NAG Toolbox

nag_fit_2dcheb_eval (e02cb)

1 Purpose

nag_fit_2dcheb_eval (e02cb) evaluates a bivariate polynomial from the rectangular array of coefficients in its double Chebyshev series representation.

2 Syntax

```
[ff, ifail] = nag_fit_2dcheb_eval(mfirst, k, l, x, xmin, xmax, y, ymin, ymax, a,
'mlast', mlast)
[ff, ifail] = e02cb(mfirst, k, l, x, xmin, xmax, y, ymin, ymax, a, 'mlast',
mlast)
```


3 Description

This function evaluates a bivariate polynomial (represented in double Chebyshev form) of degree k in one variable, \bar{x}, and degree l in the other, \bar{y}. The range of both variables is -1 to +1 . However, these normalized variables will usually have been derived (as when the polynomial has been computed by nag_fit_2dcheb_lines (e02ca), for example) from your original variables x and y by the transformations

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{\left(x_{\max }-x_{\min }\right)} \quad \text { and } \quad \bar{y}=\frac{2 y-\left(y_{\max }+y_{\min }\right)}{\left(y_{\max }-y_{\min }\right)} .
$$

(Here $x_{\min }$ and $x_{\max }$ are the ends of the range of x which has been transformed to the range -1 to +1 of \bar{x}. $y_{\min }$ and $y_{\max }$ are correspondingly for y. See Section 9). For this reason, the function has been designed to accept values of x and y rather than \bar{x} and \bar{y}, and so requires values of $x_{\text {min }}$, etc. to be supplied by you. In fact, for the sake of efficiency in appropriate cases, the function evaluates the polynomial for a sequence of values of x, all associated with the same value of y.
The double Chebyshev series can be written as

$$
\sum_{i=0}^{k} \sum_{j=0}^{l} a_{i j} T_{i}(\bar{x}) T_{j}(\bar{y})
$$

where $T_{i}(\bar{x})$ is the Chebyshev polynomial of the first kind of degree i and argument \bar{x}, and $T_{j}(\bar{y})$ is similarly defined. However the standard convention, followed in this function, is that coefficients in the above expression which have either i or j zero are written $\frac{1}{2} a_{i j}$, instead of simply $a_{i j}$, and the coefficient with both i and j zero is written $\frac{1}{4} a_{0,0}$.
The function first forms $c_{i}=\sum_{j=0}^{l} a_{i j} T_{j}(\bar{y})$, with $a_{i, 0}$ replaced by $\frac{1}{2} a_{i, 0}$, for each of $i=0,1, \ldots, k$. The value of the double series is then obtained for each value of x, by summing $c_{i} \times T_{i}(\bar{x})$, with c_{0} replaced by $\frac{1}{2} c_{0}$, over $i=0,1, \ldots, k$. The Clenshaw three term recurrence (see Clenshaw (1955)) with modifications due to Reinsch and Gentleman (1969) is used to form the sums.

4 References

Clenshaw C W (1955) A note on the summation of Chebyshev series Math. Tables Aids Comput. 9 118-120

Gentleman W M (1969) An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients Comput. J. 12 160-165

5 Parameters

5.1 Compulsory Input Parameters

1: mfirst - INTEGER
The index of the first and last x value in the array x at which the evaluation is required respectively (see Section 9).

Constraint: mlast \geq mfirst.
2: $\quad \mathbf{k}$ - INTEGER
3: $\quad \mathbf{l}$ - INTEGER
The degree k of x and l of y, respectively, in the polynomial.
Constraint: $\mathbf{k} \geq 0$ and $\mathbf{l} \geq 0$.

4: $\quad \mathbf{x}(\mathbf{m l a s t})$ - REAL (KIND=nag_wp) array
$\mathbf{x}(i)$, for $i=\mathbf{m f i r s t}, \ldots$, mlast, must contain the x values at which the evaluation is required.
Constraint: $\mathbf{x m i n} \leq \mathbf{x}(i) \leq \mathbf{x m a x}$, for all i.
5: \quad xmin - REAL (KIND=nag_wp)
6: $\quad \mathbf{x m a x}-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
The lower and upper ends, $x_{\min }$ and $x_{\max }$, of the range of the variable x (see Section 3).
The values of $\mathbf{x m i n}$ and $\mathbf{x m a x}$ may depend on the value of y (e.g., when the polynomial has been derived using nag_fit_2dcheb_lines (e02ca)).
Constraint: xmax $>$ xmin.

