
NAG Toolbox

nag_pde_2d_gen_order2_rectilinear (d03rb)

1 Purpose

nag_pde_2d_gen_order2_rectilinear (d03rb) integrates a system of linear or nonlinear, time-dependent
partial differential equations (PDEs) in two space dimensions on a rectilinear domain. The method of
lines is employed to reduce the NPDEs to a system of ordinary differential equations (ODEs) which are
solved using a backward differentiation formula (BDF) method. The resulting system of nonlinear
equations is solved using a modified Newton method and a Bi-CGSTAB iterative linear solver with ILU
preconditioning. Local uniform grid refinement is used to improve the accuracy of the solution.
nag_pde_2d_gen_order2_rectilinear (d03rb) originates from the VLUGR2 package (see Blom and
Verwer (1993) and Blom et al. (1996)).

2 Syntax

[ttss, ddtt, rrwwkk, iiwwkk, iinndd, iiffaaiill] = nag_pde_2d_gen_order2_rectilinear(ttss, ttoouutt, ddtt,
ttoollss, ttoolltt, iinniiddoomm, ppddeeddeeff, bbnnddaarryy, ppddeeiivv, mmoonniittrr, ooppttii, ooppttrr, rrwwkk, iiwwkk,
lleennllwwkk, iittrraaccee, iinndd, ’npde’, nnppddee, ’lenrwk’, lleennrrwwkk, ’leniwk’, lleenniiwwkk)

[ttss, ddtt, rrwwkk, iiwwkk, iinndd, iiffaaiill] = d03rb(ttss, ttoouutt, ddtt, ttoollss, ttoolltt, iinniiddoomm, ppddeeddeeff,
bbnnddaarryy, ppddeeiivv, mmoonniittrr, ooppttii, ooppttrr, rrwwkk, iiwwkk, lleennllwwkk, iittrraaccee, iinndd, ’npde’, nnppddee,
’lenrwk’, lleennrrwwkk, ’leniwk’, lleenniiwwkk)

3 Description

nag_pde_2d_gen_order2_rectilinear (d03rb) integrates the system of PDEs:

Fj t; x; y; u; ut; ux; uy; uxx; uxy; uyy
� � ¼ 0; j ¼ 1; 2; . . . ;npde; x; yð Þ 2 �; t0 � t � tout; ð1Þ

where � is an arbitrary rectilinear domain, i.e., a domain bounded by perpendicular straight lines. If the
domain is rectangular then it is recommended that nag_pde_2d_gen_order2_rectangle (d03ra) is used.

The vector u is the set of solution values

u x; y; tð Þ ¼ u1 x; y; tð Þ; . . . ; unpde x; y; tð Þ� �T
;

and ut denotes partial differentiation with respect to t, and similarly for ux, etc.

The functions Fj must be supplied by you in pdedef. Similarly the initial values of the functions
u x; y; tð Þ for x; yð Þ 2 � must be specified at t ¼ t0 in pdeiv.

Note that whilst complete generality is offered by the master equations (1), nag_pde_2d_gen_order2_
rectilinear (d03rb) is not appropriate for all PDEs. In particular, hyperbolic systems should not be
solved using this function. Also, at least one component of ut must appear in the system of PDEs.

The boundary conditions must be supplied by you in bndary in the form

Gj t; x; y; u; ut; ux; uy

� � ¼ 0; j ¼ 1; 2; . . . ; npde; x; yð Þ 2 @�; t0 � t � tout: ð2Þ
The domain is covered by a uniform coarse base grid specified by you, and nested finer uniform
subgrids are subsequently created in regions with high spatial activity. The refinement is controlled
using a space monitor which is computed from the current solution and a user-supplied space tolerance
tols. A number of optional parameters, e.g., the maximum number of grid levels at any time, and some
weighting factors, can be specified in the arrays opti and optr. Further details of the refinement strategy
can be found in Section 9.

The system of PDEs and the boundary conditions are discretized in space on each grid using a standard
second-order finite difference scheme (centred on the internal domain and one-sided at the boundaries),
and the resulting system of ODEs is integrated in time using a second-order, two-step, implicit BDF
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method with variable step size. The time integration is controlled using a time monitor computed at
each grid level from the current solution and a user-supplied time tolerance tolt, and some further
optional user-specified weighting factors held in optr (see Section 9 for details). The time monitor is
used to compute a new step size, subject to restrictions on the size of the change between steps, and
(optional) user-specified maximum and minimum step sizes held in dt. The step size is adjusted so that
the remaining integration interval is an integer number times �t. In this way a solution is obtained at
t ¼ tout.

A modified Newton method is used to solve the nonlinear equations arising from the time integration.
You may specify (in opti) the maximum number of Newton iterations to be attempted. A Jacobian
matrix is calculated at the beginning of each time step. If the Newton process diverges or the maximum
number of iterations is exceeded, a new Jacobian is calculated using the most recent iterates and the
Newton process is restarted. If convergence is not achieved after the (optional) user-specified maximum
number of new Jacobian evaluations, the time step is retried with �t ¼ �t=4. The linear systems
arising from the Newton iteration are solved using a Bi-CGSTAB iterative method, in combination with
ILU preconditioning. The maximum number of iterations can be specified by you in opti.

In order to define the base grid you must first specify a virtual uniform rectangular grid which contains
the entire base grid. The position of the virtual grid in physical x; yð Þ space is given by the x; yð Þ
coordinates of its boundaries. The number of points nx and ny in the x and y directions must also be
given, corresponding to the number of columns and rows respectively. This is sufficient to determine
precisely the x; yð Þ coordinates of all virtual grid points. Each virtual grid point is then referred to by
integer coordinates vx; vy

� �
, where 0; 0ð Þ corresponds to the lower-left corner and nx � 1; ny � 1

� �
corresponds to the upper-right corner. vx and vy are also referred to as the virtual column and row
indices respectively.

The base grid is then specified with respect to the virtual grid, with each base grid point coinciding with
a virtual grid point. Each base grid point must be given an index, starting from 1, and incrementing
row-wise from the leftmost point of the lowest row. Also, each base grid row must be numbered
consecutively from the lowest row in the grid, so that row 1 contains grid point 1.

