NAG Toolbox

nag_eigen_real_symm_sparse_eigsys (f02fj)

1 Purpose

nag_eigen_real_symm_sparse_eigsys (f02fj) finds eigenvalues and eigenvectors of a real sparse symmetric or generalized symmetric eigenvalue problem.

2 Syntax

```
[m, noits, x, d, user, ifail] = nag_eigen_real_symm_sparse_eigsys(m, noits, tol,
dot, image, monit, novecs, x, 'n', n, 'k', k, 'user', user)
[m, noits, x, d, user, ifail] = f02fj(m, noits, tol, dot, image, monit, novecs,
x, 'n', n, 'k', k, 'user', user)
```

Note: the interface to this routine has changed since earlier releases of the toolbox:

At Mark 22: n was made optional.

3 Description

nag_eigen_real_symm_sparse_eigsys (f02fj) finds the m eigenvalues of largest absolute value and the corresponding eigenvectors for the real eigenvalue problem

$$Cx = \lambda x \tag{1}$$

where C is an n by n matrix such that

$$BC = C^{\mathsf{T}}B \tag{2}$$

for a given positive definite matrix B. C is said to be B-symmetric. Different specifications of C allow for the solution of a variety of eigenvalue problems. For example, when

$$C = A$$
 and $B = I$ where $A = A^{T}$

the function finds the m eigenvalues of largest absolute magnitude for the standard symmetric eigenvalue problem

$$Ax = \lambda x. \tag{3}$$

The function is intended for the case where A is sparse.

As a second example, when

$$C = B^{-1}A$$

where

$$A = A^{\mathrm{T}}$$

the function finds the m eigenvalues of largest absolute magnitude for the generalized symmetric eigenvalue problem

$$Ax = \lambda Bx. \tag{4}$$

The function is intended for the case where A and B are sparse.

The function does not require C explicitly, but C is specified via **image** which, given an n-element vector z, computes the image w given by

$$w = Cz$$
.

For instance, in the above example, where $C = B^{-1}A$, **image** will need to solve the positive definite system of equations Bw = Az for w.

To find the m eigenvalues of smallest absolute magnitude of (3) we can choose $C=A^{-1}$ and hence find the reciprocals of the required eigenvalues, so that **image** will need to solve Aw=z for w, and correspondingly for (4) we can choose $C=A^{-1}B$ and solve Aw=Bz for w.

A table of examples of choice of **image** is given in Table 1. It should be remembered that the function also returns the corresponding eigenvectors and that B is positive definite. Throughout A is assumed to be symmetric and, where necessary, nonsingularity is also assumed.

Eigenvalues Required	Problem		
	$Ax = \lambda x (B = I)$	$Ax = \lambda Bx$	$ABx = \lambda x$
Largest	Compute $w = Az$	Solve $Bw = Az$	Compute $w = ABz$
Smallest (Find $1/\lambda$)	Solve $Aw = z$	Solve $Aw = Bz$	Solve $Av = z$, $Bw = v$
Furthest from σ (Find $\lambda - \sigma$)	Compute $w = (A - \sigma I)z$	Solve $Bw = (A - \sigma B)z$	Compute $w = (AB - \sigma I)z$
Closest to σ (Find $1/(\lambda - \sigma)$)	Solve $(A - \sigma I)w = z$	Solve $(A - \sigma B)w = Bz$	Solve $(AB - \sigma I)w = z$

Table 1
The Requirement of image for Various Problems.

The matrix B also need not be supplied explicitly, but is specified via **dot** which, given n-element vectors z and w, computes the generalized dot product w^TBz .

nag_eigen_real_symm_sparse_eigsys (f02fj) is based upon routine SIMITZ (see Nikolai (1979)), which is itself a derivative of the Algol procedure ritzit (see Rutishauser (1970)), and uses the method of simultaneous (subspace) iteration. (See Parlett (1998) for a description, analysis and advice on the use of the method.)

The function performs simultaneous iteration on k>m vectors. Initial estimates to $p\leq k$ eigenvectors, corresponding to the p eigenvalues of C of largest absolute value, may be supplied to nag_eigen_real_symm_sparse_eigsys (f02fj). When possible k should be chosen so that the kth eigenvalue is not too close to the m required eigenvalues, but if k is initially chosen too small then nag_eigen_real_symm_sparse_eigsys (f02fj) may be re-entered, supplying approximations to the k eigenvectors found so far and with k then increased.

