NAG Toolbox
 nag_eigen_real_gen_qu_svd (f02wd)

1 Purpose

nag_eigen_real_gen_qu_svd (f02wd) returns the Householder $Q U$ factorization of a real rectangular m by $\bar{n}(m \geq n)$ matrix \bar{A}. Further, on request or if A is not of full rank, part or all of the singular value decomposition of A is returned.

Note: This function is scheduled to be withdrawn, please see f02wd in Advice on Replacement Calls for Withdrawn/Superseded Routines..

2 Syntax

```
[a, b, svd, irank, z, sv, r, pt, work, ifail] = nag_eigen_real_gen_qu_svd(a,
wantb, b, tol, svd, wantr, wantpt, lwork, 'm', m, 'n', n)
[a, b, svd, irank, z, sv, r, pt, work, ifail] = f02wd(a, wantb, b, tol, svd,
wantr, wantpt, lwork, 'm', m, 'n', n)
```


3 Description

The real m by $n(m \geq n)$ matrix A is first factorized as

$$
A=Q\binom{U}{0}
$$

where Q is an m by m orthogonal matrix and U is an n by n upper triangular matrix.
If either U is singular or svd is supplied as true, then the singular value decomposition (SVD) of U is obtained so that U is factorized as

$$
U=R D P^{\mathrm{T}}
$$

where R and P are n by n orthogonal matrices and D is the n by diagonal matrix

$$
D=\operatorname{diag}\left(s v_{1}, s v_{2}, \ldots, s v_{n}\right)
$$

with $s v_{1} \geq s v_{2} \geq \cdots \geq s v_{n} \geq 0$.
Note that the SVD of A is then given by

$$
A=Q_{1}\binom{D}{0} P^{\mathrm{T}} \quad \text { where } \quad Q_{1}=Q\left(\begin{array}{cc}
R & 0 \\
0 & I
\end{array}\right)
$$

the diagonal elements of D being the singular values of A.
The option to form a vector $Q^{\mathrm{T}} b$, or if appropriate $Q_{1}^{\mathrm{T}} b$, is also provided.
The rank of the matrix A, based upon a user-supplied argument tol, is also returned.
The $Q U$ factorization of A is obtained by Householder transformations. To obtain the SVD of U the matrix is first reduced to bidiagonal form by means of plane rotations and then the $Q R$ algorithm is used to obtain the SVD of the bidiagonal form.

4 References

Wilkinson J H (1978) Singular Value Decomposition - Basic Aspects Numerical Software - Needs and Availability (ed D A H Jacobs) Academic Press

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}(l d a, \mathbf{n})-$ REAL (KIND=nag_wp $)$ array
$l d a$, the first dimension of the array, must satisfy the constraint $l d a \geq \mathbf{m}$.
The leading m by n part of a must contain the matrix to be factorized.

2: wantb - LOGICAL
Must be true if $Q^{\mathrm{T}} b$ or $Q_{1}^{\mathrm{T}} b$ is required.
If on entry wantb $=$ false, \mathbf{b} is not referenced.
3: $\quad \mathbf{b}(\mathbf{m})-$ REAL (KIND=nag_wp) array
If wantb is supplied as true, \mathbf{b} must contain the m element vector b. Otherwise, \mathbf{b} is not referenced.

4: \quad tol - REAL (KIND=nag_wp)
Must specify a relative tolerance to be used to determine the rank of A. tol should be chosen as approximately the largest relative error in the elements of A. For example, if the elements of A are correct to about 4 significant figures, tol should be set to about 5×10^{-4}. See Section 9.3 for a description of how tol is used to determine rank.

If $\mathbf{t o l}$ is outside the range $(\epsilon, 1.0)$, where ϵ is the machine precision, the value ϵ is used in place of tol. For most problems this is unreasonably small.

5: svd - LOGICAL
Must be true if the singular values are to be found even if A is of full rank.
If before entry, svd $=$ false and A is determined to be of full rank, only the $Q U$ factorization of A is computed.

6: wantr - LOGICAL
Must be true if the orthogonal matrix R is required when the singular values are computed.
If on entry wantr $=$ false, \mathbf{r} is not referenced.

7: wantpt - LOGICAL
Must be true if the orthogonal matrix P^{T} is required when the singular values are computed.
Note that if $\mathbf{s v d}$ is returned as true, pt is referenced even if wantpt is supplied as false, but see argument $\mathbf{p t}$.

8: lwork - INTEGER
The dimension of the array work.
Constraint: $\mathbf{l w o r k} \geq 3 \times \mathbf{n}$.

5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the dimension of the array \mathbf{b} and the first dimension of the array \mathbf{a}. (An error is raised if these dimensions are not equal.)
m, the number of rows of the matrix A.
Constraint: $\mathbf{m} \geq \mathbf{n}$.

