NAG Toolbox nag_linsys_complex_norm_rcomm (f04zc)

1 Purpose

nag_linsys_complex_norm_rcomm (f04zc) estimates the 1-norm of a complex matrix without accessing the matrix explicitly. It uses reverse communication for evaluating matrix-vector products. The function may be used for estimating matrix condition numbers.

Note: This function is scheduled to be withdrawn, please see f04zc in Advice on Replacement Calls for Withdrawn/Superseded Routines..

2 Syntax

```
[icase, x, estnrm, work, ifail] = nag_linsys_complex_norm_rcomm(icase, x,
estnrm, work, 'n', n)
[icase, x, estnrm, work, ifail] = f04zc(icase, x, estnrm, work, 'n', n)
```


3 Description

nag_linsys_complex_norm_rcomm (f04zc) computes an estimate (a lower bound) for the 1-norm

$$
\begin{equation*}
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| \tag{1}
\end{equation*}
$$

of an n by n complex matrix $A=\left(a_{i j}\right)$. The function regards the matrix A as being defined by a usersupplied 'Black Box' which, given an input vector x, can return either of the matrix-vector products $A x$ or $A^{\mathrm{H}} x$, where A^{H} is the complex conjugate transpose. A reverse communication interface is used; thus control is returned to the calling program whenever a matrix-vector product is required.
Note: this function is not recommended for use when the elements of A are known explicitly; it is then more efficient to compute the 1-norm directly from the formula (1) above.

The main use of the function is for estimating $\left\|B^{-1}\right\|_{1}$, and hence the condition number $\kappa_{1}(B)=\|B\|_{1}\left\|B^{-1}\right\|_{1}$, without forming B^{-1} explicitly $\left(A=B^{-1}\right.$ above).

If, for example, an $L U$ factorization of B is available, the matrix-vector products $B^{-1} x$ and $B^{-\mathrm{H}} x$ required by nag_linsys_complex_norm_rcomm (f04zc) may be computed by back- and forwardsubstitutions, without computing B^{-1}.

The function can also be used to estimate 1 -norms of matrix products such as $A^{-1} B$ and $A B C$, without forming the products explicitly. Further applications are described in Higham (1988).
Since $\|A\|_{\infty}=\left\|A^{\mathrm{H}}\right\|_{1}$, nag_linsys_complex_norm_rcomm (f04zc) can be used to estimate the ∞-norm of A by working with A^{H} instead of A.
The algorithm used is based on a method given in Hager (1984) and is described in Higham (1988). A comparison of several techniques for condition number estimation is given in Higham (1987).
Note: nag_linsys_complex_gen_norm_rcomm (f04zd) can also be used to estimate the norm of a real matrix. nag_linsys_complex_gen_norm_rcomm (f04zd) uses a more recent algorithm than nag_linsys_ complex_norm_rcomm (f04zc) ānd it is recommended that nag_linsys_complex_gen_norm_rcomm (f04zd) $\overline{\mathrm{be}}$ used $\overline{\mathrm{d}}$ in place of nag_linsys_complex_norm_rcomm (f04zc).

4 References

Hager W W (1984) Condition estimates SIAM J. Sci. Statist. Comput. 5 311-316
Higham N J (1987) A survey of condition number estimation for triangular matrices SIAM Rev. 29 575596

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381-396

5 Parameters

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits and re-entries, and a final exit, as indicated by the argument icase. Between intermediate exits and reentries, all arguments other than x must remain unchanged.

5.1 Compulsory Input Parameters

1: icase - INTEGER
On initial entry: must be set to 0 .
2: $\quad \mathbf{x}(\mathbf{n})$ - COMPLEX (KIND=nag_wp) array
On initial entry: need not be set.
On intermediate re-entry: must contain $A x($ if icase $=1)$ or $A^{\mathrm{H}} x($ if icase $=2)$.
3: \quad estnrm - REAL (KIND=nag_wp)
On initial entry: need not be set.
4: \quad work(n) - COMPLEX (KIND=nag_wp) array
On initial entry: need not be set.

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the dimension of the arrays \mathbf{x}, work. (An error is raised if these dimensions are not equal.)
On initial entry: n, the order of the matrix A.
Constraint: $\mathbf{n} \geq 1$.

5.3 Output Parameters

1: icase - INTEGER
On intermediate exit: icase $=1$ or 2 , and $\mathbf{x}(i)$, for $i=1,2, \ldots, n$, contain the elements of a vector x. The calling program must
(a) evaluate $A x$ (if icase $=1$) or $A^{\mathrm{H}} x$ (if icase $=2$), where A^{H} is the complex conjugate transpose;
(b) place the result in \mathbf{x}; and,
(c) call nag_linsys_complex_norm_rcomm (f04zc) once again, with all the other arguments unchanged.

On final exit: icase $=0$.

2: $\quad \mathbf{x}(\mathbf{n})$ - COMPLEX (KIND=nag_wp) array
On intermediate exit: contains the current vector x.
On final exit: the array is undefined.
3: estnrm - REAL (KIND=nag_wp)
On intermediate exit: should not be changed.
On final exit: an estimate (a lower bound) for $\|A\|_{1}$.
4: work(n) - COMPLEX (KIND=nag_wp) array
On final exit: contains a vector v such that $v=A w$ where estnrm $=\|v\|_{1} /\|w\|_{1}$ (w is not returned). If $A=B^{-1}$ and estnrm is large, then v is an approximate null vector for B.

