,...,ngpts(]) and [=1,2,... nlev.

So for level [, y(i) = ypts(k + i), where k& = ngpts(1) + ngpts(2) + - - - + ngpts({ — 1),
for i=1,2,...,ngpts(l) and [=1,2,... nlev.
10: Isol(nlev) — INTEGER array
Isol(l) contains the pointer to the solution in sol at grid level [and time t. (Isol(/)
actually contains the array index immediately preceding the start of the solution in sol.)
11: sol(:) — REAL (KIND=nag_wp) array
Default: lenrwk — 6 X npde
Contains the solution u(ngpts(/), npde) at time t for each grid level [in turn, positioned
according to lIsel, i.e., for level I, u(i,j) =sol(Isol(l) + (j — 1) x ngpts({) +), for
i=1,2,...,ngpts(l), 7=1,2,...,npde and [=1,2,... nlev.
12: ierr — INTEGER
Will be set to 0.

Output Parameters
1: ierr — INTEGER

Should be set to 1 to force a tidy termination and an immediate return to the calling
program with ifail = 4. ierr should remain unchanged otherwise.

opti(4) — INTEGER array
May be set to control various options available in the integrator.
opti(1) =0
All the default options are employed.
opti(1) >0
The default value of opti(), for i = 2,3,4, can be obtained by setting opti(i) = 0.
opti(1)
Specifies the maximum number of grid levels allowed (including the base grid).
opti(1) > 0. The default value is opti(1) = 3.

opti(2)
Specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. opti(2) > 0. The default value is opti(2) = 2.

opti(3)
Specifies the maximum number of Newton iterations in each nonlinear equations solution.
opti(3) > 0. The default value is opti(3) = 10.

d03ra.8 Mark 25

D03 — Partial Differential Equations d03ra

17:

18:

20:

opti(4)
Specifies the maximum number of iterations in each linear equations solution. opti(4) > 0.
The default value is opti(4) = 100.

Constraint: opti(1) > 0 and if opti(1) > 0, opti(i) > 0, for i =2,3,4.

optr(3,npde) — REAL (KIND=nag_wp) array

May be used to specify the optional vectors u™*, w* and w' in the space and time monitors (see
Section 9).

If an optional vector is not required then all its components should be set to 1.0.

optr(1,j), for j=1,2,... npde, specifies u;™, the approximate maximum absolute value of the
jth component of u, as used in (4) and (7). optr(1,5) > 0.0, for j =1,2,... npde.

optr(2,j), for j=1,2,... npde, specifies w}, the weighting factors used in the space monitor
(see (4)) to indicate the relative importance of the jth component of u on the space monitor.
optr(2,5) > 0.0, for j=1,2,..., npde.

optr(3,j), for j = 1,2,... npde, specifies w;., the weighting factors used in the time monitor (see
(6)) to indicate the relative importance of the jth component of u on the time monitor.
optr(3,5) > 0.0, for j=1,2,... ,npde.

Constraints:

optr(1,5) > 0.0, for j=1,2,...,npde;

optr(i,j) > 0.0, for i =2,3 and j=1,2,...,npde.
rwk(lenrwk) — REAL (KIND=nag_wp) array

lenrwk, the dimension of the array, must satisfy the constraint
lenrwk > nx x ny x npde x (14 + 18 x npde) + 2 x nx x ny (the required size for the initial
grid).

The required value of lenrwk cannot be determined exactly in advance, but a suggested value is
lenrwk = mazpts x npde x (5 x [+ 18 x npde + 9) + 2 x mazpts,

where [= opti(1) if opti(1) # 0 and [=3 otherwise, and maxpts is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be
too small then the function returns with ifail = 3 and an estimated required size is printed on the
current error message unit (see nag_file set unit _error (x04aa)).

Constraint: lenrwk > nx x ny X npde x (14 + 18 x npde) + 2 x nx x ny (the required size for
the initial grid).

iwk(leniwk) — INTEGER array

If ind = 0, iwk need not be set. Otherwise iwk must remain unchanged from a previous call to
nag pde 2d gen order2 rectangle (d03ra).

itrace — INTEGER

The level of trace information required from nag pde 2d gen order2 rectangle (dO3ra). itrace
may take the value —1, 0, 1, 2 or 3.

itrace = —1
No output is generated.

itrace =0
Only warning messages are printed.