As an example, consider the domain consisting of the two separate squares shown in Figure 1. The left-
hand diagram shows the virtual grid and its integer coordinates (i.e., its column and row indices), and
the right-hand diagram shows the base grid point indices and the base row indices (in brackets).
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Figure 1

Hence the base grid point with index 6 say is in base row 2, virtual column 4, and virtual row 1, i.e.,
virtual grid integer coordinates 4; 1ð Þ; and the base grid point with index 19 say is in base row 5, virtual
column 2, and virtual row 5, i.e., virtual grid integer coordinates 2; 5ð Þ.
The base grid must then be defined in inidom by specifying the number of base grid rows, the number
of base grid points, the number of boundaries, the number of boundary points, and the following integer
arrays:

lrow contains the base grid indices of the starting points of the base grid rows;

irow contains the virtual row numbers vy of the base grid rows;

icol contains the virtual column numbers vx of the base grid points;

lbnd contains the grid indices of the boundary edges (without corners) and corner points;

llbnd contains the starting elements of the boundaries and corners in lbnd.

Finally, ilbnd contains the types of the boundaries and corners, as follows:

Boundaries:
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1 – lower boundary

2 – left boundary

3 – upper boundary

4 – right boundary

External corners (90�):

12 – lower-left corner

23 – upper-left corner

34 – upper-right corner

41 – lower-right corner

Internal corners (270�):

21 – lower-left corner

32 – upper-left corner

43 – upper-right corner

14 – lower-right corner

Figure 2 shows the boundary types of a domain with a hole. Notice the logic behind the labelling of the
corners: each one includes the types of the two adjacent boundary edges, in a clockwise fashion
(outside the domain).
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As an example, consider the domain shown in Figure 3. The left-hand diagram shows the physical
domain and the right-hand diagram shows the base and virtual grids. The numbers outside the base grid
are the indices of the left and rightmost base grid points, and the numbers inside the base grid are the
boundary or corner numbers, indicating the order in which the boundaries are stored in lbnd.
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Figure 3

The function nag_pde_2d_gen_order2_checkgrid (d03ry) can be called from inidom to obtain a simple
graphical representation of the base grid, and to verify the data that you have specified in inidom.

Subgrids are stored internally using the same data structure, and solution information is communicated
to you in pdeiv, pdedef and bndary in arrays according to the grid index on the particular level, e.g.,
xðiÞ and yðiÞ contain the x; yð Þ coordinates of grid point i, and uði; jÞ contains the jth solution
component uj at grid point i.
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The grid data and the solutions at all grid levels are stored in the workspace arrays, along with other
information needed for a restart (i.e., a continuation call). It is not intended that you extract the solution
from these arrays, indeed the necessary information regarding these arrays is not provided. The user-
supplied monitor (monitr) should be used to obtain the solution at particular levels and times. monitr
is called at the end of every time step, with the last step being identified via the input argument tlast.
The function nag_pde_2d_gen_order2_rectilinear_extractgrid (d03rz) should be called from monitr to
obtain grid information at a particular level.

Further details of the underlying algorithm can be found in Section 9 and in Blom and Verwer (1993)
and Blom et al. (1996) and the references therein.

4 References

Blom J G, Trompert R A and Verwer J G (1996) Algorithm 758. VLUGR2: A vectorizable adaptive
grid solver for PDEs in 2D Trans. Math. Software 22 302–328

Blom J G and Verwer J G (1993) VLUGR2: A vectorized local uniform grid refinement code for PDEs
in 2D Report NM-R9306 CWI, Amsterdam

Trompert R A (1993) Local uniform grid refinement and systems of coupled partial differential
equations Appl. Numer. Maths 12 331–355

Trompert R A and Verwer J G (1993) Analysis of the implicit Euler local uniform grid refinement
method SIAM J. Sci. Comput. 14 259–278

5 Parameters

5.1 Compulsory Input Parameters

1: ts – REAL (KIND=nag_wp)

The initial value of the independent variable t.

Constraint: ts < tout.

2: tout – REAL (KIND=nag_wp)

The final value of t to which the integration is to be carried out.

3: dtð3Þ – REAL (KIND=nag_wp) array

The initial, minimum and maximum time step sizes respectively.

dtð1Þ
Specifies the initial time step size to be used on the first entry, i.e., when ind ¼ 0. If
dtð1Þ ¼ 0:0 then the default value dtð1Þ ¼ 0:01� tout� tsð Þ is used. On subsequent
entries (ind ¼ 1), the value of dtð1Þ is not referenced.

dtð2Þ
Specifies the minimum time step size to be attempted by the integrator. If dtð2Þ ¼ 0:0 the
default value dtð2Þ ¼ 10:0�machine precision is used.

dtð3Þ
Specifies the maximum time step size to be attempted by the integrator. If dtð3Þ ¼ 0:0 the
default value dtð3Þ ¼ tout� ts is used.

Constraints:

if ind ¼ 0, dtð1Þ � 0:0;
if ind ¼ 0 and dtð1Þ > 0:0,
10:0�machine precision�max tsj j; toutj jð Þ � dtð1Þ � tout� ts and
dtð2Þ � dtð1Þ � dtð3Þ, where the values of dtð2Þ and dtð3Þ will have been reset to their
default values if zero on entry;
0 � dtð2Þ � dtð3Þ.
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4: tols – REAL (KIND=nag_wp)

The space tolerance used in the grid refinement strategy (� in equation (4)). See Section 9.2.

Constraint: tols > 0:0.

5: tolt – REAL (KIND=nag_wp)

The time tolerance used to determine the time step size (� in equation (7)). See Section 9.3.

Constraint: tolt > 0:0.

6: inidom – SUBROUTINE, supplied by the user.

inidom must specify the base grid in terms of the data structure described in Section 3. inidom is
not referenced if, on entry, ind ¼ 1. nag_pde_2d_gen_order2_checkgrid (d03ry) can be called
from inidom to obtain a simple graphical representation of the base grid, and to verify the data
that you have specified in inidom. nag_pde_2d_gen_order2_rectilinear (d03rb) also checks the
validity of the data, but you are strongly advised to call nag_pde_2d_gen_order2_checkgrid
(d03ry) to ensure that the base grid is exactly as required.

Note: the boundaries of the base grid should consist of as many points as are necessary to
employ second-order space discretization, i.e., a boundary enclosing the internal part of the
domain must include at least 3 grid points including the corners. If Neumann boundary
conditions are to be applied the minimum is 4.

[xmin, xmax, ymin, ymax, nx, ny, npts, nrows, nbnds, nbpts, lrow, irow,
icol, llbnd, ilbnd, lbnd, ierr] = inidom(maxpts, ierr)

Input Parameters

1: maxpts – INTEGER

The maximum number of base grid points allowed by the available workspace.