At each major iteration nag_eigen_real_symm_sparse_eigsys (f02fj) solves an r by r ($r \le k$) eigenvalue sub-problem in order to obtain an approximation to the eigenvalues for which convergence has not yet occurred. This approximation is refined by Chebyshev acceleration.

4 References

Nikolai P J (1979) Algorithm 538: Eigenvectors and eigenvalues of real generalized symmetric matrices by simultaneous iteration *ACM Trans. Math. Software* **5** 118–125

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

Rutishauser H (1969) Computational aspects of F L Bauer's simultaneous iteration method *Numer*. *Math.* **13** 4–13

Rutishauser H (1970) Simultaneous iteration method for symmetric matrices Numer. Math. 16 205-223

f02fj.2 Mark 25

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{m} - \text{INTEGER}$

m, the number of eigenvalues required.

Constraint: $\mathbf{m} \geq 1$.

2: **noits** – INTEGER

The maximum number of major iterations (eigenvalue sub-problems) to be performed. If $noits \le 0$, the value 100 is used in place of **noits**.

3: **tol** – REAL (KIND=nag wp)

A relative tolerance to be used in accepting eigenvalues and eigenvectors. If the eigenvalues are required to about t significant figures, tol should be set to about 10^{-t} . d_i is accepted as an eigenvalue as soon as two successive approximations to d_i differ by less than $(|\tilde{d}_i| \times \text{tol})/10$, where \tilde{d}_i is the latest approximation to d_i . Once an eigenvalue has been accepted, an eigenvector is accepted as soon as $(d_i f_i)/(d_i - d_k) < \text{tol}$, where f_i is the normalized residual of the current approximation to the eigenvector (see Section 9 for further information). The values of the f_i and d_i can be printed from **monit**. If tol is supplied outside the range $(\epsilon, 1.0)$, where ϵ is the **machine precision**, the value ϵ is used in place of tol.

4: **dot** – REAL (KIND=nag wp) FUNCTION, supplied by the user.

dot must return the value w^TBz for given vectors w and z. For the standard eigenvalue problem, where B = I, **dot** must return the dot product w^Tz .

[result, iflag, user] = dot(iflag, n, z, w, user)

Input Parameters

1: **iflag** – INTEGER

Is always non-negative.

2: $\mathbf{n} - INTEGER$

The number of elements in the vectors z and w and the order of the matrix B.

3: $\mathbf{z}(\mathbf{n}) - \text{REAL (KIND=nag wp) array}$

The vector z for which $w^{T}Bz$ is required.

4: $\mathbf{w}(\mathbf{n}) - \text{REAL (KIND=nag_wp) array}$

The vector w for which w^TBz is required.

5: **user** – REAL (KIND=nag wp) array

dot is called from nag_eigen_real_symm_sparse_eigsys (f02fj) with the object supplied to nag eigen real symm sparse eigsys (f02fj).

Output Parameters

1: result

result returns the value $w^{T}Bz$ for given vectors w and z.

2: **iflag** – INTEGER

May be used as a flag to indicate a failure in the computation of w^TBz . If **iflag** is negative on exit from **dot**, nag_eigen_real_symm_sparse_eigsys (f02fj) will exit immediately with **ifail** set to **iflag**. Note that in this case **dot** must still be assigned a value.

- 3: **user** REAL (KIND=nag wp) array
- 5: **image** SUBROUTINE, supplied by the user.

image must return the vector w = Cz for a given vector z.

[iflag, w, user] = image(iflag, n, z, user)

Input Parameters

1: **iflag** – INTEGER

Is always non-negative.

2: **n** – INTEGER

n, the number of elements in the vectors w and z, and the order of the matrix C.

3: $\mathbf{z}(\mathbf{n}) - \text{REAL}$ (KIND=nag wp) array

The vector z for which Cz is required.

4: **user** – REAL (KIND=nag wp) array

image is called from nag_eigen_real_symm_sparse_eigsys (f02fj) with the object supplied to nag_eigen_real_symm_sparse_eigsys (f02fj).

Output Parameters

1: **iflag** – INTEGER

May be used as a flag to indicate a failure in the computation of w. If **iflag** is negative on exit from **image**, nag_eigen_real_symm_sparse_eigsys (f02fj) will exit immediately with **ifail** set to **iflag**.

2: $\mathbf{w}(\mathbf{n}) - \text{REAL (KIND=nag_wp)}$ array

The vector w = Cz.