Mark 25 d03ra.9

d03ra NAG Toolbox for MATLAB Manual

itrace > 0
Output from the underlying solver is printed on the current advisory message unit (see
nag_file set unit advisory (x04ab)). This output contains details of the time integration,
the nonlinear iteration and the linear solver.

If itrace < —1, then —1 is assumed and similarly if itrace > 3, then 3 is assumed.
The advisory messages are given in greater detail as itrace increases. Setting itrace = 1 allows
you to monitor the progress of the integration without possibly excessive information.
21: ind — INTEGER
Must be set to 0 or 1, alternatively 10 or 11.

ind =0
Starts the integration in time. pdedef is assumed to be serial.
ind =1

Continues the integration after an earlier exit from the function. In this case, only the
following parameters may be reset between calls to nag pde 2d gen order2 rectangle
(dO3ra): tout, dt, tols, tolt, opti, optr, itrace and ifail. pdedef is assumed to be serial.

ind = 10
Equivalent to ind = 0. This option is included only for compatibility with other NAG
library products.

ind =11
Equivalent to ind = 1. This option is included only for compatibility with other NAG
library products.

Constraint: 0 <ind <1 or 10 <ind < 11.

5.2 Optional Input Parameters

1: npde — INTEGER
Default: the dimension of the array optr.
The number of PDEs in the system.

Constraint: npde > 1.

2: leniwk — INTEGER
Default: the dimension of the array iwk.
The dimension of the array iwk.
The required value of leniwk cannot be determined exactly in advance, but a suggested value is
leniwk = maxpts x (14 +5xm) +7 x m+ 2,

where maxpts is the expected maximum number of grid points at any one level and m = opti(1)
if opti(1) > 0 and m = 3 otherwise. If during the execution the supplied value is found to be too
small then the function returns with ifail = 3 and an estimated required size is printed on the
current error message unit (see nag_file set unit error (x04aa)).

Constraint: leniwk > 19 x nx x ny + 9 (the required size for the initial grid).

3: lenlwk — INTEGER
Default: maxpts + 1
The dimension of the array Iwk.
The required value of lenlwk cannot be determined exactly in advanced, but a suggested value is

lenlwk = mazxpts + 1,

d03ra.10 Mark 25

D03 — Partial Differential Equations d03ra

where maxpts is the expected maximum number of grid points at any one level. If during the
execution the supplied value is found to be too small then the function returns with ifail = 3 and
an estimated required size is printed on the current error message unit (see nag_file set unit
error (x04aa)).

Constraint: lenlwk > nx x ny + 1 (the required size for the initial grid).

5.3 Output Parameters
1: ts — REAL (KIND=nag_wp)

The value of ¢ which has been reached. Normally ts = tout.

2: dt(3) — REAL (KIND=nag_wp) array
dt(1) contains the time step size for the next time step. dt(2) and dt(3) are unchanged or set to
their default values if zero on entry.

3: rwk(lenrwk) — REAL (KIND=nag_wp) array

lenrwk = nx x ny X npde x (14 + 18 x npde) + 2 x nx x ny (the required size for the initial
grid).

Communication array, used to store information between calls to nag pde 2d gen order2
rectangle (d03ra).

4: iwk(leniwk) — INTEGER array

The following components of the array iwk concern the efficiency of the integration. Here, m is
the maximum number of grid levels allowed (m = opti(1) if opti(1) > 1 and m = 3 otherwise),

and [is a grid level taking the values [= 1,2,..., nl, where nl is the number of levels used.
iwk(1)
Contains the number of steps taken in time.
iwk(2)
Contains the number of rejected time steps.
iwk(2 + 1)

Contains the total number of residual evaluations performed (i.e., the number of times
pdedef was called) at grid level .

iwk(2+m +1)
Contains the total number of Jacobian evaluations performed at grid level .

iwk(2+2 xm+1)
Contains the total number of Newton iterations performed at grid level .

iwk(24+3 xm+1)
Contains the total number of linear solver iterations performed at grid level .

iwk(2+4 xm+1)
Contains the maximum number of Newton iterations performed at any one time step at
grid level /.

iwk(2+5xm+1)
Contains the maximum number of linear solver iterations performed at any one time step
at grid level .

Note: the total and maximum numbers are cumulative over all calls to nag pde 2d gen order2
rectangle (d03ra). If the specified maximum number of Newton or linear solver iterations is
exceeded at any stage, then the maximums above are set to the specified maximum plus one.

5: ind — INTEGER

ind = 1, if ind on input was 0 or 1, or ind = 11, if ind on input was 10 or 11.