2: ierr – INTEGER

Will be initialized by nag_pde_2d_gen_order2_rectilinear (d03rb) to some value prior to
internal calls to inidom.

Output Parameters

1: xmin – REAL (KIND=nag_wp)
2: xmax – REAL (KIND=nag_wp)

The extents of the virtual grid in the x-direction, i.e., the x coordinates of the left and
right boundaries respectively.

3: ymin – REAL (KIND=nag_wp)
4: ymax – REAL (KIND=nag_wp)

The extents of the virtual grid in the y-direction, i.e., the y coordinates of the left and
right boundaries respectively.

5: nx – INTEGER
6: ny – INTEGER

The number of virtual grid points in the x- and y-direction respectively (including the
boundary points).
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7: npts – INTEGER

The total number of points in the base grid. If the required number of points is greater
than maxpts then inidom must be exited immediately with ierr set to �1 to avoid
overwriting memory.

8: nrows – INTEGER

The total number of rows of the virtual grid that contain base grid points. This is the
maximum base row index.

9: nbnds – INTEGER

The total number of physical boundaries and corners in the base grid.

10: nbpts – INTEGER

The total number of boundary points in the base grid.

11: lrowð:Þ – INTEGER array

lrowðiÞ, for i ¼ 1; 2; . . . ; nrows, must contain the base grid index of the first grid point
in base grid row i.

12: irowð:Þ – INTEGER array

irowðiÞ, for i ¼ 1; 2; . . . ;nrows, must contain the virtual row number vy that
corresponds to base grid row i.

13: icolð:Þ – INTEGER array

icolðiÞ, for i ¼ 1; 2; . . . ;npts, must contain the virtual column number vx that contains
base grid point i.

14: llbndð:Þ – INTEGER array

llbndðiÞ, for i ¼ 1; 2; . . . ; nbnds, must contain the element of lbnd corresponding to the
start of the ith boundary or corner.

Note: the order of the boundaries and corners in llbnd must be first all the boundaries
and then all the corners. The end points of a boundary (i.e., the adjacent corner points)
must not be included in the list of points on that boundary. Also, if a corner is shared
by two pairs of physical boundaries then it has two types and must therefore be treated
as two corners.

15: ilbndð:Þ – INTEGER array

ilbndðiÞ, for i ¼ 1; 2; . . . ; nbnds, must contain the type of the ith boundary (or corner),
as given in Section 3.

16: lbndð:Þ – INTEGER array

lbndðiÞ, for i ¼ 1; 2; . . . ; nbpts, must contain the grid index of the ith boundary point.
The order of the boundaries is as specified in llbnd, but within this restriction the order
of the points in lbnd is arbitrary.

17: ierr – INTEGER

If the required number of grid points is larger than maxpts, ierr must be set to �1 to
force a termination of the integration and an immediate return to the calling program
with ifail ¼ 3. Otherwise, ierr should remain unchanged.
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7: pdedef – SUBROUTINE, supplied by the user.

pdedef must evaluate the functions Fj , for j ¼ 1; 2; . . . ; npde, in equation (1) which define the
system of PDEs (i.e., the residuals of the resulting ODE system) at all interior points of the
domain. Values at points on the boundaries of the domain are ignored and will be overwritten by
bndary. pdedef is called for each subgrid in turn.

[res] = pdedef(npts, npde, t, x, y, u, ut, ux, uy, uxx, uxy, uyy)

Input Parameters

1: npts – INTEGER

The number of grid points in the current grid.

2: npde – INTEGER

The number of PDEs in the system.

3: t – REAL (KIND=nag_wp)

The current value of the independent variable t.

4: xðnptsÞ – REAL (KIND=nag_wp) array

xðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;npts.

5: yðnptsÞ – REAL (KIND=nag_wp) array

yðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ; npts.

6: uðnpts; npdeÞ – REAL (KIND=nag_wp) array

uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

7: utðnpts; npdeÞ – REAL (KIND=nag_wp) array

utði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

8: uxðnpts; npdeÞ – REAL (KIND=nag_wp) array

uxði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

9: uyðnpts; npdeÞ – REAL (KIND=nag_wp) array

uyði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

10: uxxðnpts; npdeÞ – REAL (KIND=nag_wp) array

uxxði; jÞ contains the value of
@2u

@x2
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.
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11: uxyðnpts; npdeÞ – REAL (KIND=nag_wp) array

uxyði; jÞ contains the value of
@2u

@x@y
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

12: uyyðnpts; npdeÞ – REAL (KIND=nag_wp) array

uyyði; jÞ contains the value of
@2u

@y2
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

Output Parameters

1: resðnpts;npdeÞ – REAL (KIND=nag_wp) array

resði; jÞ must contain the value of Fj , for j ¼ 1; 2; . . . ; npde, at the ith grid point, for
i ¼ 1; 2; . . . ; npts, although the residuals at boundary points will be ignored (and
overwritten later on) and so they need not be specified here.

8: bndary – SUBROUTINE, supplied by the user.

bndary must evaluate the functions Gj , for j ¼ 1; 2; . . . ; npde, in equation (2) which define the
boundary conditions at all boundary points of the domain. Residuals at interior points must not
be altered by this function.

[res] = bndary(npts, npde, t, x, y, u, ut, ux, uy, nbnds, nbpts, llbnd,
ilbnd, lbnd, res)

Input Parameters

1: npts – INTEGER

The number of grid points in the current grid.

2: npde – INTEGER

The number of PDEs in the system.

3: t – REAL (KIND=nag_wp)

The current value of the independent variable t.

4: xðnptsÞ – REAL (KIND=nag_wp) array

xðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;npts.

5: yðnptsÞ – REAL (KIND=nag_wp) array

yðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ; npts.

6: uðnpts; npdeÞ – REAL (KIND=nag_wp) array

uði; jÞ contains the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

7: utðnpts; npdeÞ – REAL (KIND=nag_wp) array

utði; jÞ contains the value of
@u

@t
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.
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8: uxðnpts; npdeÞ – REAL (KIND=nag_wp) array

uxði; jÞ contains the value of
@u

@x
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

9: uyðnpts; npdeÞ – REAL (KIND=nag_wp) array

uyði; jÞ contains the value of
@u

@y
for the jth PDE component at the ith grid point, for

i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

10: nbnds – INTEGER

The total number of physical boundaries and corners in the grid.

11: nbpts – INTEGER

The total number of boundary points in the grid.