7: $\quad \mathbf{y}-$ REAL (KIND=nag_wp)
The value of the y coordinate of all the points at which the evaluation is required.
Constraint: ymin $\leq \mathbf{y} \leq$ ymax.
8: \quad ymin - REAL (KIND=nag_wp)
9: \quad ymax - REAL (KIND=nag_wp)
The lower and upper ends, $y_{\min }$ and $y_{\max }$, of the range of the variable y (see Section 3).
Constraint: ymax $>$ ymin.
10: $\quad \mathbf{a}(n a)$ - REAL (KIND=nag_wp) array
$n a$, the dimension of the array, must satisfy the constraint $n a \geq(\mathbf{k}+1) \times(\mathbf{l}+1)$, the number of coefficients in a polynomial of the specified degree.

The Chebyshev coefficients of the polynomial. The coefficient $a_{i j}$ defined according to the standard convention (see Section 3) must be in $\mathbf{a}(i \times(l+1)+j+1)$.

5.2 Optional Input Parameters

1: mlast - INTEGER
Default: For mlast, the dimension of the array \mathbf{x}.
The index of the first and last x value in the array x at which the evaluation is required respectively (see Section 9).
Constraint: mlast \geq mfirst.

5.3 Output Parameters

1: $\quad \mathbf{f f}(\boldsymbol{m l a s t})$ - REAL (KIND=$=$ nag_wp $)$ array
$\mathbf{f f}(i)$ gives the value of the polynomial at the point $\left(x_{i}, y\right)$, for $i=\mathbf{m f i r s t}, \ldots$, mlast.

2: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$
\text { ifail }=1
$$

On entry, mfirst $>$ mlast,
or $\quad \mathbf{k}<0$,
or $\quad \mathbf{l}<0$,
or $n a<(\mathbf{k}+1) \times(\mathbf{l}+1)$,
or \quad nwork $<\mathbf{k}+1$.
ifail $=2$
On entry, ymin $\geq \mathbf{y m a x}$,
or $\quad \mathbf{y}<\mathbf{y m i n}$,
or $\quad \mathbf{y}>$ ymax.
ifail $=3$
On entry, $\mathbf{x m i n} \geq \mathbf{x m a x}$,
or $\quad \mathbf{x}(i)<\mathbf{x m i n}$, or $\mathbf{x}(i)>\mathbf{x m a x}$, for some $i=\mathbf{m f i r s t}$, mfirst $+1, \ldots$, mlast.
ifail $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.

ifail $=-399$

Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

The method is numerically stable in the sense that the computed values of the polynomial are exact for a set of coefficients which differ from those supplied by only a modest multiple of machine precision.

8 Further Comments

The time taken is approximately proportional to $(k+1) \times(m+l+1)$, where $m=\mathbf{m l a s t}-\mathbf{m f i r s t}+1$, the number of points at which the evaluation is required.

This function is suitable for evaluating the polynomial surface fits produced by the function nag_fit_2dcheb_lines (e02ca), which provides the double array a in the required form. For this use, the values of $y_{\text {min }}$ and $y_{\max }$ supplied to the present function must be the same as those supplied to nag_fit_2dcheb_lines (e02ca). The same applies to $x_{\min }$ and $x_{\max }$ if they are independent of y. If they vary with y, their values must be consistent with those supplied to nag_fit_2dcheb_lines (e02ca) (see Section 9 in nag_fit_2dcheb_lines (e02ca)).