Mark 25 d03ra.11

d03ra NAG Toolbox for MATLAB Manual

6: ifail — INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

On entry, npde < 1,

or tout < ts,

or tout is too close to ts,

or ind = 0 and dt(1) < 0.0,

or dt(i) < 0.0, for i =2 or 3,

or dt(2) > dt(3),

or ind =0 and 0.0 < dt(1) < 10 X machine precision x max(|ts|, |tout|),

or ind = 0 and dt(1) > tout — ts,

or ind = 0 and dt(1) < dt(2) or dt(1) > dt(3),

or xmin > xmax,

or xmax too close to xmin,

or ymin > ymax,

or ymax too close to ymin,

or nx or ny < 4,

or tols or tolt < 0.0,

or opti(1) < 0,

or opti(1) > 0 and opti(j) <0, for j =2, 3 or 4,

or optr(1,7) < 0.0, for some j=1,2,... npde,

or optr(2,7) < 0.0, for some j=1,2,..., npde,

or optr(3,7) < 0.0, for some j=1,2,..., npde,

or lenrwk, leniwk or lenlwk too small for initial grid level,

or ind # 0 or 1,

or ind = 1 on initial entry to nag pde 2d gen order2 rectangle (d03ra).
ifail = 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., tolt is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations
is too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to
singularity of the Jacobian.

Setting itrace to a higher value may provide further information.
In the latter two cases you are advised to check their problem formulation in pdedef and/or
bndary, and the initial values in pdeiv if appropriate.

ifail = 3
One or more of the workspace arrays is too small for the required number of grid points. An
estimate of the required sizes for the current stage is output, but more space may be required at a
later stage.

ifail = 4 (warning)

ierr was set to 1 in monitr, forcing control to be passed back to calling program. Integration was
successful as far as t = ts.

d03ra.12 Mark 25

D03 — Partial Differential Equations d03ra

ifail = 5 (warning)

The integration has been completed but the maximum number of levels specified in opti(1) was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of opti(1) or decrease the value of tols.

ifail = —99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = —399

Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7 Accuracy

There are three sources of error in the algorithm: space and time discretization, and interpolation
(linear) between grid levels. The space and time discretization errors are controlled separately using the
arguments tols and tolt described in the following section, and you should test the effects of varying
these arguments. Interpolation errors are generally implicitly controlled by the refinement criterion since
in areas where interpolation errors are potentially large, the space monitor will also be large. It can be
shown that the global spatial accuracy is comparable to that which would be obtained on a uniform grid
of the finest grid size. A full error analysis can be found in Trompert and Verwer (1993).

8 Further Comments
8.1 Algorithm QOutline

The local uniform grid refinement method is summarised as follows:
1. Initialize the course base grid, an initial solution and an initial time step.
2. Solve the system of PDEs on the current grid with the current time step.

3. If the required accuracy in space and the maximum number of grid levels have not yet been
reached:

(a) Determine new finer grid at forward time level.
(b) Get solution values at previous time level(s) on new grid.
(c) Interpolate internal boundary values from old grid at forward time.
(d) Get initial values for the Newton process at forward time.
(e) Go to 2.
4. Update the coarser grid solution using the finer grid values.
5. Estimate error in time integration. If time error is acceptable advance time level.

6. Determine new step size then go to 2 with coarse base as current grid.

8.2 Refinement Strategy

For each grid point ¢ a space monitor pf is determined by
Wi = max <7; Amza—zu-(m yi, t)| + Ay26—2u-(:ﬁ- Yiy t) (3)
i j=1,npde J 81‘2 g\ Liy Gy ayz g\ Liy Gy)

where Ax and Ay are the grid widths in the = and y directions; and x;, y; are the x and y coordinates at
grid point ¢. The argument -, is obtained from

Mark 25 d03ra.13

d03ra NAG Toolbox for MATLAB Manual

ws

’YJ‘: mai ? (4)

U‘j g

where o is the user-supplied space tolerance; w} is a weighting factor for the relative importance of the
jth PDE component on the space monitor; and umax is the approximate maximum absolute value of the
jth component. A value for o must be supplied by you. Values for w} and uj™
but may be set to the value 1.0 if little information about the solutlon is known

must also be supplied

A new level of refinement is created if

max{pf} >09 or 1.0, (5)

depending on the grid level at the previous step in order to avoid fluctuations in the number of grid
levels between time steps. If (5) is satisfied then all grid points for which p; > 0.25 are flagged and
surrounding cells are quartered in size.

