NAG Toolbox
 nag_matop_real_gen_matrix_cond_pow (f01je)

1 Purpose

nag_matop_real_gen_matrix_cond_pow (f01je) computes an estimate of the relative condition number $\kappa_{A^{p}}$ of the p th power (where p is real) of a real n by n matrix A, in the 1 -norm. The principal matrix power A^{p} is also returned.

2 Syntax

```
[a, condpa, ifail] = nag_matop_real_gen_matrix_cond_pow(a, p, 'n', n)
[a, condpa, ifail] = f01je(a, p, 'n', n)
```


3 Description

For a matrix A with no eigenvalues on the closed negative real line, $A^{p}(p \in \mathbb{R})$ can be defined as

$$
A^{p}=\exp (p \log (A))
$$

where $\log (A)$ is the principal logarithm of A (the unique logarithm whose spectrum lies in the strip $\{z:-\pi<\operatorname{Im}(z)<\pi\})$.
The Fréchet derivative of the matrix p th power of A is the unique linear mapping $E \mapsto L(A, E)$ such that for any matrix E

$$
(A+E)^{p}-A^{p}-L(A, E)=o(\|E\|)
$$

The derivative describes the first-order effect of perturbations in A on the matrix power A^{p}.
The relative condition number of the matrix p th power can be defined by

$$
\kappa_{A^{p}}=\frac{\|L(A)\|\|A\|}{\left\|A^{p}\right\|}
$$

where $\|L(A)\|$ is the norm of the Fréchet derivative of the matrix power at A.
nag_matop_real_gen_matrix_cond_pow (f01je) uses the algorithms of Higham and Lin (2011) and Higham and Lin (2013) to compute $\kappa_{A^{p}}$ and A^{p}. The real number p is expressed as $p=q+r$ where $q \in(-1,1)$ and $r \in \mathbb{Z}$. Then $A^{p}=A^{q} A^{r}$. The integer power A^{r} is found using a combination of binary powering and, if necessary, matrix inversion. The fractional power A^{q} is computed using a Schur decomposition, a Padé approximant and the scaling and squaring method.
To obtain an estimate of $\kappa_{A^{p}}$, nag_matop_real_gen_matrix_cond_pow (f01je) first estimates $\|L(A)\|$ by computing an estimate γ of a quantity $\bar{K} \in\left[n^{-1}\|L(A)\|_{1}, n\|L(A)\|_{1}\right]$, such that $\gamma \leq K$. This requires multiple Fréchet derivatives to be computed. Fréchet derivatives of A^{q} are obtained by differentiating the Padé approximant. Fréchet derivatives of A^{p} are then computed using a combination of the chain rule and the product rule for Fréchet derivatives.

4 References

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA
Higham N J and Lin L (2011) A Schur-Padé algorithm for fractional powers of a matrix SIAM J. Matrix Anal. Appl. 32(3) 1056-1078

Higham N J and Lin L (2013) An improved Schur-Padé algorithm for fractional powers of a matrix and their Fréchet derivatives MIMS Eprint 2013.1 Manchester Institute for Mathematical Sciences, School of Mathematics, University of Manchester http://eprints.ma.man.ac.uk/

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}(l d a,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array a must be at least \mathbf{n}.
The second dimension of the array a must be at least \mathbf{n}.
The n by n matrix A.
2: $\quad \mathbf{p}-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp)
The required power of A.

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the first dimension of the array a and the second dimension of the array a. (An error is raised if these dimensions are not equal.)
n, the order of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array a will be \mathbf{n}.
The second dimension of the array a will be \mathbf{n}.
The n by n principal matrix p th power, A^{p}.

2: condpa - REAL (KIND=nag_wp)
If ifail $=0$ or 3 , an estimate of the relative condition number of the matrix p th power, $\kappa_{A^{p}}$. Alternatively, if ifail $=4$, the absolute condition number of the matrix p th power.

3: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail $=1$

A has eigenvalues on the negative real line. The principal p th power is not defined in this case; nag_matop_complex_gen_matrix_cond_pow (f01ke) can be used to find a complex, non-principal p th power.
ifail $=2$
A is singular so the p th power cannot be computed.
ifail $=3$
A^{p} has been computed using an IEEE double precision Pade approximant, although the arithmetic precision is higher than IEEE double precision.
ifail $=4$
The relative condition number is infinite. The absolute condition number was returned instead.

```
ifail =5
```

An unexpected internal error occurred. This failure should not occur and suggests that the function has been called incorrectly.

$$
\text { ifail }=-1
$$

Constraint: $\mathbf{n} \geq 0$.

$$
\text { ifail }=-3
$$

Constraint: $l d a \geq \mathbf{n}$.

ifail $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

nag_matop_real_gen_matrix_cond_pow (f01je) uses the norm estimation function nag_linsys_real_ gen_norm_rcomm (f04yd) to produce an estimate γ of a quantity $K \in\left[n^{-1}\|L(A)\|_{1}, n\|L(A)\|_{1}\right]$, such that $\gamma \leq \bar{K}$. For further details on the accuracy of norm estimation, see the documentation for nag_linsys_real_gen_norm_rcomm (f04yd).

For a normal matrix A (for which $A^{\mathrm{T}} A=A A^{\mathrm{T}}$), the Schur decomposition is diagonal and the computation of the fractional part of the matrix power reduces to evaluating powers of the eigenvalues of A and then constructing A^{p} using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm. See Higham and Lin (2011) and Higham and Lin (2013) for details and further discussion.

8 Further Comments

The amount of real allocatable memory required by the algorithm is typically of the order $10 \times n^{2}$.
The cost of the algorithm is $O\left(n^{3}\right)$ floating-point operations; see Higham and Lin (2013).
If the matrix p th power alone is required, without an estimate of the condition number, then nag_matop_real_gen_matrix_pow (f01eq) should be used. If the Fréchet derivative of the matrix power is required then nag_matop_real_gen_matrix_frcht_pow (f01jf) should be used. If A has negative real eigenvalues then nag_matop_complex_gen_matrix_cond_pow (f01ke) can be used to return a complex, non-principal p th power and its condition number.

9 Example

This example estimates the relative condition number of the matrix power A^{p}, where $p=0.2$ and

$$
A=\left(\begin{array}{llll}
3 & 3 & 2 & 1 \\
1 & 1 & 0 & 2 \\
1 & 4 & 4 & 2 \\
3 & 1 & 3 & 1
\end{array}\right)
$$

9.1 Program Text

```
    function fOlje_example
fprintf('f01je example results\n\n');
% Principal power p of matrix A and relative condition number.
a = [ 3 3 2 1;
        1 1 0 2;
    14 4 2;
    3 1 3 1];
p = 0.2;
[pa, condpa, ifail] = f01je(a,p);
disp('A^p:');
disp(pa);
fprintf('\nEstimated relative condition number is : %6.2f\n', condpa);
```


9.2 Program Results

```
    f01je example results
```

$A^{\wedge} p$:
$\begin{array}{llll}1.2368 & 0.1977 & 0.1749 & -0.0314\end{array}$
$\begin{array}{llll}-0.0543 & 1.1643 & -0.0947 & 0.3145\end{array}$
$\begin{array}{llll}0.0537 & 0.3514 & 1.3254 & 0.0214\end{array}$
$\begin{array}{llll}0.3339 & -0.2125 & 0.1880 & 1.0581\end{array}$
Estimated relative condition number is : 2.75

