
NAG Toolbox

nag_fit_glin_linf (e02gc)

1 Purpose

nag_fit_glin_linf (e02gc) calculates an l1 solution to an over-determined system of linear equations.

2 Syntax

[aa, bb, rreelleerrrr, xx, rreessmmaaxx, iirraannkk, iitteerr, iiffaaiill] = nag_fit_glin_linf(nn, aa, bb,
rreelleerrrr, ’m’, mm, ’tol’, ttooll)

[aa, bb, rreelleerrrr, xx, rreessmmaaxx, iirraannkk, iitteerr, iiffaaiill] = e02gc(nn, aa, bb, rreelleerrrr, ’m’, mm,
’tol’, ttooll)

3 Description

Given a matrix A with m rows and n columns m � nð Þ and a vector b with m elements, the function
calculates an l1 solution to the over-determined system of equations

Ax ¼ b:

That is to say, it calculates a vector x, with n elements, which minimizes the l1 norm of the residuals
(the absolutely largest residual)

r xð Þ ¼ max
1�i�m

rij j

where the residuals ri are given by

ri ¼ bi �
Xn

j¼1

aijxj; i ¼ 1; 2; . . . ;m:

Here aij is the element in row i and column j of A, bi is the ith element of b and xj the jth element of
x. The matrix A need not be of full rank. The solution is not unique in this case, and may not be unique
even if A is of full rank.

Alternatively, in applications where a complete minimization of the l1 norm is not necessary, you may
obtain an approximate solution, usually in shorter time, by giving an appropriate value to the argument
relerr.

Typically in applications to data fitting, data consisting of m points with coordinates ti; yið Þ is to be
approximated in the l1 norm by a linear combination of known functions �j tð Þ,

�1�1 tð Þ þ �2�2 tð Þ þ � � � þ �n�n tð Þ:
This is equivalent to finding an l1 solution to the over-determined system of equations

Xn

j¼1

�j tið Þ�j ¼ yi; i ¼ 1; 2; . . . ;m:

Thus if, for each value of i and j the element aij of the matrix A above is set equal to the value of
�j tið Þ and bi is set equal to yi, the solution vector x will contain the required values of the �j. Note that
the independent variable t above can, instead, be a vector of several independent variables (this includes
the case where each �i is a function of a different variable, or set of variables).

The algorithm is a modification of the simplex method of linear programming applied to the dual
formation of the l1 problem (see Barrodale and Phillips (1974) and Barrodale and Phillips (1975)). The
modifications are designed to improve the efficiency and stability of the simplex method for this
particular application.
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4 References

Barrodale I and Phillips C (1974) An improved algorithm for discrete Chebyshev linear approximation
Proc. 4th Manitoba Conf. Numerical Mathematics 177–190 University of Manitoba, Canada

Barrodale I and Phillips C (1975) Solution of an overdetermined system of linear equations in the
Chebyshev norm [F4] (Algorithm 495) ACM Trans. Math. Software 1(3) 264–270

5 Parameters

5.1 Compulsory Input Parameters

1: n – INTEGER

The number of unknowns, n (the number of columns of the matrix A).

Constraint: n � 1.

2: aðlda; sdaÞ – REAL (KIND=nag_wp) array

lda, the first dimension of the array, must satisfy the constraint lda � nþ 3.

aðj; iÞ must contain aij , the element in the ith row and jth column of the matrix A, for
i ¼ 1; 2; . . . ;m and j ¼ 1; 2; . . . ; n, (that is, the transpose of the matrix). The remaining elements
need not be set. Preferably, the columns of the matrix A (rows of the argument a) should be
scaled before entry: see Section 7.

3: bðmÞ – REAL (KIND=nag_wp) array

bðiÞ must contain bi, the ith element of the vector b, for i ¼ 1; 2; . . . ;m.

4: relerr – REAL (KIND=nag_wp)

Must be set to a bound on the relative error acceptable in the maximum residual at the solution.

If relerr � 0:0, then the l1 solution is computed, and relerr is set to 0:0 on exit.

If relerr > 0:0, then the function obtains instead an approximate solution for which the largest
residual is less than 1:0þ relerr times that of the l1 solution; on exit, relerr contains a smaller
value such that the above bound still applies. (The usual result of this option, say with
relerr ¼ 0:1, is a saving in the number of simplex iterations).

5.2 Optional Input Parameters

1: m – INTEGER

Default: the dimension of the array b.

The number of equations, m (the number of rows of the matrix A).

Constraint: m � n.

