F04 — Simultaneous Linear Equations f04zc

NAG Toolbox

nag_linsys complex norm_rcomm (f04zc)

1 Purpose

nag_linsys complex norm rcomm (f04zc) estimates the 1-norm of a complex matrix without accessing
the matrix explicitly. It uses reverse communication for evaluating matrix-vector products. The function
may be used for estimating matrix condition numbers.

Note: This function is scheduled to be withdrawn, please see f04zc in Advice on Replacement Calls for
Withdrawn/Superseded Routines..

2 Syntax
[icase, x, estnrm, work, ifail] = nag_linsys_complex_norm_rcomm(icase, X,
estnrm, work, ’'n’, n)
[icase, x, estnrm, work, ifail] = fO4zc(icase, x, estnrm, work, 'n’, n)

3 Description

nag_linsys _complex norm_rcomm (f04zc) computes an estimate (a lower bound) for the 1-norm

n

1A]l, = max } "|a;| (1)

1<5<
=S

of an n by n complex matrix A = (aij). The function regards the matrix A as being defined by a user-
supplied ‘Black Box’ which, given an input vector x, can return either of the matrix-vector products Az
or Az, where AY is the complex conjugate transpose. A reverse communication interface is used; thus
control is returned to the calling program whenever a matrix-vector product is required.

Note: this function is not recommended for use when the elements of A are known explicitly; it is
then more efficient to compute the 1-norm directly from the formula (1) above.

The main use of the function is for estimating ||B*1 and hence the condition number

51(B) = |B]L || B

It
|» without forming B~! explicitly (A = B~! above).

If, for example, an LU factorization of B is available, the matrix-vector products B~'z and B Mz
required by nag linsys complex norm_rcomm (f04zc) may be computed by back- and forward-
substitutions, without computing B~

The function can also be used to estimate 1-norms of matrix products such as A~'B and ABC, without
forming the products explicitly. Further applications are described in Higham (1988).

Since || A||,, = ||A"|;, nag_linsys_complex_norm_rcomm (f04zc) can be used to estimate the co-norm
of A by working with A instead of A.

The algorithm used is based on a method given in Hager (1984) and is described in Higham (1988). A
comparison of several techniques for condition number estimation is given in Higham (1987).

Note: nag_linsys_complex gen norm rcomm (f04zd) can also be used to estimate the norm of a real
matrix. nag_linsys complex gen norm_rcomm (f04zd) uses a more recent algorithm than nag_linsys
complex norm_rcomm (f04zc) and it is recommended that nag linsys complex gen norm_rcomm
(f04zd) be used in place of nag linsys complex norm rcomm (f04zc).

Mark 25 f04zc.1

f04zc NAG Toolbox for MATLAB Manual

4 References

Hager W W (1984) Condition estimates SIAM J. Sci. Statist. Comput. 5 311-316

Higham N J (1987) A survey of condition number estimation for triangular matrices SIAM Rev. 29 575—
596

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation ACM Trans. Math. Software 14 381-396

5 Parameters

Note: this function uses reverse communication. Its use involves an initial entry, intermediate exits
and re-entries, and a final exit, as indicated by the argument icase. Between intermediate exits and re-
entries, all arguments other than x must remain unchanged.

5.1 Compulsory Input Parameters
1: icase — INTEGER

On initial entry: must be set to 0.

2: x(n) — COMPLEX (KIND=nag_wp) array
On initial entry: need not be set.

On intermediate re-entry: must contain Az (if icase = 1) or Az (if icase = 2).

3: estnrm — REAL (KIND=nag wp)

On initial entry: need not be set.

4: work(n) — COMPLEX (KIND=nag_wp) array

On initial entry: need not be set.

5.2 Optional Input Parameters
1: n — INTEGER

Default: the dimension of the arrays x, work. (An error is raised if these dimensions are not
equal.)

On initial entry: n, the order of the matrix A.

