F03 – Determinants

NAG Toolbox

nag det real band sym (f03bh)

1 Purpose

 $nag_det_real_band_sym$ (f03bh) computes the determinant of a n by n symmetric positive definite banded matrix A that has been stored in band-symmetric storage. nag_lapack_dpbtrf (f07hd) must be called first to supply the Cholesky factorized form. The storage (upper or lower triangular) used by nag_lapack_dpbtrf (f07hd) is relevant as this determines which elements of the stored factorized form are referenced.

2 Syntax

```
[d, id, ifail] = nag_det_real_band_sym(uplo, kd, ab, 'n', n)
[d, id, ifail] = f03bh(uplo, kd, ab, 'n', n)
```

3 Description

The determinant of A is calculated using the Cholesky factorization $A = U^{T}U$, where U is an upper triangular band matrix, or $A = LL^{T}$, where L is a lower triangular band matrix. The determinant of A is the product of the squares of the diagonal elements of U or U.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-Verlag

5 Parameters

5.1 Compulsory Input Parameters

1: **uplo** – CHARACTER(1)

Indicates whether the upper or lower triangular part of A was stored and how it was factorized. This should not be altered following a call to nag lapack dpbtrf (f07hd).

```
uplo = 'U'
```

The upper triangular part of A was originally stored and A was factorized as $U^{T}U$ where U is upper triangular.

```
uplo = 'L'
```

The lower triangular part of A was originally stored and A was factorized as LL^{T} where L is lower triangular.

Constraint: uplo = 'U' or 'L'.

2: **kd** – INTEGER

 k_d , the number of superdiagonals or subdiagonals of the matrix A.

Constraint: $\mathbf{kd} \geq 0$.

3: ab(ldab, :) - REAL (KIND=nag wp) array

The first dimension of the array **ab** must be at least kd + 1.

The second dimension of the array **ab** must be at least $max(1, \mathbf{n})$.

Mark 25 f03bh.1

The Cholesky factor of A, as returned by nag lapack_dpbtrf (f07hd).

5.2 Optional Input Parameters

1: **n** – INTEGER

Default: the second dimension of the array ab.

n, the order of the matrix A.

Constraint: $\mathbf{n} > 0$.

5.3 Output Parameters

1: $\mathbf{d} - REAL (KIND=nag_wp)$

2: **id** – INTEGER

The determinant of A is given by $\mathbf{d} \times 2.0^{\mathbf{id}}$. It is given in this form to avoid overflow or underflow.

3: **ifail** – INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

Constraint: uplo = 'L' or 'U'.

ifail = 2

Constraint: $\mathbf{n} > 0$.

ifail = 3

Constraint: $\mathbf{kd} \geq 0$.

ifail = 5

Constraint: $ldab \ge \mathbf{kd} + 1$.

ifail = 6

The matrix A is not positive definite.

ifail = -99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail = -399

Your licence key may have expired or may not have been installed correctly.

ifail = -999

Dynamic memory allocation failed.

7 Accuracy

The accuracy of the determinant depends on the conditioning of the original matrix. For a detailed error analysis see page 54 of Wilkinson and Reinsch (1971).

f03bh.2 Mark 25

F03 – Determinants f03bh

8 Further Comments

The time taken by nag det real band sym (f03bh) is approximately proportional to n.

This function should only be used when $m \ll n$ since as m approaches n, it becomes less efficient to take advantage of the band form.

9 Example

This example calculates the determinant of the real symmetric positive definite band matrix

$$\begin{pmatrix} 5 & -4 & 1 & & & & \\ -4 & 6 & -4 & 1 & & & & \\ 1 & -4 & 6 & -4 & 1 & & & \\ & 1 & -4 & 6 & -4 & 1 & & \\ & & 1 & -4 & 6 & -4 & 1 \\ & & & 1 & -4 & 6 & -4 \\ & & & 1 & -4 & 5 \end{pmatrix}.$$

9.1 Program Text

```
fprintf('f03bh \ example \ results \ \ \ ');
```

function f03bh_example

9.2 Program Results

f03bh example results

```
Array ab after factorization
                                                            5
                                                                        6
                                                                                    7
             1
                         2
                                                4
        2.2361
 1
2
                   1.6733
       -1.7889
 3
        0.4472
                   -1.9124
                               1.4639
 4
                    0.5976
                              -1.9518
                                           1.3540
5
                               0.6831
                                          -1.9695
                                                      1.2863
 6
                                           0.7385
                                                      -1.9789
                                                                  1.2403
7
                                                       0.7774
                                                                  -1.9846
                                                                               0.6761
          0.25000 \text{ id} = 8
Value of determinant = 6.40000e+01
```

Mark 25 f03bh.3 (last)