No derefinement takes place as such, since at each time step the solution on the base grid is computed
first and new finer grids are then created based on the new solution. Hence derefinement occurs
implicitly. See Section 9.1.

8.3 Time Integration

The time integration is controlled using a time monitor calculated at each level [up to the maximum
level used, given by

npde ngpts([) 2
t
l - NZ Z <_u1‘ Liy Yiy)) (6)

where ngpts(l) is the total number of points on grid level [; N = ngpts(/) x npde; At is the current
time step; u; is the time derivative of v which is approximated by first-order finite differences; w; is the
time equivalent of the space weighting factor w3; and «;; is given by

umax
aij = T< 100 + ’U(%,yn)|> (7)

where uj™ is as before, and 7 is the user-specified time tolerance.
An integration step is rejected and retried at all levels if

m?x{uf} > 1.0. (8)

9 Example

For this function two examples are presented, with a main program and two example problems given in
Example 1 (EX1) and Example 2 (EX2).

Example 1 (EX1)

This example stems from combustion theory and is a model for a single, one-step reaction of a mixture
of two chemicals (see Adjerid and Flaherty (1988)). The PDE for the temperature of the mixture w is

%: d(g?j—#g:) + D(1 +a—u)exp<—i)
for 0 <z,y <1 and ¢t >0, with initial conditions wu(z,y,0) =1 for 0 <z,y <1, and boundary
conditions
uz(0,y,t) = 0,u(l,y,t) =1 for0<y<I,
uy(x,0,t) =0,u(z,1,t) =1 for0 <z <.

d03ra.14 Mark 25

D03 — Partial Differential Equations d03ra

The heat release argument o = 1, the Damkohler number D = Rexp(6)/(ad), the activation energy
6 = 20, the reaction rate R =5, and the diffusion argument d = 0.1.

For small times the temperature gradually increases in a circular region about the origin, and at about
t = 0.24 ‘ignition’ occurs causing the temperature to suddenly jump from near unity to 1 + «, and a
reaction front forms and propagates outwards, becoming steeper. Thus during the solution, just one grid
level is used up to the ignition point, then two levels, and then three as the reaction front steepens.

Example 2 (EX2)

This example is taken from a multispecies food web model, in which predator-prey relationships in a
spatial domain are simulated (see Brown et al. (1994)). In this example there is just one species each of
prey and predator, and the two PDEs for the concentrations ¢; and c; of the prey and the predator
respectively are

T ci(by +anc + ane) + d; (W+8—g/2)
6262 8202
0= co(by + azic1 + azncz) + dy <W 8—y2>’

with

ain =axn = —1,

a;; = —0.5x107%, and

az) = 104, and

by = 1 + axy + Gsin(4nx) sin(4ny),

where @ = 50 and = 300, and b, = —b,.

The initial conditions are taken to be simple peaked functions which satisfy the boundary conditions
and very nearly satisfy the PDEs:

¢ =10+ (16z(1 — x)y(1 —y))*,
e = by +age,
and the boundary conditions are of Neumann type, i.e., zero normal derivatives everywhere.

During the solution a number of peaks and troughs develop across the domain, and so the number of
levels required increases with time. Since the solution varies rapidly in space across the whole of the
domain, refinement at intermediate levels tends to occur at all points of the domain.

9.1 Program Text

function dO3ra_example
fprintf(’d03ra example results\n\n’);

global ssavl ssav2;
global xsav ysav tsav;

exl;

figl = figure;
exl_plot;

ex2;

fig2 = figure;
ex2_plot(1);
fig3 = figure;
ex2_plot(2);

function ex1l

% First dO3ra example. Temperature distribution for a single, one-step
% reaction of a mixture of two chemicals.

global heat_release activ_energy diffusion damkohler;

global iout isav;

Mark 25 d03ra.15

d03ra NAG Toolbox for MATLAB Manual

% Set values for problem parameters.
mxlev = 3;

npde = 1;

npts = 2000;

xmin = 0; xmax = 1;
ymin = 0; ymax = 1;

tols = 0.5;
tolt = 0.01;

nx = nag_int(21);

ny = nx;

reaction_rate = 5;

activ_energy = 20;

heat_release = 1;

diffusion = 0.1;

damkohler = reaction_rate*exp(activ_energy)/(heat_release*activ_energy) ;

leniwk npts*(14 + 5*mxlev) + 7*mxlev + 2;
lenlwk = npts + 1;
lenrwk = npts*npde* (5*mxlev + 18*npde + 9) + 2*npts;

o°

The above are the recommended values from the documentation, but dO3ra
returns with ifail = 3 and the minumum workspace size requirements if
% these are used. So we beef them up here with some fudge factors.
leniwk = 2*leniwk;

lenlwk = nag_int(2*lenlwk) ;

o°

lenrwk = 2*lenrwk;

