#### **NAG** Toolbox

# nag matop complex gen matrix log (f01fj)

#### 1 Purpose

nag\_matop\_complex\_gen\_matrix\_log (f01fj) computes the principal matrix logarithm, log(A), of a complex n by n matrix A, with no eigenvalues on the closed negative real line.

## 2 Syntax

```
[a, ifail] = nag_matop_complex_gen_matrix_log(a, 'n', n)
[a, ifail] = f01fj(a, 'n', n)
```

### 3 Description

Any nonsingular matrix A has infinitely many logarithms. For a matrix with no eigenvalues on the closed negative real line, the principal logarithm is the unique logarithm whose spectrum lies in the strip  $\{z: -\pi < \operatorname{Im}(z) < \pi\}$ . If A is nonsingular but has eigenvalues on the negative real line, the principal logarithm is not defined, but nag\_matop\_complex\_gen\_matrix\_log (f01fj) will return a non-principal logarithm.

log(A) is computed using the inverse scaling and squaring algorithm for the matrix logarithm described in Al–Mohy and Higham (2011).

#### 4 References

Al-Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix logarithm SIAM J. Sci. Comput. **34(4)** C152-C169

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

#### 5 Parameters

#### 5.1 Compulsory Input Parameters

1: **a**(lda,:) - COMPLEX (KIND=nag wp) array

The first dimension of the array a must be at least n.

The second dimension of the array  $\mathbf{a}$  must be at least  $\mathbf{n}$ .

The n by n matrix A.

#### 5.2 Optional Input Parameters

1:  $\mathbf{n} - INTEGER$ 

Default: the first dimension of the array a.

n, the order of the matrix A.

Constraint:  $\mathbf{n} \geq 0$ .

#### 5.3 Output Parameters

1:  $\mathbf{a}(lda,:)$  - COMPLEX (KIND=nag\_wp) array

The first dimension of the array  $\mathbf{a}$  will be  $\mathbf{n}$ .

Mark 25 f01fj.1

The second dimension of the array a will be n.

The n by n principal matrix logarithm,  $\log(A)$ , unless **ifail** = 2, in which case a non-principal logarithm is returned.

#### 2: **ifail** – INTEGER

**ifail** = 0 unless the function detects an error (see Section 5).

### 6 Error Indicators and Warnings

Errors or warnings detected by the function:

#### ifail = 1

A is singular so the logarithm cannot be computed.

```
ifail = 2 (warning)
```

A was found to have eigenvalues on the negative real line. The principal logarithm is not defined in this case, so a non-principal logarithm was returned.

```
ifail = 3 (warning)
```

 $\log{(A)}$  has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.

ifail = 4

An unexpected internal error has occurred. Please contact NAG.

ifail = -1

Constraint:  $\mathbf{n} \geq 0$ .

ifail = -3

Constraint:  $lda \geq \mathbf{n}$ .

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

**ifail** = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

#### 7 Accuracy

For a normal matrix A (for which  $A^{\rm H}A=AA^{\rm H}$ ), the Schur decomposition is diagonal and the algorithm reduces to evaluating the logarithm of the eigenvalues of A and then constructing  $\log{(A)}$  using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm. See Al-Mohy and Higham (2011) and Section 9.4 of Higham (2008) for details and further discussion.

The sensitivity of the computation of log(A) is worst when A has an eigenvalue of very small modulus or has a complex conjugate pair of eigenvalues lying close to the negative real axis.

If estimates of the condition number of the matrix logarithm are required then nag\_matop\_complex\_gen\_matrix\_cond\_log (f01kj) should be used.

f01fj.2 Mark 25

#### 8 Further Comments

The cost of the algorithm is  $O(n^3)$  floating-point operations (see Al-Mohy and Higham (2011)). The complex allocatable memory required is approximately  $3 \times n^2$ .

If the Fréchet derivative of the matrix logarithm is required then nag\_matop\_complex\_gen\_matrix\_frcht log (f01kk) should be used.

nag matop real gen matrix log (f01ej) can be used to find the principal logarithm of a real matrix.

## 9 Example

This example finds the principal matrix logarithm of the matrix

$$A = \begin{pmatrix} 1.0 + 2.0i & 0.0 + 1.0i & 1.0 + 0.0i & 3.0 + 2.0i \\ 0.0 + 3.0i & -2.0 + 0.0i & 0.0 + 0.0i & 1.0 + 0.0i \\ 1.0 + 0.0i & -2.0 + 0.0i & 3.0 + 2.0i & 0.0 + 3.0i \\ 2.0 + 0.0i & 0.0 + 1.0i & 0.0 + 1.0i & 2.0 + 3.0i \end{pmatrix}$$

#### 9.1 Program Text

### 9.2 Program Results

```
f01fj example results
```

Mark 25 f01fj.3 (last)