NAG Toolbox

nag_det_real_band_sym (f03bh)

1 Purpose

nag_det_real_band_sym (f03bh) computes the determinant of a n by n symmetric positive definite banded matrix A that has been stored in band-symmetric storage. nag_lapack_dpbtrf (f07hd) must be called first to supply the Cholesky factorized form. The storage (upper or lower triangular) used by nag_lapack_dpbtrf (f 07 hd) is relevant as this determines which elements of the stored factorized form are referenced.

2 Syntax

```
[d, id, ifail] = nag_det_real_band_sym(uplo, kd, ab, 'n', n)
[d, id, ifail] = f03bh(uplo, kd, ab, 'n', n)
```


3 Description

The determinant of A is calculated using the Cholesky factorization $A=U^{\mathrm{T}} U$, where U is an upper triangular band matrix, or $A=L L^{\mathrm{T}}$, where L is a lower triangular band matrix. The determinant of A is the product of the squares of the diagonal elements of U or L.

4 References

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer-Verlag

5 Parameters

5.1 Compulsory Input Parameters

1: uplo - CHARACTER(1)
Indicates whether the upper or lower triangular part of A was stored and how it was factorized. This should not be altered following a call to nag_lapack_dpbtrf (f07hd).
uplo $=$ ' U '
The upper triangular part of A was originally stored and A was factorized as $U^{\mathrm{T}} U$ where U is upper triangular.
uplo $=$ ' L '
The lower triangular part of A was originally stored and A was factorized as $L L^{\mathrm{T}}$ where L is lower triangular.

Constraint: uplo = 'U' or 'L'.
2: kd - INTEGER
k_{d}, the number of superdiagonals or subdiagonals of the matrix A.
Constraint: $\mathbf{k d} \geq 0$.
3: $\quad \mathbf{a b}(l d a b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array $\mathbf{a b}$ must be at least $\mathbf{k d}+1$.
The second dimension of the array $\mathbf{a b}$ must be at least $\max (1, \mathbf{n})$.

The Cholesky factor of A, as returned by nag_lapack_dpbtrf (f07hd).

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array $\mathbf{a b}$.
n, the order of the matrix A.
Constraint: $\mathbf{n}>0$.

5.3 Output Parameters

1: $\quad \mathbf{d}-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp)
2: id - INTEGER
The determinant of A is given by $\mathbf{d} \times 2.0^{\text {id }}$. It is given in this form to avoid overflow or underflow.

3: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail $=1$

Constraint: uplo = 'L' or 'U'.

$$
\text { ifail }=2
$$

Constraint: $\mathbf{n}>0$.

ifail $=3$

Constraint: $\mathbf{k d} \geq 0$.

ifail $=5$

Constraint: $l d a b \geq \mathbf{k d}+1$.

ifail $=6$

The matrix A is not positive definite.

ifail $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.

ifail $=-399$

Your licence key may have expired or may not have been installed correctly.
ifail $=-999$
Dynamic memory allocation failed.

7 Accuracy

The accuracy of the determinant depends on the conditioning of the original matrix. For a detailed error analysis see page 54 of Wilkinson and Reinsch (1971).

8 Further Comments

The time taken by nag_det_real_band_sym (f03bh) is approximately proportional to n.
This function should only be used when $m \ll n$ since as m approaches n, it becomes less efficient to take advantage of the band form.

9 Example

This example calculates the determinant of the real symmetric positive definite band matrix

$$
\left(\begin{array}{rrrrrrr}
5 & -4 & 1 & & & & \\
-4 & 6 & -4 & 1 & & & \\
1 & -4 & 6 & -4 & 1 & & \\
& 1 & -4 & 6 & -4 & 1 & \\
& & 1 & -4 & 6 & -4 & 1 \\
& & & 1 & -4 & 6 & -4 \\
& & & & 1 & -4 & 5
\end{array}\right)
$$

9.1 Program Text

```
    function f03bh_example
fprintf('f03bh example results\n\n');
uplo = '1';
kd = nag_int(2);
n = nag_int(7);
ab = [ 5, 6, 6, 6, 6, 6, 5;
        -4, -4, -4, -4, -4, -4, 0;
        1, 1, 1, 1, 1, 0, 0];
% Factorize a
[ab, info] = f07hd(uplo, kd, ab);
if info == 0
    fprintf('\n');
    [ifail] = x04ce(n, n, kd, nag_int(0), ab, 'Array ab after factorization');
    [d, id, ifail] = f03bh(uplo, kd, ab);
    fprintf('d = %13.5f id = %d\n', d, id);
    fprintf('Value of determinant = %13.5e\n', d*2^id);
else
    fprintf('\n** Factorization routine returned error flag info = %d\n', info);
end
```


9.2 Program Results

f03bh example results
Array ab after factorization

	1	2	3	4	5	6	7
1	2.2361						
2	-1.7889	1.6733					
3	0.4472	-1.9124	1.4639				
4		0.5976	-1.9518	1.3540			
5			0.6831	-1.9695	1.2863		
6				0.7385	-1.9789	1.2403	
7					0.7774	-1.9846	0.6761

[^0]
[^0]: $\mathrm{d}=\quad 0.25000 \mathrm{id}=8$
 Value of determinant $=6.40000 e+01$