12: llbndðnbndsÞ – INTEGER array

llbndðiÞ, for i ¼ 1; 2; . . . ; nbnds, contains the element of lbnd corresponding to the start
of the ith boundary (or corner).

13: ilbndðnbndsÞ – INTEGER array

ilbndðiÞ, for i ¼ 1; 2; . . . ; nbnds, contains the type of the ith boundary, as given in
Section 3.

14: lbndðnbptsÞ – INTEGER array

lbndðiÞ, contains the grid index of the ith boundary point, where the order of the
boundaries is as specified in llbnd. Hence the ith boundary point has coordinates
xðlbndðiÞÞ and yðlbndðiÞÞ, and the corresponding solution values are uðlbndðiÞ; jÞ, for
i ¼ 1; 2; . . . ; nbpts and j ¼ 1; 2; . . . ; npde.

15: resðnpts;npdeÞ – REAL (KIND=nag_wp) array

Contains function values returned by pdedef.

Output Parameters

1: resðnpts;npdeÞ – REAL (KIND=nag_wp) array

resðlbndðiÞ; jÞ must contain the value of Gj , for j ¼ 1; 2; . . . ; npde, at the ith boundary
point, for i ¼ 1; 2; . . . ;nbpts.

Note: elements of res corresponding to interior points, i.e., points not included in lbnd,
must not be altered.

9: pdeiv – SUBROUTINE, supplied by the user.

pdeiv must specify the initial values of the PDE components u at all points in the base grid.
pdeiv is not referenced if, on entry, ind ¼ 1.

[u] = pdeiv(npts, npde, t, x, y)

Input Parameters

1: npts – INTEGER

The number of grid points in the base grid.
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2: npde – INTEGER

The number of PDEs in the system.

3: t – REAL (KIND=nag_wp)

The (initial) value of the independent variable t.

4: xðnptsÞ – REAL (KIND=nag_wp) array

xðiÞ contains the x coordinate of the ith grid point, for i ¼ 1; 2; . . . ;npts.

5: yðnptsÞ – REAL (KIND=nag_wp) array

yðiÞ contains the y coordinate of the ith grid point, for i ¼ 1; 2; . . . ; npts.

Output Parameters

1: uðnpts; npdeÞ – REAL (KIND=nag_wp) array

uði; jÞ must contain the value of the jth PDE component at the ith grid point, for
i ¼ 1; 2; . . . ; npts and j ¼ 1; 2; . . . ; npde.

10: monitr – SUBROUTINE, supplied by the user.

monitr is called by nag_pde_2d_gen_order2_rectilinear (d03rb) at the end of every successful
time step, and may be used to examine or print the solution or perform other tasks such as error
calculations, particularly at the final time step, indicated by the argument tlast.

The input arguments contain information about the grid and solution at all grid levels used.
nag_pde_2d_gen_order2_rectilinear_extractgrid (d03rz) should be called from monitr in order to
extract the number of points and their x; yð Þ coordinates on a particular grid.

monitr can also be used to force an immediate tidy termination of the solution process and return
to the calling program.

[ierr] = monitr(npde, t, dt, dtnew, tlast, nlev, xmin, ymin, dxb, dyb,
lgrid, istruc, lsol, sol, ierr)

Input Parameters

1: npde – INTEGER

The number of PDEs in the system.

2: t – REAL (KIND=nag_wp)

The current value of the independent variable t, i.e., the time at the end of the
integration step just completed.

3: dt – REAL (KIND=nag_wp)

The current time step size �t, i.e., the time step size used for the integration step just
completed.

4: dtnew – REAL (KIND=nag_wp)

The time step size that will be used for the next time step.

5: tlast – LOGICAL

Indicates if intermediate or final time step. tlast ¼ false for an intermediate step,
tlast ¼ true for the last call to monitr before returning to your program.

d03rb NAG Toolbox for MATLAB Manual

d03rb.10 Mark 25



6: nlev – INTEGER

The number of grid levels used at time t.

7: xmin – REAL (KIND=nag_wp)
8: ymin – REAL (KIND=nag_wp)

The x; yð Þ coordinates of the lower-left corner of the virtual grid.

9: dxb – REAL (KIND=nag_wp)
10: dyb – REAL (KIND=nag_wp)

The sizes of the base grid spacing in the x- and y-direction respectively.

11: lgridð:Þ – INTEGER array

Contains pointers to the start of the grid structures in istruc, and must be passed
unchanged to nag_pde_2d_gen_order2_rectilinear_extractgrid (d03rz) in order to extract
the grid information.

12: istrucð:Þ – INTEGER array

Contains the grid structures for each grid level and must be passed unchanged to
nag_pde_2d_gen_order2_rectilinear_extractgrid (d03rz) in order to extract the grid
information.

13: lsolðnlevÞ – INTEGER array

lsolðlÞ contains the pointer to the solution in sol at grid level l and time t. (lsolðlÞ
actually contains the array index immediately preceding the start of the solution in sol.)

14: solðlenrwk � 6� npdeþ 1ð ÞÞ – REAL (KIND=nag_wp) array

Contains the solution u at time t for each grid level l in turn, positioned according to
lsol. More precisely

uði; jÞ ¼ solðlsolðlÞ þ j � 1ð Þ � nl þ iÞ
represents the jth component of the solution at the ith grid point in the lth level, for
i ¼ 1; 2; . . . ; nl , j ¼ 1; 2; . . . ;npde and l ¼ 1; 2; . . . ;nlev, where nl is the number of grid
points at level l (obtainable by a call to nag_pde_2d_gen_order2_rectilinear_extractgrid
(d03rz)).

15: ierr – INTEGER

Will be initialized by nag_pde_2d_gen_order2_rectilinear (d03rb) to some value prior to
internal calls to ierr.

Output Parameters

1: ierr – INTEGER

Should be set to 1 to force a termination of the integration and an immediate return to
the calling program with ifail ¼ 4. ierr should remain unchanged otherwise.

11: optið4Þ – INTEGER array

May be set to control various options available in the integrator.

optið1Þ ¼ 0
All the default options are employed.

optið1Þ > 0
The default value of optiðiÞ, for i ¼ 2; 3; 4, can be obtained by setting optiðiÞ ¼ 0.
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optið1Þ
Specifies the maximum number of grid levels allowed (including the base grid).
optið1Þ � 0. The default value is optið1Þ ¼ 3.

optið2Þ
Specifies the maximum number of Jacobian evaluations allowed during each nonlinear
equations solution. optið2Þ � 0. The default value is optið2Þ ¼ 2.

optið3Þ
Specifies the maximum number of Newton iterations in each nonlinear equations solution.
optið3Þ � 0. The default value is optið3Þ ¼ 10.

optið4Þ
Specifies the maximum number of iterations in each linear equations solution. optið4Þ � 0.
The default value is optið4Þ ¼ 100.

