NAG Toolbox

nag_matop_real_symm_posdef_fac (f01bu)

1 Purpose

nag_matop_real_symm_posdef_fac (f01bu) performs a $U L D L^{\mathrm{T}} U^{\mathrm{T}}$ decomposition of a real symmetric positive definite band matrix.

2 Syntax

```
[a, ifail] = nag_matop_real_symm_posdef_fac(k, a, 'n', n, 'm1', m1)
[a, ifail] = f01bu(k, a, 'n', n, 'm1', m1)
```

Note: the interface to this routine has changed since earlier releases of the toolbox:
At Mark 22: m1 was made optional.

3 Description

The symmetric positive definite matrix A, of order n and bandwidth $2 m+1$, is divided into the leading principal sub-matrix of order k and its complement, where $m \leq k \leq n$. A $U D U^{\mathrm{T}}$ decomposition of the latter and an $L D L^{\mathrm{T}}$ decomposition of the former are obtained by means of a sequence of elementary transformations, where U is unit upper triangular, L is unit lower triangular and D is diagonal. Thus if $k=n$, an $L D L^{\mathrm{T}}$ decomposition of A is obtained.
This function is specifically designed to precede nag_matop_real_symm_posdef_geneig (f01bv) for the transformation of the symmetric-definite eigenproblem $A x=\lambda B x$ by the method of Crawford where A and B are of band form. In this context, k is chosen to be close to $n / 2$ and the decomposition is applied to the matrix B.

4 References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford
Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-Verlag

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{k}$ - INTEGER
k, the change-over point in the decomposition.
Constraint: $\mathbf{m 1}-1 \leq \mathbf{k} \leq \mathbf{n}$.

2: $\quad \mathbf{a}(l d a, \mathbf{n})-$ REAL (KIND=nag_wp) array
$l d a$, the first dimension of the array, must satisfy the constraint $l d a \geq \mathbf{m 1}$.
The upper triangle of the n by n symmetric band matrix A, with the diagonal of the matrix stored in the $(m+1)$ th row of the array, and the m superdiagonals within the band stored in the first m rows of the array. Each column of the matrix is stored in the corresponding column of the array. For example, if $n=6$ and $m=2$, the storage scheme is

$*$	$*$	a_{13}	a_{24}	a_{35}	a_{46}
$*$	a_{12}	a_{23}	a_{34}	a_{45}	a_{56}
a_{11}	a_{22}	a_{33}	a_{44}	a_{55}	a_{66}

Elements in the top left corner of the array are not used. The following code assigns the matrix elements within the band to the correct elements of the array:

```
for j=1:n
    for i=max(1,j-m1+1):j
        a(i-j+m1,j) = matrix (i,j);
    end
end
```


5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array a.
n, the order of the matrix A.

2: $\mathbf{m 1}$ - INTEGER
Default: the first dimension of the array a.
$m+1$, where m is the number of nonzero superdiagonals in A. Normally $\mathbf{m 1} \ll \mathbf{n}$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a, \mathbf{n})-$ REAL (KIND=nag_wp) array
A stores the corresponding elements of L, D and U.
2: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail $=1$

On entry, $\mathbf{k}<\mathbf{m 1}-1$ or $\mathbf{k}>\mathbf{n}$.
ifail $=2$
ifail $=3$
The matrix A is not positive definite, perhaps as a result of rounding errors, giving an element of D which is zero or negative. ifail $=3$ when the failure occurs in the leading principal sub-matrix of order \mathbf{k} and ifail $=2$ when it occurs in the complement.

ifail $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.
ifail $=-399$
Your licence key may have expired or may not have been installed correctly.

ifail $=-999$

Dynamic memory allocation failed.

7 Accuracy

The Cholesky decomposition of a positive definite matrix is known for its remarkable numerical stability (see Wilkinson (1965)). The computed U, L and D satisfy the relation $U L D L^{\mathrm{T}} U^{\mathrm{T}}=A+E$ where the 2 -norms of A and E are related by $\|E\| \leq c(m+1)^{2} \epsilon\|A\|$ where c is a constant of order unity and ϵ is the machine precision. In practice, the error is usually appreciably smaller than this.

8 Further Comments

The time taken by nag_matop_real_symm_posdef_fac (f01bu) is approximately proportional to $n m^{2}+3 n m$.

This function is specifically designed for use as the first stage in the solution of the generalized symmetric eigenproblem $A x=\lambda B x$ by Crawford's method which preserves band form in the transformation to a similar standard problem. In this context, for maximum efficiency, k should be chosen as the multiple of m nearest to $n / 2$.

The matrix U is such that $U^{-1} A U^{-\mathrm{T}}$ is diagonal in its last $n-k$ rows and columns, L is such that $L^{-1} U^{-1} A U^{-\mathrm{T}} L^{-\mathrm{T}}=D$ and D is diagonal. To find U, L and D where $A=U L D L^{\mathrm{T}} U^{\mathrm{T}}$ requires $n m(m+3) / 2-m(m+1)(m+2) / 3$ multiplications and divisions which, is independent of k.

9 Example

This example finds a $U L D L^{\mathrm{T}} U^{\mathrm{T}}$ decomposition of the real symmetric positive definite matrix

$$
\left(\begin{array}{rrrrrrr}
3 & -9 & 6 & & & & \\
-9 & 31 & -2 & -4 & & & \\
6 & -2 & 123 & -66 & 15 & & \\
& -4 & -66 & 145 & -24 & 4 & \\
& & 15 & -24 & 61 & -74 & -18 \\
& & & 4 & -74 & 98 & 24 \\
& & & & -18 & 24 & 6
\end{array}\right)
$$

9.1 Program Text

```
    function fO1bu_example
fprintf('f01bu example results\n\n');
% A Banded matrix A in banded storage format
m1 = nag_int(3); n = nag_int(7);
a = [0, 0, 6, -4, 15, 4, -18;
    0, -9, -2, -66, -24, -74, 24;
    3, 31, 123, 145, 61, 98, 6];
k = nag_int(4);
[a, ifail] = f01bu(k, a);
ptitle = 'Factorized form of the matrix';
[ifail] = x04ce( ...
                        n, n, nag_int(0), m1-1, a, ptitle);
```


9.2 Program Results

```
        fOlbu example results
Factorized form of the matrix
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & 3.0000 & -3.0000 & 2.0000 & & & & \\
\hline 2 & & 4.0000 & 4.0000 & -1.0000 & & & \\
\hline
\end{tabular}
```

3	2.0000	5.0000	3.0000		
4		3.0000	-4.0000	2.0000	
5			5.0000	-1.0000	-3.0000
6				2.0000	4.0000
7					6.0000