- 3: **user** REAL (KIND=nag_wp) array
- 6: **monit** SUBROUTINE, supplied by the NAG Library or the user.

monit is used to monitor the progress of nag_eigen_real_symm_sparse_eigsys (f02fj). monit may be the dummy function nag_eigen_real_symm_sparse_eigsys_dummy_monit (f02fjz) if no monitoring is actually required. (nag_eigen_real_symm_sparse_eigsys_dummy_monit (f02fjz) is included in the NAG Toolbox.) monit is called after the solution of each eigenvalue sub-problem and also just prior to return from nag_eigen_real_symm_sparse_eigsys (f02fj). The arguments istate and nextit allow selective printing by monit.

f02fj.4 Mark 25

monit(istate, nextit, nevals, nevecs, k, f, d)

Input Parameters

1: **istate** – INTEGER

Specifies the state of nag_eigen_real_symm_sparse_eigsys (f02fj).

istate = 0

No eigenvalue or eigenvector has just been accepted.

istate = 1

One or more eigenvalues have been accepted since the last call to monit.

istate = 2

One or more eigenvectors have been accepted since the last call to monit.

istate = 3

One or more eigenvalues and eigenvectors have been accepted since the last call to **monit**.

istate = 4

Return from nag eigen real symm sparse eigsys (f02fj) is about to occur.

2: **nextit** – INTEGER

The number of the next iteration.

3: **nevals** – INTEGER

The number of eigenvalues accepted so far.

4: **nevecs** – INTEGER

The number of eigenvectors accepted so far.

5: **k** – INTEGER

k, the number of simultaneous iteration vectors.

6: f(k) - REAL (KIND=nag wp) array

A vector of error quantities measuring the state of convergence of the simultaneous iteration vectors. See **tol** and Section 9 for further details. Each element of \mathbf{f} is initially set to the value 4.0 and an element remains at 4.0 until the corresponding vector is tested.

- 7: $\mathbf{d}(\mathbf{k}) \text{REAL (KIND=nag_wp)}$ array
 - $\mathbf{d}(i)$ contains the latest approximation to the absolute value of the ith eigenvalue of C.

7: **novecs** – INTEGER

The number of approximate vectors that are being supplied in \mathbf{x} . If **novecs** is outside the range $(0, \mathbf{k})$, the value 0 is used in place of **novecs**.

8: $\mathbf{x}(ldx, \mathbf{k}) - \text{REAL (KIND=nag wp) array}$

ldx, the first dimension of the array, must satisfy the constraint $ldx \ge \mathbf{n}$.

If $0 < \mathbf{novecs} \le \mathbf{k}$, the first **novecs** columns of \mathbf{x} must contain approximations to the eigenvectors corresponding to the **novecs** eigenvalues of largest absolute value of C. Supplying approximate eigenvectors can be useful when reasonable approximations are known, or when nag_eigen_real_symm_sparse_eigsys (f02fj) is being restarted with a larger value of \mathbf{k} . Otherwise it is not

necessary to supply approximate vectors, as simultaneous iteration vectors will be generated randomly by nag eigen real symm sparse eigsys (f02fj).

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the first dimension of the array \mathbf{x} .

n, the order of the matrix C.

Constraint: $\mathbf{n} > 1$.

2: $\mathbf{k} - INTEGER$

Suggested value: $\mathbf{k} = \mathbf{m} + 4$ will often be a reasonable choice in the absence of better information.

Default: $\mathbf{k} = \mathbf{m} + 4$

Default: the second dimension of the array x.

The number of simultaneous iteration vectors to be used. Too small a value of \mathbf{k} may inhibit convergence, while a larger value of \mathbf{k} incurs additional storage and additional work per iteration.

Constraint: $m < k \le n$.

3: **user** – REAL (KIND=nag wp) array

user is not used by nag_eigen_real_symm_sparse_eigsys (f02fj), but is passed to **dot** and **image**. Note that for large objects it may be more efficient to use a global variable which is accessible from the m-files than to use **user**.

5.3 Output Parameters

1: **m** – INTEGER

m', the number of eigenvalues actually found. It is equal to m if **ifail** = 0 on exit, and is less than m if **ifail** = 2, 3 or 4. See Section 6 and Section 9 for further information.

2: **noits** – INTEGER

The number of iterations actually performed.

3: $\mathbf{x}(ldx, \mathbf{k}) - \text{REAL (KIND=nag wp) array}$

If **ifail** = 0, 2, 3 or 4, the first m' columns contain the eigenvectors corresponding to the eigenvalues returned in the first m' elements of \mathbf{d} ; and the next k-m'-1 columns contain approximations to the eigenvectors corresponding to the approximate eigenvalues returned in the next k-m'-1 elements of \mathbf{d} . Here m' is the value returned in \mathbf{m} , the number of eigenvalues actually found. The kth column is used as workspace.