Constraint: optið1Þ � 0 and if optið1Þ > 0, optiðiÞ � 0, for i ¼ 2; 3; 4.

12: optrð3; npdeÞ – REAL (KIND=nag_wp) array

May be used to specify the optional vectors umax , ws and wt in the space and time monitors (see
Section 9).

If an optional vector is not required then all its components should be set to 1:0.

optrð1; jÞ, for j ¼ 1; 2; . . . ; npde, specifies umax
j , the approximate maximum absolute value of the

jth component of u, as used in (4) and (7). optrð1; jÞ > 0:0, for j ¼ 1; 2; . . . ; npde.

optrð2; jÞ, for j ¼ 1; 2; . . . ; npde, specifies ws
j , the weighting factors used in the space monitor

(see (4)) to indicate the relative importance of the jth component of u on the space monitor.
optrð2; jÞ � 0:0, for j ¼ 1; 2; . . . ;npde.

optrð3; jÞ, for j ¼ 1; 2; . . . ;npde, specifies wt
j , the weighting factors used in the time monitor (see

(6)) to indicate the relative importance of the jth component of u on the time monitor.
optrð3; jÞ � 0:0, for j ¼ 1; 2; . . . ;npde.

Constraints:

optrð1; jÞ > 0:0, for j ¼ 1; 2; . . . ;npde;
optrði; jÞ � 0:0, for i ¼ 2; 3 and j ¼ 1; 2; . . . ;npde.

13: rwkðlenrwkÞ – REAL (KIND=nag_wp) array

The required value of lenrwk cannot be determined exactly in advance, but a suggested value is

lenrwk ¼ maxpts � npde� 5� lþ 18� npdeþ 9ð Þ þ 2�maxpts;

where l ¼ optið1Þ if optið1Þ 6¼ 0 and l ¼ 3 otherwise, and maxpts is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be
too small then the function returns with ifail ¼ 3 and an estimated required size is printed on the
current error message unit (see nag_file_set_unit_error (x04aa)).

Note: the size of lenrwk cannot be checked upon initial entry to nag_pde_2d_gen_order2_
rectilinear (d03rb) since the number of grid points on the base grid is not known.

14: iwkðleniwkÞ – INTEGER array

If ind ¼ 0, iwk need not be set. Otherwise iwk must remain unchanged from a previous call to
nag_pde_2d_gen_order2_rectilinear (d03rb).

15: lenlwk – INTEGER

The dimension of the array lwk.

The required value of lenlwk cannot be determined exactly in advance, but a suggested value is

lenlwk ¼ maxpts þ 1;

d03rb NAG Toolbox for MATLAB Manual

d03rb.12 Mark 25



where maxpts is the expected maximum number of grid points at any one level. If during the
execution the supplied value is found to be too small then the function returns with ifail ¼ 3 and
an estimated required size is printed on the current error message unit (see nag_file_set_unit_
error (x04aa)).

Note: the size of lenlwk cannot be checked upon initial entry to nag_pde_2d_gen_order2_
rectilinear (d03rb) since the number of grid points on the base grid is not known.

16: itrace – INTEGER

The level of trace information required from nag_pde_2d_gen_order2_rectilinear (d03rb). itrace
may take the value �1, 0, 1, 2 or 3.

itrace ¼ �1
No output is generated.

itrace ¼ 0
Only warning messages are printed.

itrace > 0
Output from the underlying solver is printed on the current advisory message unit (see
nag_file_set_unit_advisory (x04ab)). This output contains details of the time integration,
the nonlinear iteration and the linear solver.

If itrace < �1, then �1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases. Setting itrace ¼ 1 allows
you to monitor the progress of the integration without possibly excessive information.

17: ind – INTEGER

Must be set to 0 or 1, alternatively 10 or 11.

ind ¼ 0
Starts the integration in time. pdedef is assumed to be serial.

ind ¼ 1
Continues the integration after an earlier exit from the function. In this case, only the
following parameters may be reset between calls to nag_pde_2d_gen_order2_rectilinear
(d03rb): tout, dt, tols, tolt, opti, optr, itrace and ifail. pdedef is assumed to be serial.

ind ¼ 10
Equivalent to ind ¼ 0. This option is included only for compatibility with other NAG
library products.

ind ¼ 11
Equivalent to ind ¼ 1. This option is included only for compatibility with other NAG
library products.

Constraint: 0 � ind � 1 or 10 � ind � 11.

5.2 Optional Input Parameters

1: npde – INTEGER

Default: the dimension of the array optr.

The number of PDEs in the system.

Constraint: npde � 1.

2: lenrwk – INTEGER

Default: the dimension of the array rwk.
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The required value of lenrwk cannot be determined exactly in advance, but a suggested value is

lenrwk ¼ maxpts � npde� 5� lþ 18� npdeþ 9ð Þ þ 2�maxpts;

where l ¼ optið1Þ if optið1Þ 6¼ 0 and l ¼ 3 otherwise, and maxpts is the expected maximum
number of grid points at any one level. If during the execution the supplied value is found to be
too small then the function returns with ifail ¼ 3 and an estimated required size is printed on the
current error message unit (see nag_file_set_unit_error (x04aa)).

Note: the size of lenrwk cannot be checked upon initial entry to nag_pde_2d_gen_order2_
rectilinear (d03rb) since the number of grid points on the base grid is not known.

3: leniwk – INTEGER

Default: the dimension of the array iwk.

The dimension of the array iwk.

The required value of leniwk cannot be determined exactly in advance, but a suggested value is

leniwk ¼ maxpts � 14þ 5�mð Þ þ 7�mþ 2;

where maxpts is the expected maximum number of grid points at any one level and m ¼ optið1Þ
if optið1Þ > 0 and m ¼ 3 otherwise. If during the execution the supplied value is found to be too
small then the function returns with ifail ¼ 3 and an estimated required size is printed on the
current error message unit (see nag_file_set_unit_error (x04aa)).

Note: the size of leniwk cannot be checked upon initial entry to nag_pde_2d_gen_order2_
rectilinear (d03rb) since the number of grid points on the base grid is not known.

