
NAG Toolbox

nag_linsys_complex_norm_rcomm (f04zc)

1 Purpose

nag_linsys_complex_norm_rcomm (f04zc) estimates the 1-norm of a complex matrix without accessing
the matrix explicitly. It uses reverse communication for evaluating matrix-vector products. The function
may be used for estimating matrix condition numbers.

Note: This function is scheduled to be withdrawn, please see f04zc in Advice on Replacement Calls for
Withdrawn/Superseded Routines..

2 Syntax

[iiccaassee, xx, eessttnnrrmm, wwoorrkk, iiffaaiill] = nag_linsys_complex_norm_rcomm(iiccaassee, xx,
eessttnnrrmm, wwoorrkk, ’n’, nn)

[iiccaassee, xx, eessttnnrrmm, wwoorrkk, iiffaaiill] = f04zc(iiccaassee, xx, eessttnnrrmm, wwoorrkk, ’n’, nn)

3 Description

nag_linsys_complex_norm_rcomm (f04zc) computes an estimate (a lower bound) for the 1-norm

Ak k1 ¼ max
1�j�n

Xn
i¼1

aij
�� �� ð1Þ

of an n by n complex matrix A ¼ aij
� �

. The function regards the matrix A as being defined by a user-
supplied ‘Black Box’ which, given an input vector x, can return either of the matrix-vector products Ax
or AHx, where AH is the complex conjugate transpose. A reverse communication interface is used; thus
control is returned to the calling program whenever a matrix-vector product is required.

Note: this function is not recommended for use when the elements of A are known explicitly; it is
then more efficient to compute the 1-norm directly from the formula (1) above.

The main use of the function is for estimating B�1
�� ��

1
, and hence the condition number

�1 Bð Þ ¼ Bk k1 B�1
�� ��

1
, without forming B�1 explicitly (A ¼ B�1 above).

If, for example, an LU factorization of B is available, the matrix-vector products B�1x and B�Hx
required by nag_linsys_complex_norm_rcomm (f04zc) may be computed by back- and forward-
substitutions, without computing B�1.

The function can also be used to estimate 1-norms of matrix products such as A�1B and ABC, without
forming the products explicitly. Further applications are described in Higham (1988).

Since Ak k1 ¼ AHk k1, nag_linsys_complex_norm_rcomm (f04zc) can be used to estimate the 1-norm
of A by working with AH instead of A.

The algorithm used is based on a method given in Hager (1984) and is described in Higham (1988). A
comparison of several techniques for condition number estimation is given in Higham (1987).

Note: nag_linsys_complex_gen_norm_rcomm (f04zd) can also be used to estimate the norm of a real
matrix. nag_linsys_complex_gen_norm_rcomm (f04zd) uses a more recent algorithm than nag_linsys_
complex_norm_rcomm (f04zc) and it is recommended that nag_linsys_complex_gen_norm_rcomm
(f04zd) be used in place of nag_linsys_complex_norm_rcomm (f04zc).

F04 – Simultaneous Linear Equations f04zc

Mark 25 f04zc.1

4 References

Hager W W (1984) Condition estimates SIAM J. Sci. Statist. Comput. 5 311–316

Higham N J (1987) A survey of condition number estimation for triangular matrices SIAM Rev. 29 575–
596

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381–396

5 Parameters

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits
and re-entries, and a final exit, as indicated by the argument icase. Between intermediate exits and re-
entries, all arguments other than x must remain unchanged.

5.1 Compulsory Input Parameters

1: icase – INTEGER

On initial entry: must be set to 0.

2: xðnÞ – COMPLEX (KIND=nag_wp) array

On initial entry: need not be set.

On intermediate re-entry: must contain Ax (if icase ¼ 1) or AHx (if icase ¼ 2).

3: estnrm – REAL (KIND=nag_wp)

On initial entry: need not be set.

4: workðnÞ – COMPLEX (KIND=nag_wp) array

On initial entry: need not be set.

5.2 Optional Input Parameters

1: n – INTEGER

Default: the dimension of the arrays x, work. (An error is raised if these dimensions are not
equal.)

On initial entry: n, the order of the matrix A.

Constraint: n � 1.

5.3 Output Parameters

1: icase – INTEGER

On intermediate exit: icase ¼ 1 or 2, and xðiÞ, for i ¼ 1; 2; . . . ; n, contain the elements of a vector
x. The calling program must

(a) evaluate Ax (if icase ¼ 1) or AHx (if icase ¼ 2), where AH is the complex conjugate
transpose;

(b) place the result in x; and,

(c) call nag_linsys_complex_norm_rcomm (f04zc) once again, with all the other arguments
unchanged.

On final exit: icase ¼ 0.

f04zc NAG Toolbox for MATLAB Manual

f04zc.2 Mark 25

2: xðnÞ – COMPLEX (KIND=nag_wp) array

On intermediate exit: contains the current vector x.

On final exit: the array is undefined.

3: estnrm – REAL (KIND=nag_wp)

On intermediate exit: should not be changed.

On final exit: an estimate (a lower bound) for Ak k1.

4: workðnÞ – COMPLEX (KIND=nag_wp) array

On final exit: contains a vector v such that v ¼ Aw where estnrm ¼ vk k1= wk k1 (w is not
returned). If A ¼ B�1 and estnrm is large, then v is an approximate null vector for B.

5: ifail – INTEGER

ifail ¼ 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail ¼ 1

On entry, n < 1.

ifail ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

ifail ¼ �399

Your licence key may have expired or may not have been installed correctly.

ifail ¼ �999

Dynamic memory allocation failed.