4: $\mathbf{d}(\mathbf{k}) - \text{REAL (KIND=nag wp) array}$

If **ifail** = 0, 2, 3 or 4, the first m' elements contain the first m' eigenvalues in decreasing order of magnitude; and the next k-m'-1 elements contain approximations to the next k-m'-1 eigenvalues. Here m' is the value returned in \mathbf{m} , the number of eigenvalues actually found. $\mathbf{d}(k)$ contains the value e where (-e,e) is the latest interval over which Chebyshev acceleration is performed.

5: **user** – REAL (KIND=nag wp) array

6: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

f02fj.6 Mark 25

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail < 0 (warning)

A negative value of **ifail** indicates an exit from nag_eigen_real_symm_sparse_eigsys (f02fj) because you have set **iflag** negative in **dot** or **image**. The value of **ifail** will be the same as your setting of **iflag**.

ifail = 1

```
On entry, \mathbf{n} < 1,

or \mathbf{m} < 1,

or \mathbf{m} \ge \mathbf{k},

or \mathbf{k} > \mathbf{n},

or ldx < \mathbf{n},

or lwork < 3 \times \mathbf{k} + \max(\mathbf{k} \times \mathbf{k}, 2 \times \mathbf{n}),

or lruser < 1,

or liuser < 1.
```

ifail = 2 (warning)

Not all the requested eigenvalues and vectors have been obtained. Approximations to the rth eigenvalue are oscillating rapidly indicating that severe cancellation is occurring in the rth eigenvector and so \mathbf{m} is returned as (r-1). A restart with a larger value of \mathbf{k} may permit convergence.

```
ifail = 3 (warning)
```

Not all the requested eigenvalues and vectors have been obtained. The rate of convergence of the remaining eigenvectors suggests that more than **noits** iterations would be required and so the input value of \mathbf{m} has been reduced. A restart with a larger value of \mathbf{k} may permit convergence.

```
ifail = 4 (warning)
```

Not all the requested eigenvalues and vectors have been obtained. **noits** iterations have been performed. A restart, possibly with a larger value of \mathbf{k} , may permit convergence.

```
ifail = 5
```

This error is very unlikely to occur, but indicates that convergence of the eigenvalue sub-problem has not taken place. Restarting with a different set of approximate vectors may allow convergence. If this error occurs you should check carefully that nag_eigen_real_symm_sparse_eigsys (f02fj) is being called correctly.

```
ifail = -99
```

An unexpected error has been triggered by this routine. Please contact NAG.

```
ifail = -399
```

Your licence key may have expired or may not have been installed correctly.

```
ifail = -999
```

Dynamic memory allocation failed.

7 Accuracy

Eigenvalues and eigenvectors will normally be computed to the accuracy requested by the argument **tol**, but eigenvectors corresponding to small or to close eigenvalues may not always be computed to the accuracy requested by the argument **tol**. Use of the **monit** to monitor acceptance of eigenvalues and eigenvectors is recommended.

8 Further Comments

The time taken by nag_eigen_real_symm_sparse_eigsys (f02fj) will be principally determined by the time taken to solve the eigenvalue sub-problem and the time taken by **dot** and **image**. The time taken to solve an eigenvalue sub-problem is approximately proportional to nk^2 . It is important to be aware that several calls to **dot** and **image** may occur on each major iteration.

As can be seen from Table 1, many applications of nag_eigen_real_symm_sparse_eigsys (f02fj) will require the **image** to solve a system of linear equations. For example, to find the smallest eigenvalues of $Ax = \lambda Bx$, **image** needs to solve equations of the form Aw = Bz for w and functions from Chapters F01 and F04 will frequently be useful in this context. In particular, if A is a positive definite variable band matrix, nag_linsys_real_posdef_vband_solve (f04mc) may be used after A has been factorized by nag_matop_real_vband_posdef_fac (f01mc). Thus factorization need be performed only once prior to calling nag_eigen_real_symm_sparse_eigsys (f02fj). An illustration of this type of use is given in the example program.