The arguments mfirst and mlast are intended to permit the selection of a segment of the array \mathbf{x} which is to be associated with a particular value of y, when, for example, other segments of \mathbf{x} are associated with other values of y. Such a case arises when, after using nag_fit_2dcheb_lines (e02ca) to fit a set of data, you wish to evaluate the resulting polynomial at all the data values. In this case, if the arguments \mathbf{x}, \mathbf{y}, mfirst and mlast of the present function are set respectively (in terms of arguments of nag_fit_2dcheb_lines $(\mathrm{e} 02 \mathrm{ca}))$ to $\mathbf{x}, \mathbf{y}(S), 1+\sum_{i=1}^{s-1} \mathbf{m}(i)$ and $\sum_{i=1}^{s} \mathbf{m}(i)$, the function will compute values of the polynomial surface at all data points which have $\mathbf{y}(S)$ as their y coordinate (from which values the residuals of the fit may be derived).

9 Example

This example reads data in the following order, using the notation of the argument list above:

$N \quad \mathbf{k} \quad \mathbf{l}$		for $i=1,2, \ldots,(\mathbf{k}+1) \times(\mathbf{l}+1)$		
$\mathbf{a}(i)$,				
$\mathbf{y m i n}$	$\mathbf{y m a x}$			
$\mathbf{y}(i)$	$M(i)$	$\mathbf{x m i n}(i)$	$\mathbf{x m a x}(i)$	$\mathrm{X} 1(i)$
$\mathrm{XM}(i)$,	for i	$=1,2, \ldots, N$.		

For each line $\mathbf{y}=\mathbf{y}(i)$ the polynomial is evaluated at $M(i)$ equispaced points between $\mathrm{X} 1(i)$ and $\mathrm{XM}(i)$ inclusive.

9.1 Program Text

```
    function e02cb_example
```

fprintf('e02cb example results\n\n');
\% domain
$\mathrm{dx}=4 / 19$;
$\mathrm{x}=[0.5: \mathrm{dx}: 4.5]$;
$\mathrm{y}=[0: d \mathrm{x}: 4]$;
xmin $=0.1 ; x \max =4.5$;
ymin $=0 ; \quad y \max =4$;
\% Fit characteristics and coefficients
$\mathrm{k}=$ nag_int (3);
$1=$ nag_int(2);
$\left.\begin{array}{rrrrrr}{[15.3482} & 5.15073 & -2.20140 & 1.14719 & -0.64419 & 0.30464 \\ & -0.4901 & -0.00314 & -6.69912 & 0.00153 & 3.00033\end{array} \quad-0.00022\right] ;$
\% Evaluations on mesh
mfirst = nag_int(1);
mlast $=$ nag_int(20);
\% Evaluate fit
for $i=1: m l a s t$
[fit(:,i), ifail] $=$ eO2cb(..
mfirst, $k, l, x, x m i n, ~ x m a x, ~ y(i), ~ . . . ~$
ymin, ymax, a, 'mlast', mlast);
sol $=[x ;$ fit(:,i)'];
end
fprintf('\nThe bivariate polynomial fit values for $y=\% 5.1 f$ are: $\left.\backslash n^{\prime}, y(m l a s t)\right)$;
sol $=[x ;$ fit(:,mlast)'];
fprintf(' $\left.\quad x \quad p(x, y=4) \backslash n^{\prime}, ~ s o l\right) ;$
fprintf('\%11.4f\%11.4f\n', sol);
fig1 = figure;
meshc (y, x,fit);
title('Least-squares bi-variate polynomial fit');
xlabel('x');
ylabel('y');
zlabel('p(x,y)');

9.2 Program Results

eO2cb example results
The bivariate polynomial fit values for $y=4.0$ are:
$x \quad p(x, y=4)$
$0.5000 \quad 3.5575$
$0.7105 \quad 6.8145$
$0.9211 \quad 9.3405$
$1.1316 \quad 11.1986$
$1.3421 \quad 12.4520$
$1.5526 \quad 13.1637$
$1.7632 \quad 13.3970$
1.973713 .2148
$2.1842 \quad 12.6803$
2.394711 .8566
$2.6053 \quad 10.8069$
$2.8158 \quad 9.5942$
$3.0263 \quad 8.2816$
$3.2368 \quad 6.9323$
$3.4474 \quad 5.6094$
$3.6579 \quad 4.3760$
$3.8684 \quad 3.2951$
$\begin{array}{ll}4.0789 & 2.4300 \\ 4.2895 & 1.8437\end{array}$
$4.5000 \quad 1.5993$

Least-squares bi-variate polynomial fit

