NAG Toolbox

nag_matop_real_symm_posdef_fac (f01bu)

1 Purpose

nag_matop_real_symm_posdef_fac (f01bu) performs a $ULDL^{T}U^{T}$ decomposition of a real symmetric positive definite band matrix.

2 Syntax

```
[a, ifail] = nag_matop_real_symm_posdef_fac(k, a, 'n', n, 'ml', m1)
[a, ifail] = f0lbu(k, a, 'n', n, 'ml', m1)
```

Note: the interface to this routine has changed since earlier releases of the toolbox:

At Mark 22: m1 was made optional.

3 Description

The symmetric positive definite matrix A, of order n and bandwidth 2m + 1, is divided into the leading principal sub-matrix of order k and its complement, where $m \le k \le n$. A UDU^{T} decomposition of the latter and an LDL^{T} decomposition of the former are obtained by means of a sequence of elementary transformations, where U is unit upper triangular, L is unit lower triangular and D is diagonal. Thus if k = n, an LDL^{T} decomposition of A is obtained.

This function is specifically designed to precede nag_matop_real_symm_posdef_geneig (f01bv) for the transformation of the symmetric-definite eigenproblem $Ax = \lambda Bx$ by the method of Crawford where A and B are of band form. In this context, k is chosen to be close to n/2 and the decomposition is applied to the matrix B.

4 References

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-Verlag

5 Parameters

5.1 Compulsory Input Parameters

1: **k** – INTEGER

k, the change-over point in the decomposition.

Constraint: $m1 - 1 \le k \le n$.

2: $\mathbf{a}(lda, \mathbf{n}) - \text{REAL} \text{ (KIND=nag_wp) array}$

lda, the first dimension of the array, must satisfy the constraint $lda \ge m1$.

The upper triangle of the n by n symmetric band matrix A, with the diagonal of the matrix stored in the (m + 1)th row of the array, and the m superdiagonals within the band stored in the first mrows of the array. Each column of the matrix is stored in the corresponding column of the array. For example, if n = 6 and m = 2, the storage scheme is

*	*	a_{13}	a_{24}	a_{35}	a_{46}
*	a_{12}	a_{23}	a_{34}	a_{45}	a_{56}
a_{11}	a_{22}	a_{33}	a_{44}	a_{55}	a_{66}

Elements in the top left corner of the array are not used. The following code assigns the matrix elements within the band to the correct elements of the array:

```
for j=1:n
    for i=max(1,j-m1+1):j
        a(i-j+m1,j) = matrix (i,j);
        end
    end
```

5.2 Optional Input Parameters

1: **n** – INTEGER

Default: the second dimension of the array **a**.

n, the order of the matrix A.

2: m1 - INTEGER

Default: the first dimension of the array **a**.

m+1, where m is the number of nonzero superdiagonals in A. Normally $m1 \ll n$.

5.3 Output Parameters

- a(lda, n) REAL (KIND=nag_wp) array
 A stores the corresponding elements of L, D and U.
- 2: **ifail** INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

On entry, $\mathbf{k} < \mathbf{m1} - 1$ or $\mathbf{k} > \mathbf{n}$.

$\mathbf{ifail}=2$

 $\mathbf{ifail}=3$

The matrix A is not positive definite, perhaps as a result of rounding errors, giving an element of D which is zero or negative. **ifail** = 3 when the failure occurs in the leading principal sub-matrix of order **k** and **ifail** = 2 when it occurs in the complement.

```
ifail = -99
```

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

The Cholesky decomposition of a positive definite matrix is known for its remarkable numerical stability (see Wilkinson (1965)). The computed U, L and D satisfy the relation $ULDL^{T}U^{T} = A + E$ where the 2-norms of A and E are related by $||E|| \le c(m+1)^{2} \epsilon ||A||$ where c is a constant of order unity and ϵ is the *machine precision*. In practice, the error is usually appreciably smaller than this.

8 Further Comments

The time taken by nag_matop_real_symm_posdef_fac (f01bu) is approximately proportional to $nm^2 + 3nm$.

This function is specifically designed for use as the first stage in the solution of the generalized symmetric eigenproblem $Ax = \lambda Bx$ by Crawford's method which preserves band form in the transformation to a similar standard problem. In this context, for maximum efficiency, k should be chosen as the multiple of m nearest to n/2.

The matrix U is such that $U^{-1}AU^{-T}$ is diagonal in its last n-k rows and columns, L is such that $L^{-1}U^{-1}AU^{-T}L^{-T} = D$ and D is diagonal. To find U, L and D where $A = ULDL^{T}U^{T}$ requires nm(m+3)/2 - m(m+1)(m+2)/3 multiplications and divisions which, is independent of k.

9 Example

This example finds a $ULDL^{T}U^{T}$ decomposition of the real symmetric positive definite matrix

$$\begin{pmatrix} 3 & -9 & 6 \\ -9 & 31 & -2 & -4 \\ 6 & -2 & 123 & -66 & 15 \\ -4 & -66 & 145 & -24 & 4 \\ & 15 & -24 & 61 & -74 & -18 \\ & 4 & -74 & 98 & 24 \\ & & -18 & 24 & 6 \end{pmatrix}.$$

9.1 Program Text

function f01bu_example

```
fprintf('f01bu example results\n\n');
% A Banded matrix A in banded storage format
m1 = nag_int(3); n = nag_int(7);
a = [0, 0, 6, -4, 15, 4, -18;
0, -9, -2, -66, -24, -74, 24;
3, 31, 123, 145, 61, 98, 6];
k = nag_int(4);
[a, ifail] = f01bu(k, a);
ptitle = 'Factorized form of the matrix';
[ifail] = x04ce( ...
n, n, nag_int(0), m1-1, a, ptitle);
```

9.2 Program Results

f01bu example results

Facto	orized form	of the matr	ix				
	1	2	3	4	5	6	7
1	3.0000	-3.0000	2.0000				
2		4.0000	4.0000	-1.0000			

f01bu

NAG Toolbox for MATLAB Manual

3 4 5 6 7	2.0000	5.0000 3.0000	3.0000 -4.0000 5.0000	2.0000 -1.0000 2.0000	-3.0000 4.0000
7					6.0000