5.3 Output Parameters

1: ts – REAL (KIND=nag_wp)

The value of t which has been reached. Normally ts ¼ tout.

2: dtð3Þ – REAL (KIND=nag_wp) array

dtð1Þ contains the time step size for the next time step. dtð2Þ and dtð3Þ are unchanged or set to
their default values if zero on entry.

3: rwkðlenrwkÞ – REAL (KIND=nag_wp) array

Communication array, used to store information between calls to nag_pde_2d_gen_order2_
rectilinear (d03rb).

4: iwkðleniwkÞ – INTEGER array

The following components of the array iwk concern the efficiency of the integration. Here, m is
the maximum number of grid levels allowed (m ¼ optið1Þ if optið1Þ > 1 and m ¼ 3 otherwise),
and l is a grid level taking the values l ¼ 1; 2; . . . ; nl, where nl is the number of levels used.

iwkð1Þ
Contains the number of steps taken in time.

iwkð2Þ
Contains the number of rejected time steps.

iwkð2þ lÞ
Contains the total number of residual evaluations performed (i.e., the number of times
pdedef was called) at grid level l.

iwkð2þmþ lÞ
Contains the total number of Jacobian evaluations performed at grid level l.

iwkð2þ 2�mþ lÞ
Contains the total number of Newton iterations performed at grid level l.
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iwkð2þ 3�mþ lÞ
Contains the total number of linear solver iterations performed at grid level l.

iwkð2þ 4�mþ lÞ
Contains the maximum number of Newton iterations performed at any one time step at
grid level l.

iwkð2þ 5�mþ lÞ
Contains the maximum number of linear solver iterations performed at any one time step
at grid level l.

Note: the total and maximum numbers are cumulative over all calls to nag_pde_2d_gen_
order2_rectilinear (d03rb). If the specified maximum number of Newton or linear solver
iterations is exceeded at any stage, then the maximums above are set to the specified maximum
plus one.

5: ind – INTEGER

ind ¼ 1, if ind on input was 0 or 1, or ind ¼ 11, if ind on input was 10 or 11.

6: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

On entry, npde < 1,
or tout � ts,
or tout is too close to ts,
or ind ¼ 0 and dtð1Þ < 0:0,
or dtðiÞ < 0:0, for i ¼ 2 or 3,
or dtð2Þ > dtð3Þ,
or ind ¼ 0 and 0:0 < dtð1Þ < 10�machine precision�max tsj j; toutj jð Þ,
or ind ¼ 0 and dtð1Þ > tout� ts,
or ind ¼ 0 and dtð1Þ < dtð2Þ or dtð1Þ > dtð3Þ,
or tols or tolt � 0:0,
or optið1Þ < 0,
or optið1Þ > 0 and optiðjÞ < 0, for j ¼ 2, 3 or 4,
or optrð1; jÞ � 0:0, for some j ¼ 1; 2; . . . ;npde,
or optrð2; jÞ < 0:0, for some j ¼ 1; 2; . . . ;npde,
or optrð3; jÞ < 0:0, for some j ¼ 1; 2; . . . ;npde,
or ind 6¼ 0 or 1,
or ind ¼ 1 on initial entry to nag_pde_2d_gen_order2_rectilinear (d03rb).

ifail ¼ 2

The time step size to be attempted is less than the specified minimum size. This may occur
following time step failures and subsequent step size reductions caused by one or more of the
following:

the requested accuracy could not be achieved, i.e., tolt is too small,

the maximum number of linear solver iterations, Newton iterations or Jacobian evaluations
is too small,

ILU decomposition of the Jacobian matrix could not be performed, possibly due to
singularity of the Jacobian.

Setting itrace to a higher value may provide further information.
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In the latter two cases you are advised to check their problem formulation in pdedef and/or
bndary, and the initial values in pdeiv if appropriate.

ifail ¼ 3

One or more of the workspace arrays is too small for the required number of grid points. At the
initial time step this error may result because you set ierr to �1 in inidom or the internal check
on the number of grid points following the call to inidom. An estimate of the required sizes for
the current stage is output, but more space may be required at a later stage.

ifail ¼ 4 (warning)

ierr was set to 1 in monitr, forcing control to be passed back to calling program. Integration was
successful as far as t ¼ ts.

ifail ¼ 5 (warning)

The integration has been completed but the maximum number of levels specified in optið1Þ was
insufficient at one or more time steps, meaning that the requested space accuracy could not be
achieved. To avoid this warning either increase the value of optið1Þ or decrease the value of tols.

ifail ¼ 6

One or more of the output arguments of inidom was incorrectly specified, i.e.,

xmin � xmax,
or xmax too close to xmin,
or ymin � ymax,
or ymax too close to ymin,
or nx or ny < 4,
or nrows < 4,
or nrows > ny,
or npts > nx� ny,
or nbnds < 8,
or nbpts < 12,
or nbpts � npts,
or lrowðiÞ < 1 or lrowðiÞ > npts, for some i ¼ 1; 2; . . . ; nrows,
or lrowðiÞ � lrowði� 1Þ, for some i ¼ 2; 3; . . . ;nrows,
or irowðiÞ < 0 or irowðiÞ > ny, for some i ¼ 1; 2; . . . ; nrows,
or irowðiÞ � irowði� 1Þ, for some i ¼ 2; 3; . . . ;nrows,
or icolðiÞ < 0 or icolðiÞ > nx, for some i ¼ 1; 2; . . . ; npts,
or llbndðiÞ < 1 or llbndðiÞ > nbpts, for some i ¼ 1; 2; . . . ; nbnds,
or llbndðiÞ � llbndði� 1Þ, for some i ¼ 2; 3; . . . ;nbnds,
or ilbndðiÞ 6¼ 1, 2, 3, 4, 12, 23, 34, 41, 21, 32, 43 or 14, for some i ¼ 1; 2; . . . ; nbnds,
or lbndðiÞ < 1 or lbndðiÞ > npts, for some i ¼ 1; 2; . . . ; nbpts.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.
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7 Accuracy

There are three sources of error in the algorithm: space and time discretization, and interpolation
(linear) between grid levels. The space and time discretization errors are controlled separately using the
arguments tols and tolt described in Section 9, and you should test the effects of varying these
arguments. Interpolation errors are generally implicitly controlled by the refinement criterion since in
areas where interpolation errors are potentially large, the space monitor will also be large. It can be
shown that the global spatial accuracy is comparable to that which would be obtained on a uniform grid
of the finest grid size. A full error analysis can be found in Trompert and Verwer (1993).