2: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array a.
n, the number of columns of the matrix A.
Constraint: $1 \leq \mathbf{n} \leq \mathbf{m}$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a, \mathbf{n})-$ REAL (KIND=nag_wp) array
The leading m by n part of \mathbf{a}, together with the n-element vector \mathbf{z}, contains details of the Householder $Q U$ factorization.

Details of the storage of the $Q U$ factorization are given in Section 9.4.

2: $\quad \mathbf{b}(\mathbf{m})-$ REAL (KIND=nag_wp) array
Contains $Q_{1}^{\mathrm{T}} b$ if svd is returned as true and $Q^{\mathrm{T}} b$ if svd is returned as false.
3: svd - LOGICAL
Is returned as false if only the $Q U$ factorization of A has been obtained and is returned as true if the singular values of A have been obtained.

4: irank - INTEGER
Returns the rank of the matrix A. (It should be noted that it is possible for irank to be returned as n and svd to be returned as true, even if svd was supplied as false. This means that the matrix U only just failed the test for nonsingularity.)

5: $\quad \mathbf{z}(\mathbf{n})-$ REAL (KIND=$=$ nag_wp $)$ array
The n-element vector \mathbf{z} contains some details of the Householder transformations. See Section 9.4 for further information.

6: $\quad \mathbf{s v}(\mathbf{n})-$ REAL (KIND=nag_wp) array
If svd is returned as true, $\mathbf{s v}$ contains the n singular values of A arranged in descending order.
7: $\quad \mathbf{r}(l d r, \mathbf{n})-$ REAL (KIND=nag_wp) array
The first dimension, $l d r$, of the array \mathbf{r} will be
if wantr $=t r u e, l d r=\mathbf{n}$;
otherwise $l d r=1$.
The second dimension of the array \mathbf{r} will be \mathbf{n} if wantr $=$ true and 1 otherwise.
If $\mathbf{s v d}$ is returned as true and wantr was supplied as true, the leading n by n part of \mathbf{r} will contain the left-hand orthogonal matrix of the svd of U.

8: $\quad \mathbf{p t}(l d p t, \mathbf{n})-$ REAL (KIND=nag_wp) array
If svd is returned as true and wantpt was supplied as true, the leading n by n part of pt contains the orthogonal matrix P^{T}.

If $\mathbf{s v d}$ is returned as true, but wantpt was supplied as false, the leading n by n part of $\mathbf{p t}$ is used for internal workspace.
work(lwork) - REAL (KIND=nag_wp) array
If svd is returned as false, work(1) contains the condition number $\|U\|_{E}\left\|U^{-1}\right\|_{E}$ of the upper triangular matrix U.

If svd is returned as true, work(1) will contain the total number of iterations taken by the $Q R$ algorithm.

The rest of the array is used as workspace and so contains no meaningful information.
ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:
ifail $=1$
On entry, $\mathbf{n}<1$,
or $\quad \mathbf{m}<\mathbf{n}$,
or $\quad l d a<\mathbf{m}$,
or $\quad l d r<\mathbf{n}$ when wantr $=t r u e$,
or $\quad l d p t<\mathbf{n}$
or \quad lwork $<3 \times \mathbf{n}$.
(The function only checks $l d r$ if wantr is supplied as true.)

ifail >1

The $Q R$ algorithm has failed to converge to the singular values in $50 \times \mathbf{n}$ iterations. In this case $\mathbf{s v}(1), \mathbf{s v}(2), \ldots, \mathbf{s v}($ ifail -1$)$ may not have been correctly found and the remaining singular values may not be the smallest singular values. The matrix A has nevertheless been factorized as $A=Q_{1} C P^{\mathrm{T}}$, where C is an upper bidiagonal matrix with $\mathbf{s v}(1), \mathbf{s v}(2), \ldots, \mathbf{s v}(n)$ as its diagonal elements and $\boldsymbol{w o r k}(2), \boldsymbol{w o r k}(3), \ldots, \boldsymbol{\operatorname { w o r k }}(n)$ as its superdiagonal elements.
This failure cannot occur if svd is returned as false and in any case is extremely rare.

ifail $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

ifail $=-999$

Dynamic memory allocation failed.

7 Accuracy

The computed factors Q, U, R, D and P^{T} satisfy the relations

$$
\begin{gathered}
Q\binom{U}{0}=A+E \\
Q\left(\begin{array}{ll}
R & 0 \\
0 & I
\end{array}\right)\binom{D}{0} P^{\mathrm{T}}=A+F
\end{gathered}
$$

where $\|E\|_{2} \leq c_{1} \epsilon\|A\|_{2},\|F\|_{2} \leq c_{2} \epsilon\|A\|_{2}$,
ϵ being the machine precision and c_{1} and c_{2} are modest functions of m and n. Note that $\|A\|_{2}=s v_{1}$.

8 Further Comments

8.1 Timing

The time taken by nag_eigen_real_gen_qu_svd (f02wd) to obtain the Householder $Q U$ factorization is approximately proportional to $n^{2}(3 m-n)$.