An approximation \tilde{d}_h , to the *i*th eigenvalue, is accepted as soon as \tilde{d}_h and the previous approximation differ by less than $|\tilde{d}_h| \times \text{tol}/10$. Eigenvectors are accepted in groups corresponding to clusters of eigenvalues that are equal, or nearly equal, in absolute value and that have already been accepted. If d_r is the last eigenvalue in such a group and we define the residual r_i as

$$r_j = Cx_j - y_r$$

where y_r is the projection of Cx_j , with respect to B, onto the space spanned by x_1, x_2, \ldots, x_r , and x_j is the current approximation to the jth eigenvector, then the value f_i returned in **monit** is given by

$$f_i = \max \|r_i\|_B / \|Cx_i\|_B \quad \|x\|_B^2 = x^T B x$$

and each vector in the group is accepted as an eigenvector if

$$(|d_r|f_r)/(|d_r|-e) <$$
tol,

where e is the current approximation to $|\tilde{d}_k|$. The values of the f_i are systematically increased if the convergence criteria appear to be too strict. See Rutishauser (1970) for further details.

The algorithm implemented by nag_eigen_real_symm_sparse_eigsys (f02fj) differs slightly from SIMITZ (see Nikolai (1979)) in that the eigenvalue sub-problem is solved using the singular value decomposition of the upper triangular matrix R of the Gram-Schmidt factorization of Cx_r , rather than forming R^TR .

f02fj.8 Mark 25

9 Example

This example finds the four eigenvalues of smallest absolute value and corresponding eigenvectors for the generalized symmetric eigenvalue problem $Ax = \lambda Bx$, where A and B are the 16 by 16 matrices

tol is taken as 0.0001 and 6 iteration vectors are used. nag_sparse_real_symm_precon_ichol (f11ja) is used to factorize the matrix A, prior to calling nag_eigen_real_symm_sparse_eigsys (f02fj), and nag_sparse_real_symm_solve_ichol (f11jc) is used within image to solve the equations Aw = Bz for w.

Output from **monit** occurs each time **istate** is nonzero. Note that the required eigenvalues are the reciprocals of the eigenvalues returned by nag_eigen_real_symm_sparse_eigsys (f02fj).

9.1 Program Text

```
[m, noits, x, d, user, ifail] = ...
  f02fj(...
        m, noits, tol, @dot, @image, @monit, novecs, x, 'user', {a, b});
fprintf('\nFinal results\n\n');
disp('Eigenvalues');
disp(1./d(1:m)');
disp('Eigenvectors');
% Normalize eigenvectors before printing
disp(x(:,1:m)/diag(x(1,1:m)));
function [result, iflag, user] = dot(iflag, n, z, w, user)
 b = user{2};
  result=transpose(w)*b*z;
function [iflag, w, user] = image(iflag, n, z, user)
  a=user\{1\};
  b=user{2};
  w=inv(a)*b*z;
function monit(istate, nextit, nevals, nevecs, k, f, d)
  if (istate = 0)
    -File in istate = %d nextit = %d\n', istate, nextit
fprintf(' nevals = %d nevecs = %d\n', nevals, nevecs);
fprintf(' f d\n').
    fprintf(' n istate = %d nextit = %d n', istate, nextit);
    for i=1:double(k)
     fprintf('%11.3f %11.3f\n',f(i), d(i));
    end
  end
```

9.2 Program Results

```
f02fj example results
 istate = 3 nextit = 17
 nevals = 1 nevecs = 1
      f
                 d
                1.822
     0.000
     4.000
                 1.695
     4.000
                1.668
     4.000
                1.460
     4.000
                1.275
     4.000
                 1.132
 istate = 4 nextit = 30
 nevals = 4 nevecs = 4
     f
             d
     0.000
                 1.822
                1.695
     0.000
     0.000
                1.668
                1.460
     0.000
     4.000
                 1.275
                1.153
     4.000
Final results
Eigenvalues
   0.5488
             0.5900 0.5994
                               0.6850
Eigenvectors
           1.0000 1.0000
-0.8089 1.1274
   1.0000
                               1.0000
  -1.1586
                               -1.2368
          -0.7555 -1.0699
                               1.9252
   1.1682
          0.7444 -1.3512
  -1.1298
                               -1.3185
   1.6919
             1.4943
                     1.8266
                                0.8027
                    1.7928
  -1.8797 -1.2826
                               -0.4766
```

f02fj.10 Mark 25

1.8854	-1.2505	-1. 7589	1.4809
-1.7604	1.3538	-2.0148	-0.6525
1.7604	1.3538	2.0148	-0.6525
-1.8854	-1.2505	1.7589	1.4809
1.8797	-1.2826	-1.7928	-0.4766
-1.6919	1.4943	-1.8266	0.8027
1.1298	0.7444	1.3512	-1. 3185
-1.1682	-0.7555	1.0699	1.9252
1.1586	-0.8089	-1.1274	-1.2368
-1.0000	1.0000	-1.0000	1.0000

Mark 25 f02fj.11 (last)