8 Further Comments

8.1 Algorithm Outline

The local uniform grid refinement method is summarised as follows.

1. Initialize the course base grid, an initial solution and an initial time step.

2. Solve the system of PDEs on the current grid with the current time step.

3. If the required accuracy in space and the maximum number of grid levels have not yet been
reached:

(a) Determine new finer grid at forward time level.

(b) Get solution values at previous time level(s) on new grid.

(c) Interpolate internal boundary values from old grid at forward time.

(d) Get initial values for the Newton process at forward time.

(e) Go to 2.

4. Update the coarser grid solution using the finer grid values.

5. Estimate error in time integration. If time error is acceptable advance time level.

6. Determine new step size then go to 2 with coarse base as current grid.

8.2 Refinement Strategy

For each grid point i a space monitor �s
i is determined by

�s
i ¼ max

j¼1;npde
�j �x2 @2

@x2
uj xi; yi; tð Þ

��� ���þ �y2 @2

@y2
uj xi; yi; tð Þ

��� ���� �n o
; ð3Þ

where �x and �y are the grid widths in the x and y directions; and xi, yi are the x; yð Þ coordinates at
grid point i. The argument �j is obtained from

�j ¼
ws

j

umax
j �

; ð4Þ

where � is the user-supplied space tolerance; ws
j is a weighting factor for the relative importance of the

jth PDE component on the space monitor; and umax
j is the approximate maximum absolute value of the

jth component. A value for � must be supplied by you. Values for ws
j and umax

j must also be supplied
but may be set to the values 1:0 if little information about the solution is known.

A new level of refinement is created if

max
i

�s
i

	 

> 0:9 or 1:0; ð5Þ

depending on the grid level at the previous step in order to avoid fluctuations in the number of grid
levels between time steps. If (5) is satisfied then all grid points for which �s

i > 0:25 are flagged and
surrounding cells are quartered in size.
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No derefinement takes place as such, since at each time step the solution on the base grid is computed
first and new finer grids are then created based on the new solution. Hence derefinement occurs
implicitly. See Section 9.1.

8.3 Time Integration

The time integration is controlled using a time monitor calculated at each level l up to the maximum
level used, given by

�t
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xnpde
j¼1

wt
j

Xngpts lð Þ

i¼1

�t

�ij
ut xi; yi; tð Þ

� 
2
vuut ð6Þ

where ngpts lð Þ is the total number of points on grid level l; N ¼ ngpts lð Þ � npde; �t is the current
time step; ut is the time derivative of u which is approximated by first-order finite differences; wt

j is the
time equivalent of the space weighting factor ws

j ; and �ij is given by

�ij ¼ �
umax
j

100
þ u xi; yi; tð Þj j

� 

ð7Þ

where umax
j is as before, and � is the user-specified time tolerance.

An integration step is rejected and retried at all levels if

max
l

�t
l

	 

> 1:0: ð8Þ

9 Example

This example is taken from Blom and Verwer (1993) and is the two-dimensional Burgers' system

@u

@t
¼ �u

@u

@x
� v

@u

@y
þ 	

@2u

@x2
þ @2u

@y2

� 

;

@v

@t
¼ �u

@v

@x
� v

@v

@y
þ 	

@2v

@x2
þ @2v

@y2

� 

;

with 	 ¼ 10�3 on the domain given in Figure 3. Dirichlet boundary conditions are used on all
boundaries using the exact solution

u ¼ 3
4 �

1

4 1þ exp �4xþ 4y� tð Þ= 32	ð Þð Þð Þ;

v ¼ 3
4 þ

1

4 1þ exp �4xþ 4y� tð Þ= 32	ð Þð Þð Þ:

The solution contains a wave front at y ¼ xþ 0:25t which propagates in a direction perpendicular to the
front with speed

ffiffiffi
2

p
=8.

9.1 Program Text

function d03rb_example

fprintf(’d03rb example results\n\n’);

global iout xsol ysol usol vsol inds;

ts = 0;
twant = [0.25; 1];
dt = [0.001; 1e-07; 0];
tols = 0.1;
tolt = 0.05;
opti = nag_int([5;0;0;0]);
optr = [1, 1; 1, 1; 1, 1];
rwk = zeros(426000, 1);
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iwk = zeros(117037, 1, nag_int_name);
lenlwk = nag_int(6000);
itrace = nag_int(0);
ind = nag_int(0);
inds = nag_int(0);

for iout = 1:2
tout = twant(iout);
[ts, dt, rwk, iwk, ind, ifail] = ...

d03rb(...
ts, tout, dt, tols, tolt, @inidom, @pdedef, ...
@bndary, @pdeiv, @monitr, opti, optr, ...
rwk, iwk, lenlwk, itrace, ind);

fprintf(’\nStatistics\n’);
fprintf(’Time = %8.4f\n’, ts);
fprintf(’Total number of accepted timesteps = %d\n’, iwk(1));
fprintf(’Total number of rejected timesteps = %d\n’, iwk(2));
fprintf(’\n T o t a l n u m b e r o f \n’);
fprintf(’ Residual Jacobian Newton Lin sys\n’);
fprintf(’ evals evals iters iters\n’);
fprintf(’ At level \n’);
maxlev = opti(1);
for j = 1:maxlev

if (iwk(j+2) ~= 0)
fprintf(’%6d %10d %10d %10d %10d\n’, j, iwk(j+2), iwk(j+2+maxlev), ...

iwk(j+2+2*maxlev), iwk(j+2+3*maxlev) );
end

end
fprintf(’\n M a x i m u m n u m b e r o f\n’);
fprintf(’ Newton iters Lin sys iters \n’);
fprintf(’ At level \n’);
for j = 1:maxlev

if (iwk(j+2) ~= 0)
fprintf(’%6d%14d%14d\n’, j, iwk(j+2+4*maxlev), iwk(j+2+5*maxlev) );

end
end

end

% Plot solutions u and v at t=1.0
fig1 = figure;
scatter3(xsol,ysol,usol,15,vsol,’o’,’fill’);
title(’2D Burgers’’ equation at t=1 on disjoint domain: u’);
xlabel(’x’);
ylabel(’y’);
zlabel(’u(x,y;t=1)’);

fig2 = figure;
scatter3(xsol,ysol,vsol,15,vsol,’o’,’fill’);
view(-54,32);
xlabel(’x’);
ylabel(’y’);
zlabel(’v(x,y;t=1)’);
title(’2D Burgers’’ equation at t=1 on disjoint domain: v’);