% Create some work arrays - see NAG documentation.
rwk = zeros(lenrwk, 1);

iwk = zeros(leniwk, 1, nag_int_name) ;

% Initialize some problem variables.

5

ind = nag_int(0);

itrace = nag_int(0);

ts = 0;

dt = [0.1le-2; 0.0; 0.01;
twant = [0.24; 0.25];

opti = zeros(4, 1, nag_int_name) ;
optr ones (3, npde);

% index of next set of saved results
isav = 1;

% We run through the problem twice - once from t=0 up to t=twant(l), and
% then onwards to t=twant(2).
warning('0Off’);

fprintf (’Example 1\n==========\n\n') ;
for iout = 1:2
tout = twant (iout) ;
[ts, dt, rwk, iwk, ind, ifail] =
d03ra(

ts, tout, dt, xmin, xmax, ymin, ymax, nx, ny, tols, tolt,
@ex1_pdedef, @exl_bndary, @exl_pdeiv, @exl _monitr, opti,
optr, rwk, iwk, itrace, ind, ’‘lenlwk’, lenlwk);

fprintf (’\nTime =%8.4f \n’, ts);
fprintf (’'Total number of accepted timesteps %5d \n’, iwk(1l));
fprintf(’Total number of rejected timesteps %5d \n’, iwk(2));
fprintf (’\n Total (max) number of\n’
fprintf (’ Residual Jacobian Newton Lin sys\n’)
fprintf (’ evals evals iters iters\n’
fprintf (At level\n’)
maxlev = 3;
for j = l:maxlev
if iwk(j+2) "= 0
evals = iwk(j+2:maxlev:j+2+5*maxlev) ;
fprintf (’%$8d%104%10d%6d(%2d)%6d(%2d)\n’, j, evals);
end;
end;
end

d03ra.16 Mark 25

D03 — Partial Differential Equations

function [res] = exl_pdedef(npts, npde, t, x, y, u, ut, ux, uy, uxx, uxy, uyy)

% Evaluate the system of PDEs for this problem.
global heat_release activ_energy diffusion damkohler;

res = zeros(npts, npde);
for i = 1l:npts
e = exp(-activ_energy/u(i,l));
res(i,1l) = ut(i,1l) - diffusion*(uxx(i,1) + uyy(i,1l)) -
damkohler* (1.0 + heat_release - u(i,1l))*e

end

function [u] = exl_pdeiv(npts, npde, t, x, V)

% Evaluate initial conditions for PDEs for this system.

u = ones(npts, npde);

function [res] = exl_bndary(npts, npde, t, x, y, u, ut, ux, uy,

nbpts, lbnd, res)
% Implement boundary conditions for the domain.

tol

10*x02aj () ;
for = 1l:nbpts
b lbnd (1) ;
if (abs(x(j
res(j,1)
elseif (abs
res(j,1)
elseif (abs
res(j,1)
elseif (abs(y
res(j,1)
end

I -

) <= tol)

X

)
(x(5
(v(5
(v(5

end

function [ierr] = exl monitr(npde, t, dt, dtnew, tlast, nlev,

Mark 25

ngpts, xpts, ypts, lsol, sol, ierr)
% Save the results at specified times.
times = [0.001; 0.228; 0.240; 0.25];

global iout isav;
global xsav ysav ssavl tsav;

% Save this time step only if the current time is equal to
% or just past the next output time
if (t < times(isav))
return;
end
fprintf(’Saving set %d at time = %f\n’, isav, t);

% Specify the grid level for extracting the solution.
level = 1;

npts = ngpts(level);

ipsol = lsol(level);

% Allocate space for saves the first time through.
nside = round(sqgrt(double(npts)));
if isav == 1
nsav length(times) ;
Xsav zeros(nside, 1);
ysav = zeros(nside, 1);
ssavl = zeros(nside, nside, nsav);
tsav = zeros(nsav, 1);
end