7 Accuracy

In extensive tests on random matrices of size up to n ¼ 100 the estimate estnrm has been found
always to be within a factor eleven of Ak k1; often the estimate has many correct figures. However,
matrices exist for which the estimate is smaller than Ak k1 by an arbitrary factor; such matrices are very
unlikely to arise in practice. See Higham (1988) for further details.

8 Further Comments

8.1 Timing

The total time taken by nag_linsys_complex_norm_rcomm (f04zc) is proportional to n. For most
problems the time taken during calls to nag_linsys_complex_norm_rcomm (f04zc) will be negligible
compared with the time spent evaluating matrix-vector products between calls to nag_linsys_complex_
norm_rcomm (f04zc).

The number of matrix-vector products required varies from 5 to 11 (or is 1 if n ¼ 1). In most cases 5
products are required; it is rare for more than 7 to be needed.

F04 – Simultaneous Linear Equations f04zc

Mark 25 f04zc.3

8.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix-vector
products. In particular, when estimating B�1

�� ��
1
using a triangular factorization of B, nag_linsys_

complex_norm_rcomm (f04zc) should not be called if one of the factors is exactly singular – otherwise
division by zero may occur in the substitutions.

8.3 Use in Conjunction with NAG Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

... code to factorize A ...
if (A is not singular)

icase = 0
[icase, x, estnrm, work, ifail] = f04zc(icase, x, estnrm, work);
while (icase ~= 0)

if (icase == 1)
... code to compute A(-1)x ...

else
... code to compute (A(-1)(H)) x ...

end
[icase, x, estnrm, work, ifail] = f04zc(icase, x, estnrm, work);

end
end

To compute A�1x or A�Hx, solve the equation Ay ¼ x or AHy ¼ x for y, overwriting y on x. The code
will vary, depending on the type of the matrix A, and the NAG function used to factorize A.

Note that if A is any type of Hermitian matrix, then A ¼ AH, and the if statement after the while can
be reduced to:

... code to compute A(-1)x ...

The example program in Section 10 illustrates how nag_linsys_complex_norm_rcomm (f04zc) can be
used in conjunction with NAG Toolbox functions for complex band matrices (factorized by
nag_lapack_zgbtrf (f07br)).

It is also straightforward to use nag_linsys_complex_norm_rcomm (f04zc) for Hermitian positive
definite matrices, using nag_lapack_zpotrf (f07fr) and nag_lapack_zpotrs (f07fs) for factorization and
solution.

9 Example

This example estimates the condition number Ak k1 A�1
�� ��

1
of the order 5 matrix

A ¼
1þ i 2þ i 1þ 2i 0 0

2i 3þ 5i 1þ 3i 2þ i 0
0 �2þ 6i 5þ 7i 6i 1� i
0 0 3þ 9i 4i 4� 3i
0 0 0 �1þ 8i 10� 3i

0
BBB@

1
CCCA

where A is a band matrix stored in the packed format required by nag_lapack_zgbtrf (f07br) and
nag_lapack_zgbtrs (f07bs).

Further examples of the technique for condition number estimation in the case of double matrices can
be seen in the example program section of nag_linsys_real_norm_rcomm (f04yc).

9.1 Program Text

function f04zc_example

fprintf(’f04zc example results\n\n’);

a = [1.0 + 1.0i, 2.0 + 1.0i, 1.0 + 2.0i, 0.0 + 0.0i, 0.0 + 0.0i;
0.0 + 2.0i, 3.0 + 5.0i, 1.0 + 3.0i, 2.0 + 1.0i, 0.0 + 0.0i,
0.0 + 0.0i, -2.0 + 6.0i, 5.0 + 7.0i, 0.0 + 6.0i, 1.0 - 1.0i;

f04zc NAG Toolbox for MATLAB Manual

f04zc.4 Mark 25

0.0 + 0.0i, 0.0 + 0.0i, 3.0 + 9.0i, 0.0 + 4.0i, 4.0 - 3.0i;
0.0 + 0.0i, 0.0 + 0.0i, 0.0 + 0.0i, -1.0 + 8.0i, 10.0 - 3.0i];

x = complex(zeros(5, 1));
work = complex(zeros(5,1));
anorm = norm(a,1);
icase = nag_int(0);
estnrm = 0;

done = false;
while (~done)

[icase, x, estnrm, work, ifail] = ...
f04zc(icase, x, estnrm, work);

if (icase == 0)
done = true;

elseif (icase == 1)
x = inv(a)*x;

else
x = conj(transpose(inv(a)))*x;

end
end
fprintf(’Computed norm of a = %6.4g\n’, anorm);
fprintf(’Estimated norm of inverse(A) = %6.4g\n’, estnrm);
fprintf(’Estimated condition number of A = %6.1f\n’, estnrm*anorm);

9.2 Program Results

f04zc example results

Computed norm of a = 23.49
Estimated norm of inverse(A) = 37.04
Estimated condition number of A = 870.0

F04 – Simultaneous Linear Equations f04zc

Mark 25 f04zc.5 (last)

	nag_linsys_complex_norm_rcomm (f04zc)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Hager (1984)
	Higham (1987)
	Higham (1988)

	5 Parameters
	5.1 Compulsory Input Parameters
	icase
	x
	estnrm
	work

	5.2 Optional Input Parameters
	n

	5.3 Output Parameters
	icase
	x
	estnrm
	work
	ifail

	6 Error Indicators and Warnings
	ifail=1
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	8.1 Timing
	8.2 Overflow
	8.3 Use in Conjunction with NAG Library Routines

	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