5: ifail - INTEGER
ifail $=0$ unless the function detects an error (see Section 5).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$
\text { ifail }=1
$$

On entry, $\mathbf{n}<1$.

$$
\text { ifail }=-99
$$

An unexpected error has been triggered by this routine. Please contact NAG.

$$
\text { ifail }=-399
$$

Your licence key may have expired or may not have been installed correctly.

$$
\text { ifail }=-999
$$

Dynamic memory allocation failed.

7 Accuracy

In extensive tests on random matrices of size up to $n=100$ the estimate estnrm has been found always to be within a factor eleven of $\|A\|_{1}$; often the estimate has many correct figures. However, matrices exist for which the estimate is smaller than $\|A\|_{1}$ by an arbitrary factor; such matrices are very unlikely to arise in practice. See Higham (1988) for further details.

8 Further Comments

8.1 Timing

The total time taken by nag_linsys_complex_norm_rcomm (f04zc) is proportional to n. For most problems the time taken during calls to nag_linsys_complex_norm_rcomm (f04zc) will be negligible compared with the time spent evaluating matrix-vector products between calls to nag_linsys_complex_ norm_rcomm (f04zc).
The number of matrix-vector products required varies from 5 to 11 (or is 1 if $n=1$). In most cases 5 products are required; it is rare for more than 7 to be needed.

8.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix-vector products. In particular, when estimating $\left\|B^{-1}\right\|_{1}$ using a triangular factorization of B, nag_linsys_ complex_norm_rcomm (f04zc) should not be called if one of the factors is exactly singular - otherwise division by zero may occur in the substitutions.

8.3 Use in Conjunction with NAG Library Routines

To estimate the 1 -norm of the inverse of a matrix A, the following skeleton code can normally be used:

```
... code to factorize A ...
if (A is not singular)
    icase = 0
    [icase, x, estnrm, work, ifail] = f04zc(icase, x, estnrm, work);
    while (icase ~ = 0)
        if (icase == 1)
            ... code to compute A(-1)x ...
        else
            ... code to compute (A(-1)(H)) x ...
        end
        [icase, x, estnrm, work, ifail] = f04zc(icase, x, estnrm, work);
    end
end
```

To compute $A^{-1} x$ or $A^{-\mathrm{H}} x$, solve the equation $A y=x$ or $A^{\mathrm{H}} y=x$ for y, overwriting y on x. The code will vary, depending on the type of the matrix A, and the NAG function used to factorize A.
Note that if A is any type of Hermitian matrix, then $A=A^{\mathrm{H}}$, and the if statement after the while can be reduced to:

$$
\text { ... code to compute } A(-1) x \ldots
$$

The example program in Section 10 illustrates how nag_linsys_complex_norm_rcomm (f04zc) can be used in conjunction with NAG Toolbox functions for complex band matrices (factorized by nag_lapack_zgbtrf (f07br)).
It is also straightforward to use nag_linsys_complex_norm_rcomm (f04zc) for Hermitian positive definite matrices, using nag_lapack_zpotrf (f07fr) and nag_lapack_zpotrs (f07fs) for factorization and solution.

9 Example

This example estimates the condition number $\|A\|_{1}\left\|A^{-1}\right\|_{1}$ of the order 5 matrix

$$
A=\left(\begin{array}{lllll}
1+i & 2+i & 1+2 i & 0 & 0 \\
& 2 i & 3+5 i & 1+3 i & 2+i \\
0 & & -2+6 i & 5+7 i & 6 i \\
0 & 0 & 3+9 i & 1-i \\
0 & 0 & 0 & -1+8 i & 4-3 i \\
0 & 0 & 0-3 i
\end{array}\right)
$$

where A is a band matrix stored in the packed format required by nag_lapack_zgbtrf (f07br) and nag_lapack_zgbtrs (f07bs).

Further examples of the technique for condition number estimation in the case of double matrices can be seen in the example program section of nag_linsys_real_norm_rcomm (f04yc).

9.1 Program Text

function f04zc_example

```
fprintf('f04zc example results\n\n');
a = [ 1.0 + 1.0i, 2.0 + 1.0i, 1.0 + 2.0i, 0.0 + 0.0i, 0.0 + 0.0i;
    0.0 + 2.0i, 3.0 + 5.0i, 1.0 + 3.0i, 2.0 + 1.0i, 0.0 + 0.0i,
    0.0 + 0.0i, -2.0 + 6.0i, 5.0 + 7.0i, 0.0 + 6.0i, 1.0 - 1.0i;
```

```
    0.0 + 0.0i, 0.0 + 0.0i, 3.0 + 9.0i, 0.0 + 4.0i, 4.0 - 3.0i;
    O.0 + O.Oi, 0.0 + O.Oi, 0.0 + O.Oi, -1.0 + 8.0i, 10.0 - 3.0i];
x = complex(zeros(5, 1));
work = complex(zeros(5,1));
anorm = norm(a,1);
icase = nag_int(0);
estnrm = 0;
done = false;
while (~done)
    [icase, x, estnrm, work, ifail] = ...
        f04zc(icase, x, estnrm, work);
    if (icase == O)
        done = true;
    elseif (icase == 1)
        x = inv(a)*x;
    else
        x = conj(transpose(inv(a)))*x;
    end
end
fprintf('Computed norm of a = %6.4g\n', anorm);
fprintf('Estimated norm of inverse(A) = %6.4g\n', estnrm);
fprintf('Estimated condition number of A = %6.1f\n', estnrm*anorm);
```


9.2 Program Results

f04zc example results
Computed norm of a $=23.49$
Estimated norm of inverse(A) $=37.04$
Estimated condition number of $A=870.0$