function [res] = bndary(npts, npde, t, x, y, u, ut, ux, uy, nbnds, ...
nbpts, llbnd, ilbnd, lbnd, res)

epsilon = 1e-3;

for k = llbnd(1):nbpts
i = lbnd(k);
a = (-4*x(i)+4*y(i)-t)/(32*epsilon);
if (a <= 0)

res(i,1) = u(i,1) - (0.75-0.25/(1+exp(a)));
res(i,2) = u(i,2) - (0.75+0.25/(1+exp(a)));

else
res(i,1) = u(i,1) - (0.75-0.25*exp(-a)/(exp(-a)+1));
res(i,2) = u(i,2) - (0.75+0.25*exp(-a)/(exp(-a)+1));

end
end
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function [xmin, xmax, ymin, ymax, nx, ny, npts, nrows, nbnds, nbpts, ...
lrow, irow, icol, llbnd, ilbnd, lbnd, ierr] = inidom(maxpts, ierr)

nrows = nag_int(11);
npts = nag_int(105);
nbnds = nag_int(28);
nbpts = nag_int(72);

lrow = zeros(nrows, 1, nag_int_name);
irow = zeros(nrows, 1, nag_int_name);
icol = zeros(npts, 1, nag_int_name);
llbnd = zeros(nbnds, 1, nag_int_name);
ilbnd = zeros(nbnds, 1, nag_int_name);
lbnd = zeros(nbpts, 1, nag_int_name);

icold = nag_int([0,1,2,0,1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,6,7,8,9, ...
10,0,1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,8,9,10,0,1,2,3,4,5, ...
6,7,8,9,10,0,1,2,3,4,5,6,7,8,9,10,0,1,2,3,4,5,6,7,8,9,10, ...
0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8]);

ilbndd = nag_int([1,2,3,4,1,4,1,2,3,4,3,4,1,2,12,23,34,41,14,41,12, ...
23,34,41,43,14,21,32]);

irowd = nag_int([0,1,2,3,4,5,6,7,8,9,10]);

lbndd = nag_int([2,4,15,26,37,46,57,68,79,88,98,99,100,101,102,103,104,96,...
86,85,84,83,82,70,59,48,39,28,17,6,8,9,10,11,12,13,18,...
29,40,49,60,72,73,74,75,76,77,67,56,45,36,25,33,32,42, ...
52,53,43,1,97,105,87,81,3,7,71,78,14,31,51,54,34]);

llbndd = nag_int([1,2,11,18,19,24,31,37,42,48,53,55,56,58,59,60,61,62, ...
63,64,65,66,67,68,69,70,71,72]);

lrowd = nag_int([1,4,15,26,37,46,57,68,79,88,97]);

nx = nag_int(11);
ny = nag_int(11);

% check maxpts against rough estimate of npts
if (maxpts < nx*ny)

ierr = -1;
return;

end

xmin = 0;
ymin = 0;
xmax = 1;
ymax = 1;

lrow(1:nrows) = lrowd(1:nrows);
irow(1:nrows) = irowd(1:nrows);
llbnd(1:nbnds) = llbndd(1:nbnds);
ilbnd(1:nbnds) = ilbndd(1:nbnds);
lbnd(1:nbpts) = lbndd(1:nbpts);
icol(1:npts) = icold(1:npts);

function [res] = pdedef(npts, npde, t, x, y, u, ut, ux, uy, uxx, uxy, uyy)
res = zeros(npts, npde);

epsilon = 1e-3;
uxxyy = epsilon*(uxx(1:npts,1:2)+uyy(1:npts,1:2));
uuxuy(1:npts,1) = -u(1:npts,1).*ux(1:npts,1)-u(1:npts,2).*uy(1:npts,1);
uuxuy(1:npts,2) = -u(1:npts,1).*ux(1:npts,2)-u(1:npts,2).*uy(1:npts,2);
res(1:npts,1:2) = ut(1:npts,1:2)-(uuxuy+uxxyy);

function [u] = pdeiv(npts, npde, t, x, y)
u = zeros(npts, npde);

epsilon = 1e-3;

d03rb NAG Toolbox for MATLAB Manual

d03rb.20 Mark 25



for i = 1:npts
a = (-4*x(i)+4*y(i)-t)/(32*epsilon);
if (a <= 0)

u(i,1) = 0.75 - 0.25/(1+exp(a));
u(i,2) = 0.75 + 0.25/(1+exp(a));

else
u(i,1) = 0.75 - 0.25*exp(-a)/(exp(-a)+1);
u(i,2) = 0.75 + 0.25*exp(-a)/(exp(-a)+1);

end
end

function [ierr] = ...
monitr(npde, t, dt, dtnew, tlast, nlev, xmin, ymin, dxb, dyb, lgrid, ...

istruc, lsol, sol, ierr)

lenxy=nag_int(2500);

global iout xsol ysol usol vsol inds;

if (tlast && iout == 2)
for level = nag_int(1:nlev)

ipsol = lsol(level);

% Get grid information
[npts, x, y, ifail] = ...

d03rz(...
level, xmin, ymin, dxb, dyb, lgrid, istruc, lenxy);

% Get exact solution
[uex] = pdeiv(npts, npde, t, x, y);

xsol(inds+1:inds+npts) = x(1:npts);
ysol(inds+1:inds+npts) = y(1:npts);
usol(inds+1:inds+npts) = sol(ipsol+1:ipsol+npts);
vsol(inds+1:inds+npts) = sol(ipsol+npts+1:ipsol+npts+npts);
inds = inds + npts;

end
end

9.2 Program Results

d03rb example results

Statistics
Time = 0.2500
Total number of accepted timesteps = 14
Total number of rejected timesteps = 0

T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 196 14 28 14
2 196 14 28 22
3 196 14 28 25
4 196 14 28 31
5 141 10 21 29

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 1
2 2 1
3 2 1
4 2 2
5 3 2

Statistics
Time = 1.0000
Total number of accepted timesteps = 45
Total number of rejected timesteps = 0
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T o t a l n u m b e r o f
Residual Jacobian Newton Lin sys

evals evals iters iters
At level

1 630 45 90 45
2 630 45 90 78
3 630 45 90 87
4 630 45 90 124
5 575 41 83 122

M a x i m u m n u m b e r o f
Newton iters Lin sys iters

At level
1 2 1
2 2 1
3 2 1
4 2 2
5 3 2
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