% Save this time step.
tsav(isav) = t;
for i = l:nside
for j = l:nside
k = (i-1)*nside + j;

d03ra

d03ra.17

d03ra

xsav(j) = xpts(k);

ysav(i) = ypts(k);

ssavl(j, i, isav) = sol(ipsol+k);
end

end

% Look for the next time step, unless called for very last time.
if "~ (tlast && iout == 2)

isav = isav+1l;
end

function exl_plot

% Plot the results.
global xsav ysav ssavl tsav isav;

°

colours = [[1 0 O]; [0 1 O0]; [1 0 1]; [0 O 1]; [0 1 1]; [2 1 O]; [2 O 1]
[1 0 2]; [1 2 0]; [012]; [02 1]; [3 2 11; [2 3 11; [2 1 3]
[312]; [132]; [12 3]; [0.3 2 1]; [2 0.3 11; [2 1 0.3];
[0.3 1 2]; [1 0.3 2]; [12 0.3]; [0.3 0.2 1]; [0.2 0.3 11;
[0.2 1 0.3]; [0.3 1 0.2]; [1 0.3 0.2]; [1 0.2 0.311;

h = zeros(isav,1);
% Check the allocation of colours against the number to be plotted.
if (length(colours(:,1)) < isav)
fprintf ([’Not enough colours allocated in examplel_plot: ’,
"%$d needed\n’], isav);

end
% Plot all the surfaces, and colour each one.
for i = 1l:isav
h(i) = mesh(xsav, ysav, ssavl(:,:,1));
hold on;
set(h(i), ’'EdgeColor’, colours(i,:));
end
hold off;

% Label the axes, and set the title.
xlabel(’'x");
ylabel('y’);
zlabel ('U(x,y,t)’);
title({’'Model for a Single, One-step Reaction’,
"of a Mixture of Two Chemicals’});
% Add a legend, using the plot handles and the array of time values.
hleg = legend(h, num2str(tsav(l:isav)));
% Set the view to something nice (determined empirically).
view(1l5, 30);

function ex2

% Second dO3ra example. Concentration distribution in a multispecies
% (predator-prey) food web model.

global alpha beta;

global iout icount;

% Set values for problem parameters.
npde = nag_int(2);
npts = nag_int (4000) ;

xmin = 0; xmax = 1;
ymin = 0; vymax = 1;
tols = 0.075;

tolt = 0.1;

nx = nag_int(21);

ny = nag_int(21);

alpha = 50.0;
beta = 300.0;

maxlev = 4;

leniwk npts*(14 + 5*maxlev) + 7*maxlev + 2;

lenlwk npts + 1;

lenrwk = npts*npde*(5*maxlev + 18*npde + 9) + 2*npts;

% The above are the recommended values from the documentation, but dO3ra
% returns with ifail = 3 and the minumum workspace size requirements if

d03ra.18

NAG Toolbox for MATLAB Manual

% Set the colours for each surface, and the array of handles for the plots.

7

Mark 25

D03 — Partial Differential Equations

% these are used. So we beef them up here with some fudge factors.
leniwk = 2*leniwk;

lenlwk = nag_int(3*lenlwk) ;

lenrwk = 3*lenrwk;

% Create some work arrays - see NAG documentation.
rwk = zeros(lenrwk, 1);

iwk = zeros(leniwk, 1, nag_int_name) ;

Initialize some problem variables.

ind = nag_int (0);

itrace = nag_int(0);

ts = 0;

dat = [0.5e-3; 1.0e-6; 0.0];
twant = [0.01; 0.025];

opti = zeros(4, 1, nag_int_name) ;
opti(l) = 4;

optr = ones (3, npde);

optr(1,1) = 250;
optr(1,2) = 1.5e+6;

% Counts how many times monitor routine is called.

icount = 0;
fprintf (’\n\nExample 2\n=========\n\n') ;
% We run through the problem twice - once from t=0 up to t=twant(l), and

% then onwards to t=twant(2).
for iout = 1:2

tout = twant (iout) ;
[ts, dt, rwk, iwk, ind, ifail] =
do3ral

ts, tout, dt, xmin, xmax, ymin, ymax, nx, ny, tols, tolt,
@ex2_pdedef, @ex2_bndary, @ex2_pdeiv, @ex2_monitr, opti, optr,
rwk, iwk, itrace, ind, 'lenlwk’, lenlwk);

