NAG Toolbox

nag matop complex gen matrix frcht log (f01kk)

1 Purpose

nag_matop_complex_gen_matrix_frcht_log (f01kk) computes the Fréchet derivative L(A, E) of the matrix logarithm of the complex n by n matrix A applied to the complex n by n matrix E. The principal matrix logarithm $\log{(A)}$ is also returned.

2 Syntax

```
[a, e, ifail] = nag_matop_complex_gen_matrix_frcht_log(a, e, 'n', n)
[a, e, ifail] = f01kk(a, e, 'n', n)
```

3 Description

For a matrix with no eigenvalues on the closed negative real line, the principal matrix logarithm $\log{(A)}$ is the unique logarithm whose spectrum lies in the strip $\{z: -\pi < \operatorname{Im}{(z)} < \pi\}$.

The Fréchet derivative of the matrix logarithm of A is the unique linear mapping $E \mapsto L(A, E)$ such that for any matrix E

$$\log (A + E) - \log (A) - L (A, E) = o(||E||).$$

The derivative describes the first order effect of perturbations in A on the logarithm $\log(A)$.

nag_matop_complex_gen_matrix_frcht_log (f01kk) uses the algorithm of Al-Mohy $et\ al.$ (2012) to compute $\log{(A)}$ and L(A,E). The principal matrix logarithm $\log{(A)}$ is computed using a Schur decomposition, a Padé approximant and the inverse scaling and squaring method. The Padé approximant is then differentiated in order to obtain the Fréchet derivative L(A,E). If A is nonsingular but has negative real eigenvalues, the principal logarithm is not defined, but nag_matop_complex_gen_matrix_frcht_log (f01kk) will return a non-principal logarithm and Fréchet derivative.

4 References

Al-Mohy A H and Higham N J (2011) Improved inverse scaling and squaring algorithms for the matrix logarithm SIAM J. Sci. Comput. **34(4)** C152-C169

Al-Mohy A H, Higham N J and Relton S D (2012) Computing the Fréchet derivative of the matrix logarithm and estimating the condition number MIMS EPrint 2012.72

Higham N J (2008) Functions of Matrices: Theory and Computation SIAM, Philadelphia, PA, USA

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{a}(lda,:)$ - COMPLEX (KIND=nag wp) array

The first dimension of the array a must be at least n.

The second dimension of the array \mathbf{a} must be at least \mathbf{n} .

The n by n matrix A.

2: $\mathbf{e}(lde,:)$ - COMPLEX (KIND=nag wp) array

The first dimension of the array e must be at least n.

Mark 25 f01kk.1

The second dimension of the array e must be at least n.

The n by n matrix E

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the first dimension of the arrays **a**, **e** and the second dimension of the arrays **a**, **e**. (An error is raised if these dimensions are not equal.)

n, the order of the matrix A.

Constraint: $\mathbf{n} > 0$.

5.3 Output Parameters

1: **a**(lda,:) - COMPLEX (KIND=nag wp) array

The first dimension of the array \boldsymbol{a} will be \boldsymbol{n} .

The second dimension of the array \mathbf{a} will be \mathbf{n} .

The n by n principal matrix logarithm, $\log(A)$. Alterntively, if **ifail** = 2, a non-principal logarithm is returned.

2: **e**(*lde*,:) – COMPLEX (KIND=nag_wp) array

The first dimension of the array e will be n.

The second dimension of the array e will be n.

With **ifail** = 0, 2 or 3, the Fréchet derivative L(A, E)

3: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

A is singular so the logarithm cannot be computed.

ifail = 2

A has eigenvalues on the negative real line. The principal logarithm is not defined in this case, so a non-principal logarithm was returned.

ifail = 3

 $\log{(A)}$ has been computed using an IEEE double precision Padé approximant, although the arithmetic precision is higher than IEEE double precision.

ifail = 4

An unexpected internal error occurred. This failure should not occur and suggests that the function has been called incorrectly.

ifail = -1

Constraint: $\mathbf{n} \geq 0$.

f01kk.2 Mark 25

ifail = -3

Constraint: $lda \ge \mathbf{n}$.

ifail = -5

Constraint: $lde \geq \mathbf{n}$.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

For a normal matrix A (for which $A^{\rm H}A=AA^{\rm H}$), the Schur decomposition is diagonal and the computation of the matrix logarithm reduces to evaluating the logarithm of the eigenvalues of A and then constructing $\log{(A)}$ using the Schur vectors. This should give a very accurate result. In general, however, no error bounds are available for the algorithm. The sensitivity of the computation of $\log{(A)}$ and L(A,E) is worst when A has an eigenvalue of very small modulus or has a complex conjugate pair of eigenvalues lying close to the negative real axis. See Al-Mohy and Higham (2011), Al-Mohy $et\ al.$ (2012) and Section 11.2 of Higham (2008) for details and further discussion.

8 Further Comments

The cost of the algorithm is $O(n^3)$ floating-point operations. The complex allocatable memory required is approximately $5n^2$; see Al-Mohy *et al.* (2012) for further details.

If the matrix logarithm alone is required, without the Fréchet derivative, then nag_matop_complex_gen_matrix_log (f01fj) should be used. If the condition number of the matrix logarithm is required then nag_matop_complex_gen_matrix_cond_log (f01kj) should be used. The real analogue of this function is nag_matop_real_gen_matrix_frcht_log (f01jk).

9 Example

This example finds the principal matrix logarithm log(A) and the Fréchet derivative L(A, E), where

$$A = \begin{pmatrix} 1+4i & 3i & i & 2\\ 2i & 3 & 1 & 1+i\\ i & 2+i & 2 & i\\ 1+2i & 3+2i & 1+2i & 3+i \end{pmatrix} \quad \text{and} \quad E = \begin{pmatrix} 1 & 1+2i & 2 & 2+i\\ 1+3i & i & 1 & 0\\ 2i & 4+i & 1 & 1\\ 1 & 2+2i & 3i & 1 \end{pmatrix}.$$

9.1 Program Text

function f01kk_example

fprintf('f01kk example results $\n\n'$);

% Logarithm of matrix A and Frechet derivative of log(A)E.

Mark 25

9.2 Program Results

f01kk example results

log(<i>I</i>				
1	1 1.4188 1.2438	2 0.2758 1.0040	3 -0.2240 0.0826	4 0.4528 -0.5887
2	0.2299 0.4825	1.0702 -0.3306	0.5292 -0.0422	0.1976 0.1532
3	0.1328 -0.0462	0.9235 0.3060	0.6051 -0.0973	-0.1211 0.2966
4	0.4704 -0.0891	1.0779 0.0538	0.2724 0.7627	0.9612 0.2680
L_log(A,E):				
L_log	g(A,E):			
L_log	g(A,E): 1 0.1620 -0.6532	2 -0.0593 0.8434	3 -0.1543 -1.3537	4 0.5534 0.0869
	1 0.1620	-0.0593	-0.1543	0.5534
1	1 0.1620 -0.6532 0.6673	-0.0593 0.8434 0.0637	-0.1543 -1.3537 0.3421	0.5534 0.0869 -0.4639

f01kk.4 (last) Mark 25