The additional time taken to obtain the singular value decomposition is approximately proportional to n^{3}, where the constant of proportionality depends upon whether or not the orthogonal matrices R and P^{T} are required.

8.2 General Remarks

Singular vectors associated with a zero or multiple singular value, are not uniquely determined, even in exact arithmetic, and very different results may be obtained if they are computed on different machines.
This function is called by the least squares function nag_linsys_real_gen_solve (f04jg).

8.3 Determining the Rank of \boldsymbol{A}

Following the $Q U$ factorization of A, if svd is supplied as false, then the condition number of U given by

$$
C(U)=\|U\|_{F}\left\|U^{-1}\right\|_{F}
$$

is found, where $\|\cdot\|_{F}$ denotes the Frobenius norm, and if $C(U)$ is such that

$$
C(U) \times \mathbf{t o l}>1.0
$$

then U is regarded as singular and the singular values of A are computed. If this test is not satisfied, then the rank of A is set to n. Note that if svd is supplied as true then this test is omitted.

When the singular values are computed, then the rank of A, r, is returned as the largest integer such that

$$
s v_{r}>\mathbf{t o l} \times s v_{1}
$$

unless $s v_{1}=0$ in which case r is returned as zero. That is, singular values which satisfy $s v_{i} \leq \mathbf{t o l} \times s v_{1}$ are regarded as negligible because relative perturbations of order tol can make such singular values zero.

8.4 Storage Details of the $\boldsymbol{Q U}$ Factorization

The k th Householder transformation matrix, T_{k}, used in the $Q U$ factorization is chosen to introduce the zeros into the k th column and has the form

$$
T_{k}=I-2\binom{0}{u}\left(\begin{array}{ll}
0 & u^{\mathrm{T}}
\end{array}\right), \quad u^{\mathrm{T}} u=1
$$

where u is an $(m-k+1)$ element vector.
In place of u the function actually computes the vector z given by

$$
z=2 u_{1} u
$$

The first element of z is stored in $\mathbf{z}(k)$ and the remaining elements of z are overwritten on the subdiagonal elements of the k th column of a. The upper triangular matrix U is overwritten on the n by n upper triangular part of a.

9 Example

This example obtains the rank and the singular value decomposition of the 6 by 4 matrix A given by

$$
A=\left(\begin{array}{rrrr}
22.25 & 31.75 & -38.25 & 65.50 \\
20.00 & 26.75 & 28.50 & -26.50 \\
-15.25 & 24.25 & 27.75 & 18.50 \\
27.25 & 10.00 & 3.00 & 2.00 \\
-17.25 & -30.75 & 11.25 & 7.50 \\
17.25 & 30.75 & -11.25 & -7.50
\end{array}\right)
$$

the value tol to be taken as 5×10^{-4}.

9.1 Program Text

```
    function f02wd_example
fprintf('f02wd example results\n\n');
a}=[22.25,31.75,-38.25, 65.5
        20.00, 26.75, 28.50,-26.5;
    -15.25, 24.25, 27.75, 18.5;
        27.25, 10.00, 3.00, 2.00;
    -17.25,-30.75, 11.25, 7.50;
        17.25, 30.75,-11.25,-7.50];
% Compute rank and SVD of A
wantb = false;
b = zeros(6,1);
tol = 0.0005;
svd = true;
wantr = true;
wantpt = true;
lwork = nag_int(24);
[a, b, svd, irank, z, sv, r, pt, work, ifail] = ...
f02wd( ...
            a, wantb, b, tol, svd, wantr, wantpt, lwork);
fprintf('Rank of A is %2d\n\n', irank);
disp('Details of QU factorization');
disp(a);
disp('Vector z');
disp(z');
disp('Matrix R');
disp(r);
disp('Singular values');
disp(sv');
disp('Matrix P');
disp(pt');
```


9.2 Program Results

f02wd example results
Rank of A is 4

Details of	QU factorization		
-49.6519	-44.4092	20.3542	-8.8818
0.4028	-48.2767	-9.5887	-20.3761
-0.3071	0.8369	52.9270	-48.8806
0.5488	-0.3907	-0.8364	-50.6742
-0.3474	-0.2585	-0.1851	0.6321
0.3474	0.2585	0.1851	-0.6321

$\begin{gathered} \text { Vector } \mathrm{z} \\ 1.4481 \end{gathered}$	1.1153	1.4817	1.4482
Matrix R			
-0.5639	0.6344	0.4229	0.3172
-0.3512	0.3951	-0.6791	-0.5093
-0.6403	-0.5692	0.3095	-0.4126
-0.3855	-0.3427	-0.5140	0.6854
Singular values			
91.0000	68.2500	45.5000	22.7500
Matrix P			
0.3077	-0.4615	-0.4615	-0.6923
0.4615	-0.6923	0.3077	0.4615
-0.4615	-0.3077	0.6923	-0.4615
0.6923	0.4615	0.4615	-0.3077