% Output some statistics.
fprintf ('\nTime =%8.4f \n’, ts);

fprintf (’'Total number of accepted timesteps %5d \n’, iwk(1l));
fprintf (’Total number of rejected timesteps %5d \n’, iwk(2));
fprintf (’'\n Total (max) number of\n’);
fprintf (' Residual Jacobian Newton Lin sys\n');
fprintf (’ evals evals iters iters\n’);
fprintf ('At level\n’);
for j = l:maxlev
if iwk(j+2) "= 0
evals = iwk(j+2:maxlev:j+2+5*maxlev) ;
fprintf (’%$8d%10d%10d%6d(%2d)%6d(%2d)\n’, j, evals);
end;
end;
end
function [res] = ex2_pdedef(npts, npde, t, x, y, u, ut, ux, uy,

uxx, Uxy, uyy)
% Evaluate the system of PDEs for this problem.

5

global alpha beta;

fp = 4*pi;
res = zeros(npts, npde);
for i = l:npts
bl = 1 + alpha*x(i)*y(i) + beta*sin(fp*x(i))*sin(fp*y(i));
res(i,1) = ut(i,1) - uxx(i,1) - uyy(i,1) - ...
u(i,1)*(bl - u(i,1) - 0.5e-6*u(i,2));
res(i,2) = -0.05*%(uxx(i,2) + uyy(i,2)) - .
u(i,2)*(-bl + 1.0ed*u(i,1l) - u(i,2));
end

function [u] = ex2_pdeiv(npts, npde, t, x, V)

% Evaluate initial conditions for PDEs for this system.

global alpha beta;

Mark 25

d03ra

d03ra.19

d03ra

u(i,1) = 10 + (16*x(i)*(1 - x(1))*y(i)*(1 - y(i)))"2;
u(i,2) = -1 - alpha*x(i)*y(i) - beta*sin(fp*x(i))*sin(fp*y(i))
1.0ed*u(i,1);
end
function [res] = ex2_bndary(npts, npde, t, x, y, u, ut, ux, uy,
nbpts, lbnd, res)
% Implement boundary conditions for the domain.
tol = 10*x02aj;
for i = l:nbpts
j = lbnd(i);
if (abs(x(j)) <= tol || abs(x(j)-1) <= tol)
res(j,1l) = ux(j,1);
res(j,2) = ux(j,2);
elseif (abs(y(j)) <= tol || abs(y(j)-1) <= tol)
res(j,1) = uy(3,1);
res(j,2) = uy(j,2);
end
end
function [ierr] = ex2_monitr(npde, t, dt, dtnew, tlast, nlev,

o°

%

fp = 4*pi;
u = zeros(npts, npde);
for i = l:npts

ngpts, xpts, ypts, 1lsol, so
% Monitor the results at specified intervals.
global iout icount;
global xsav ysav ssav2 tsav isav;

% Specify the maximum number of times the results get
% interval for saves.
nsav = 5;
nint = 10;
size(xpts);
size(ypts);

% Do we want to save this time?

icount = icount+1;
% if mod(icount,nint) "= 1 && ~“tlast
% return;
% end
% isav = 1 + round(icount/nint);

o°

if isav > nsav

o°

% nsav) ;
% return;
% end

isav = icount;

% Specify the grid level for extracting solution.
level = 1;

npts = ngpts(level);

ipsol = lsol(level);

% Allocate space for saves the first time through.
nside = round(sqrt(double(npts)));

% Save this time step. For this problem, calculating
concentrations as a function of x and y (and time).
tsav(isav) = t;

o°

if (icount==1)
xsav(l:nside) = xpts(l:nside);
ysav(l:nside) = ypts(l:nside:nside”2);
end

sl = reshape(sol(ipsol+l:ipsol+nside”2),[nside,nside])
s2

d03ra.20

fprintf ('Not enough save space allocated in monitr2:

1, ierr)

saved, and the

%d\n’,

two

’

reshape(sol(ipsol+npts+l:ipsol+npts+nside*2), [nside,nside]);

+

NAG Toolbox for MATLAB Manual

Mark 25

D03 — Partial Differential Equations

ssav2(:,:,isav,1l) = sl’;
ssav2(:,:,isav,2) = s2';

function ex2_plot(id)
% Plot the results.
global xsav ysav ssav2 tsav isav;
% Check the value of the array identifier.

