NAG Toolbox

nag_matop_real_gen_matrix_cond_pow (f01je)

1 Purpose

nag_matop_real_gen_matrix_cond_pow (f01je) computes an estimate of the relative condition number κ_{A^p} of the pth power (where p is real) of a real n by n matrix A, in the 1-norm. The principal matrix power A^p is also returned.

2 Syntax

```
[a, condpa, ifail] = nag_matop_real_gen_matrix_cond_pow(a, p, 'n', n)
[a, condpa, ifail] = f01je(a, p, 'n', n)
```

3 Description

For a matrix A with no eigenvalues on the closed negative real line, A^p $(p \in \mathbb{R})$ can be defined as

$$A^p = \exp(p\log(A))$$

where $\log(A)$ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip $\{z: -\pi < \operatorname{Im}(z) < \pi\}$).

The Fréchet derivative of the matrix pth power of A is the unique linear mapping $E \mapsto L(A, E)$ such that for any matrix E

$$(A+E)^p - A^p - L(A, E) = o(||E||).$$

The derivative describes the first-order effect of perturbations in A on the matrix power A^p .

The relative condition number of the matrix pth power can be defined by

$$\kappa_{A^p} = \frac{\|L(A)\| \|A\|}{\|A^p\|},$$

where ||L(A)|| is the norm of the Fréchet derivative of the matrix power at A.

nag_matop_real_gen_matrix_cond_pow (f01je) uses the algorithms of Higham and Lin (2011) and Higham and Lin (2013) to compute κ_{A^p} and A^p . The real number p is expressed as p=q+r where $q \in (-1,1)$ and $r \in \mathbb{Z}$. Then $A^p = A^q A^r$. The integer power A^r is found using a combination of binary powering and, if necessary, matrix inversion. The fractional power A^q is computed using a Schur decomposition, a Padé approximant and the scaling and squaring method.

To obtain an estimate of κ_{A^p} , nag_matop_real_gen_matrix_cond_pow (f01je) first estimates $\|L(A)\|$ by computing an estimate γ of a quantity $K \in [n^{-1}\|L(A)\|_1, n\|L(A)\|_1]$, such that $\gamma \leq K$. This requires multiple Fréchet derivatives to be computed. Fréchet derivatives of A^q are obtained by differentiating the Padé approximant. Fréchet derivatives of A^p are then computed using a combination of the chain rule and the product rule for Fréchet derivatives.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

Higham N J and Lin L (2011) A Schur-Padé algorithm for fractional powers of a matrix SIAM J. Matrix Anal. Appl. 32(3) 1056-1078

Higham N J and Lin L (2013) An improved Schur-Padé algorithm for fractional powers of a matrix and their Fréchet derivatives *MIMS Eprint 2013.1* Manchester Institute for Mathematical Sciences, School of Mathematics, University of Manchester http://eprints.ma.man.ac.uk/

Mark 25 f01je.1

5 Parameters

5.1 Compulsory Input Parameters

1: **a**(lda,:) - REAL (KIND=nag_wp) array

The first dimension of the array a must be at least n.

The second dimension of the array a must be at least n.

The n by n matrix A.

2: $\mathbf{p} - \text{REAL} \text{ (KIND=nag wp)}$

The required power of A.

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the first dimension of the array \mathbf{a} and the second dimension of the array \mathbf{a} . (An error is raised if these dimensions are not equal.)

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\mathbf{a}(lda,:) - \text{REAL (KIND=nag_wp)}$ array

The first dimension of the array a will be n.

The second dimension of the array \mathbf{a} will be \mathbf{n} .

The n by n principal matrix pth power, A^p .

2: **condpa** – REAL (KIND=nag wp)

If **ifail** = 0 or 3, an estimate of the relative condition number of the matrix pth power, κ_{A^p} . Alternatively, if **ifail** = 4, the absolute condition number of the matrix pth power.

3: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

A has eigenvalues on the negative real line. The principal pth power is not defined in this case; nag_matop_complex_gen_matrix_cond_pow (f01ke) can be used to find a complex, non-principal pth power.

ifail = 2

A is singular so the pth power cannot be computed.

ifail = 3

 A^p has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.

f01je.2 Mark 25

ifail =4

The relative condition number is infinite. The absolute condition number was returned instead.

ifail = 5

An unexpected internal error occurred. This failure should not occur and suggests that the function has been called incorrectly.

ifail = -1

Constraint: $\mathbf{n} \geq 0$.

ifail = -3

Constraint: $lda \geq \mathbf{n}$.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

nag_matop_real_gen_matrix_cond_pow (f01je) uses the norm estimation function nag_linsys_real_gen_norm_rcomm (f04yd) to produce an estimate γ of a quantity $K \in \left[n^{-1}\|L(A)\|_1, n\|L(A)\|_1\right]$, such that $\gamma \leq K$. For further details on the accuracy of norm estimation, see the documentation for nag_linsys_real_gen_norm_rcomm (f04yd).

For a normal matrix A (for which $A^{T}A = AA^{T}$), the Schur decomposition is diagonal and the computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues of A and then constructing A^{p} using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm. See Higham and Lin (2011) and Higham and Lin (2013) for details and further discussion.

8 Further Comments

The amount of real allocatable memory required by the algorithm is typically of the order $10 \times n^2$.

The cost of the algorithm is $O(n^3)$ floating-point operations; see Higham and Lin (2013).

If the matrix pth power alone is required, without an estimate of the condition number, then nag_matop_real_gen_matrix_pow (f01eq) should be used. If the Fréchet derivative of the matrix power is required then nag_matop_real_gen_matrix_frcht_pow (f01jf) should be used. If A has negative real eigenvalues then nag_matop_complex_gen_matrix_cond_pow (f01ke) can be used to return a complex, non-principal pth power and its condition number.

9 Example

This example estimates the relative condition number of the matrix power A^p , where p=0.2 and

$$A = \begin{pmatrix} 3 & 3 & 2 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 4 & 4 & 2 \\ 3 & 1 & 3 & 1 \end{pmatrix}.$$

Mark 25 f01je.3

9.1 Program Text

9.2 Program Results

```
f01je example results
A^p:
1.2368 0.1977 0.1749
```

1.2368 0.1977 0.1749 -0.0314 -0.0543 1.1643 -0.0947 0.3145 0.0537 0.3514 1.3254 0.0214 0.3339 -0.2125 0.1880 1.0581

Estimated relative condition number is: 2.75

f01je.4 (last) Mark 25