2: tol – REAL (KIND=nag_wp)

Default: 0:0.

A threshold below which numbers are regarded as zero. The recommended threshold value is
10:0� �, where � is the machine precision. If tol � 0:0 on entry, the recommended value is used
within the function. If premature termination occurs, a larger value for tol may result in a valid
solution.

5.3 Output Parameters

1: aðlda; sdaÞ – REAL (KIND=nag_wp) array

sda ¼ mþ 1.
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lda ¼ nþ 3.

Contains the last simplex tableau.

2: bðmÞ – REAL (KIND=nag_wp) array

The ith residual ri corresponding to the solution vector x, for i ¼ 1; 2; . . . ;m. Note however that
these residuals may contain few significant figures, especially when resmax is within one or two
orders of magnitude of tol. Indeed if resmax � tol, the elements bðiÞ may all be set to zero. It is
therefore often advisable to compute the residuals directly.

3: relerr – REAL (KIND=nag_wp)

Is altered as described above.

4: xðnÞ – REAL (KIND=nag_wp) array

If ifail ¼ 0 or 1, xðjÞ contains the jth element of the solution vector x, for j ¼ 1; 2; . . . ; n.
Whether this is an l1 solution or an approximation to one, depends on the value of relerr on
entry.

5: resmax – REAL (KIND=nag_wp)

If ifail ¼ 0 or 1, resmax contains the absolute value of the largest residual(s) for the solution
vector x. (See b.)

6: irank – INTEGER

If ifail ¼ 0 or 1, irank contains the computed rank of the matrix A.

7: iter – INTEGER

If ifail ¼ 0 or 1, iter contains the number of iterations taken by the simplex method.

8: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Note: nag_fit_glin_linf (e02gc) may return useful information for one or more of the following detected
errors or warnings.

Errors or warnings detected by the function:

ifail ¼ 1 (warning)

An optimal solution has been obtained but this may not be unique (perhaps simply because the
matrix A is not of full rank, i.e., irank < n).

ifail ¼ 2

The calculations have terminated prematurely due to rounding errors. Experiment with larger
values of tol or try rescaling the columns of the matrix (see Section 9).

ifail ¼ 3

On entry, lda < nþ 3,
or sda < mþ 1,
or m < n,
or n < 1.
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ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

Experience suggests that the computational accuracy of the solution x is comparable with the accuracy
that could be obtained by applying Gaussian elimination with partial pivoting to the nþ 1 equations
which have residuals of largest absolute value. The accuracy therefore varies with the conditioning of
the problem, but has been found generally very satisfactory in practice.

8 Further Comments

The effects of m and n on the time and on the number of iterations in the simplex method vary from
problem to problem, but typically the number of iterations is a small multiple of n and the total time is
approximately proportional to mn2.

It is recommended that, before the function is entered, the columns of the matrix A are scaled so that
the largest element in each column is of the order of unity. This should improve the conditioning of the
matrix, and also enable the argument tol to perform its correct function. The solution x obtained will
then, of course, relate to the scaled form of the matrix. Thus if the scaling is such that, for each
j ¼ 1; 2; . . . ; n, the elements of the jth column are multiplied by the constant kj, the element xj of the
solution vector x must be multiplied by kj if it is desired to recover the solution corresponding to the
original matrix A.

9 Example

This example approximates a set of data by a curve of the form

y ¼ Ket þ Le�t þM

where K, L and M are unknown. Given values yi at 5 points ti we may form the over-determined set of
equations for K, L and M

etiK þ e�tiLþM ¼ yi; i ¼ 1; 2; . . . ; 5:

nag_fit_glin_linf (e02gc) is used to solve these in the l1 sense.

9.1 Program Text

function e02gc_example

fprintf(’e02gc example results\n\n’);

n = nag_int(3);
a = zeros(6, 6);
for i = 1:5

a(1, i) = exp((i-1)/5);
a(2, i) = exp(-(i-1)/5);
a(3, i) = 1;

end
b = [4.501; 4.36; 4.333; 4.418; 4.625];
relerr = 0;

[a, b, relerr, x, resmax, irank, iter, ifail] = ...
e02gc(n, a, b, relerr);
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fprintf(’Resmax = %8.4f Rank = %5d Iterations = %5d\n\n’, ...
resmax, irank, iter);

disp(’Solution:’);
disp(x(1:irank)’);

9.2 Program Results

e02gc example results

Resmax = 0.0010 Rank = 3 Iterations = 4

Solution:
1.0049 2.0149 1.4822
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