if (id "= 1 && id "= 2)
fprintf(’Illegal value for array identifier in plot: %d\n’, id);
return;

end

v = ssav2(:,:,:,1id);
slice(xsav, ysav, tsav, v ,[0,0.4,0.6,0.8],[1],[0.01,0.021);
colormap hot;
colorbar;
xlabel('x’);
ylabel('y’);
zlabel('time’);
if (id == 1)
title({'Multispecies Food Web Model:',
'Time-dependent Predator Concentration’});
else
title({'Multispecies Food Web Model:’,
'Time-dependent Prey Concentration’});
end
% Add a legend, using the plot handles and the array of time values.
% Set the view to something nice (determined empirically).
view(24,42);

9.2 Program Results

dO3ra example results

Example 1

Saving set 1 at time 0.001000
Saving set 2 at time 0.228996
Saving set 3 at time = 0.240000

Time = 0.2400
Total number of accepted timesteps 75
Total number of rejected timesteps 0

Total (max) number of

Residual Jacobian Newton Lin sys
evals evals iters iters

At level
1 600 75 150(159) 2(2)

Saving set 4 at time = 0.250000
Time = 0.2500
Total number of accepted timesteps 180

Total number of rejected timesteps 1

Total (max) number of

Residual Jacobian Newton Lin sys
evals evals iters iters
At level
1 1468 181 382(391) 4(2)
2 662 82 170(170) 4(1)
3 177 22 45(45) 3(1)
Example 2
Time = 0.0100
Total number of accepted timesteps 14
Total number of rejected timesteps 0

Mark 25

% Label the axes, and set the title according to the array identifier.

d03ra

d03ra.21

d03ra
Total (max) number of
Residual Jacobian Newton Lin sys
evals evals iters iters
At level
1 196 14 28(39) 2(2)
2 84 6 12(19) 2(3)
Time = 0.0250
Total number of accepted timesteps 29
Total number of rejected timesteps 0

Total (max) number of

Residual Jacobian Newton Lin sys
evals evals iters iters
At level
1 406 29 58(84) 2(2)
2 294 21 42 (64) 2(3)
3 98 7 14 (28) 2(3)

Model for a Single, One-step Reaction
of a Mixture of Two Chemicals

Ux,y.t)

d03ra.22

NAG Toolbox for MATLAB Manual

[—o.001
[o.229
[o24
[o025

Mark 25

D03 — Partial Differential Equations d03ra

Multispecies Food Web Model:
Time-dependent Predator Concentration

=4 120
4100
0.025
- 80
0.02
0.015
° 60
£
= 0.01
0.005 40

20

Mark 25 d03ra.23

d03ra NAG Toolbox for MATLAB Manual

Multispecies Food Web Model:

Time-dependent Prey Concentration x10°
412
410
0.025
-8
0.02
0.015
o
£
= 0.01
0.005

d03ra.24 (last) Mark 25

	nag_pde_2d_gen_order2_rectangle (d03ra)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Adjerid and Flaherty (1988)
	Blom et al. (1996)
	Blom and Verwer (1993)
	Brown et al. (1994)
	Trompert (1993)
	Trompert and Verwer (1993)

	5 Parameters
	5.1 Compulsory Input Parameters
	ts
	tout
	dt
	xmin
	xmax
	ymin
	ymax
	nx
	ny
	tols
	tolt
	pdedef
	PDEDEF Input Parameters
	npts
	npde
	t
	x
	y
	u
	ut
	ux
	uy
	uxx
	uxy
	uyy

	PDEDEF Output Parameters
	res

	bndary
	BNDARY Input Parameters
	npts
	npde
	t
	x
	y
	u
	ut
	ux
	uy
	nbpts
	lbnd
	res

	BNDARY Output Parameters
	res

	pdeiv
	PDEIV Input Parameters
	npts
	npde
	t
	x
	y

	PDEIV Output Parameters
	u

	monitr
	MONITR Input Parameters
	npde
	t
	dt
	dtnew
	tlast
	nlev
	ngpts
	xpts
	ypts
	lsol
	sol
	ierr

	MONITR Output Parameters
	ierr

	opti
	optr
	rwk
	iwk
	itrace
	ind

	5.2 Optional Input Parameters
	npde
	leniwk
	lenlwk

	5.3 Output Parameters
	ts
	dt
	rwk
	iwk
	ind
	ifail

	6 Error Indicators and Warnings
	ifail=1
	ifail=2
	ifail=3
	ifail=4
	ifail=5
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	8.1 Algorithm Outline
	8.2 Refinement Strategy
	8.3 Time Integration

	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

