# NAG Toolbox nag_matop_complex_gen_matrix_log (f01fj) 

## 1 Purpose

nag_matop_complex_gen_matrix_log (f01fj) computes the principal matrix $\operatorname{logarithm,~} \log (A)$, of a complex $n$ by $n$ matrix $\bar{A}$, with $\overline{\text { no }}$ eigenvalues on the closed negative real line.

## 2 Syntax

```
[a, ifail] = nag_matop_complex_gen_matrix_log(a, 'n', n)
[a, ifail] = f01fj(a, 'n', n)
```


## 3 Description

Any nonsingular matrix $A$ has infinitely many logarithms. For a matrix with no eigenvalues on the closed negative real line, the principal logarithm is the unique logarithm whose spectrum lies in the strip $\{z:-\pi<\operatorname{Im}(z)<\pi\}$. If $A$ is nonsingular but has eigenvalues on the negative real line, the principal logarithm is not defined, but nag_matop_complex_gen_matrix_log (f01fj) will return a nonprincipal logarithm.
$\log (A)$ is computed using the inverse scaling and squaring algorithm for the matrix logarithm described in Al-Mohy and Higham (2011).

## 4 References

Al-Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix logarithm SIAM J. Sci. Comput. 34(4) C152-C169
Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

## 5 Parameters

### 5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}(l d a,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array a must be at least $\mathbf{n}$.
The second dimension of the array a must be at least $\mathbf{n}$.
The $n$ by $n$ matrix $A$.

### 5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the first dimension of the array a.
$n$, the order of the matrix $A$.
Constraint: $\mathbf{n} \geq 0$.

### 5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array $\mathbf{a}$ will be $\mathbf{n}$.

The second dimension of the array a will be $\mathbf{n}$.
The $n$ by $n$ principal matrix logarithm, $\log (A)$, unless ifail $=2$, in which case a non-principal logarithm is returned.

## 2: ifail - INTEGER

ifail $=0$ unless the function detects an error (see Section 5).

## 6 Error Indicators and Warnings

Errors or warnings detected by the function:
ifail $=1$
$A$ is singular so the logarithm cannot be computed.

## ifail $=2($ warning $)$

$A$ was found to have eigenvalues on the negative real line. The principal logarithm is not defined in this case, so a non-principal logarithm was returned.

## ifail $=3($ warning $)$

$\log (A)$ has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.

## ifail $=4$

An unexpected internal error has occurred. Please contact NAG.

## ifail $=-1$

Constraint: $\mathbf{n} \geq 0$.

$$
\mathbf{i f a i l}=-3
$$

Constraint: $l d a \geq \mathbf{n}$.

## ifail $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.
ifail $=-399$
Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

## 7 Accuracy

For a normal matrix $A$ (for which $A^{\mathrm{H}} A=A A^{\mathrm{H}}$ ), the Schur decomposition is diagonal and the algorithm reduces to evaluating the logarithm of the eigenvalues of $A$ and then constructing $\log (A)$ using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm. See Al-Mohy and Higham (2011) and Section 9.4 of Higham (2008) for details and further discussion.

The sensitivity of the computation of $\log (A)$ is worst when $A$ has an eigenvalue of very small modulus or has a complex conjugate pair of eigenvalues lying close to the negative real axis.
If estimates of the condition number of the matrix logarithm are required then nag_matop_complex_ gen_matrix_cond_log (f01kj) should be used.

## 8 Further Comments

The cost of the algorithm is $O\left(n^{3}\right)$ floating-point operations (see Al-Mohy and Higham (2011)). The complex allocatable memory required is approximately $3 \times n^{2}$.
If the Fréchet derivative of the matrix logarithm is required then nag_matop_complex_gen_matrix_ frcht_log (f01kk) should be used.
nag_matop_real_gen_matrix_log (f01ej) can be used to find the principal logarithm of a real matrix.

## 9 Example

This example finds the principal matrix logarithm of the matrix

$$
A=\left(\begin{array}{rrrr}
1.0+2.0 i & 0.0+1.0 i & 1.0+0.0 i & 3.0+2.0 i \\
0.0+3.0 i & -2.0+0.0 i & 0.0+0.0 i & 1.0+0.0 i \\
1.0+0.0 i & -2.0+0.0 i & 3.0+2.0 i & 0.0+3.0 i \\
2.0+0.0 i & 0.0+1.0 i & 0.0+1.0 i & 2.0+3.0 i
\end{array}\right)
$$

### 9.1 Program Text

function f01fj_example
fprintf('f01fj example results $\left.\backslash n \backslash n^{\prime}\right)$;
$a=[1.0+2.0 i, 0.0+1.0 i, 1.0+0.0 i, 3.0+2.0 i ;$ $0.0+3.0 i,-2.0+0.0 i, \quad 0.0+0.0 i, 1.0+0.0 i ;$ 1.0+0.0i, -2.0+0.0i, 3.0+2.0i, 0.0+3.0i; 2.0+0.0i, 0.0+1.0i, 0.0+1.0i, 2.0+3.0i];
\% Compute log(a)
[loga, ifail] = f01fj(a);
disp('f(A) $\left.=\log (A)^{\prime}\right)$;
disp(loga);

### 9.2 Program Results

```
        fOlfj example results
f(A)}=\operatorname{log}(A
    1.0390 + 1.1672i 0.2859 + 0.3998i 0.0516-0.2562i 0.7586 - 0.4678i
    -2.7481 + 2.6187i 1.1898-2.2287i 0.1369-0.9128i 2.1771 - 1.0118i
    -0.8514 + 0.3927i -0.2517 - 0.4791i 1.3839 + 0.2129i 1.1920 + 0.4240i
    1.1970-0.1242i -0.6813 + 0.3969i 0.0051 + 0.3511i 0.7867 + 0.7502i
```