Constraint: n > 1.

5.3 Output Parameters
1: icase — INTEGER

On intermediate exit: icase = 1 or 2, and x(4), for i = 1,2,...,n, contain the elements of a vector
x. The calling program must

(a) evaluate Ax (if icase = 1) or Az (if icase =2), where A" is the complex conjugate
transpose;

(b) place the result in x; and,

(c) call nag linsys complex norm rcomm (f04zc) once again, with all the other arguments
unchanged.

On final exit: icase = 0.

f04zc.2 Mark 25

F04 — Simultaneous Linear Equations f04zc

2: x(n) — COMPLEX (KIND=nag_ wp) array
On intermediate exit: contains the current vector z.

On final exit: the array is undefined.

3: estnrm — REAL (KIND=nag wp)
On intermediate exit: should not be changed.

On final exit: an estimate (a lower bound) for ||A]|.

4: work(n) — COMPLEX (KIND=nag_wp) array

On final exit: contains a vector v such that v = Aw where estnrm = ||v||,/||w||; (w is not
returned). If A = B~! and estnrm is large, then v is an approximate null vector for B.

5: ifail — INTEGER

ifail = 0 unless the function detects an error (see Section 5).

6 Error Indicators and Warnings
Errors or warnings detected by the function:
ifail =1
On entry, n < 1.
ifail = —99
An unexpected error has been triggered by this routine. Please contact NAG.
ifail = —399
Your licence key may have expired or may not have been installed correctly.

ifail = —999

Dynamic memory allocation failed.

7 Accuracy

In extensive tests on random matrices of size up to n = 100 the estimate estnrm has been found
always to be within a factor eleven of ||A]|;; often the estimate has many correct figures. However,
matrices exist for which the estimate is smaller than || A||, by an arbitrary factor; such matrices are very
unlikely to arise in practice. See Higham (1988) for further details.

8 Further Comments
8.1 Timing

The total time taken by nag linsys complex norm rcomm (f04zc) is proportional to n. For most
problems the time taken during calls to nag linsys complex norm_ rcomm (f04zc) will be negligible
compared with the time spent evaluating matrix-vector products between calls to nag linsys complex
norm_rcomm (f04zc).

The number of matrix-vector products required varies from 5 to 11 (or is 1 if » = 1). In most cases 5
products are required; it is rare for more than 7 to be needed.

Mark 25 f04zc.3

f04zc NAG Toolbox for MATLAB Manual

8.2 Overflow

It is your responsibility to guard against potential overflows during evaluation of the matrix-vector
products. In particular, when estimating HB‘IH1 using a triangular factorization of B, nag linsys

complex norm_rcomm (f04zc) should not be called if one of the factors is exactly singular — otherwise
division by zero may occur in the substitutions.

8.3 Use in Conjunction with NAG Library Routines

To estimate the 1-norm of the inverse of a matrix A, the following skeleton code can normally be used:

code to factorize A ...
if (A is not singular)

icase = 0
[icase, x, estnrm, work, ifail] = f04zc(icase, x, estnrm, work);
while (icase "= 0)

if (icase == 1)
code to compute A(-1)x ...

else
code to compute (A(-1)(H)) x ...
end
[icase, x, estnrm, work, ifail] = fO4zc(icase, x, estnrm, work);
end

end

To compute A~'2 or A~Hz, solve the equation Ay = = or Ay = z for g, overwriting y on . The code
will vary, depending on the type of the matrix A, and the NAG function used to factorize A.

Note that if A is any type of Hermitian matrix, then A = AH, and the if statement after the while can
be reduced to:

code to compute A(-1)x ...

The example program in Section 10 illustrates how nag_linsys complex norm_rcomm (f04zc) can be
used in conjunction with NAG Toolbox functions for complex band matrices (factorized by
nag_lapack zgbtrf (f07br)).

It is also straightforward to use nag linsys complex norm rcomm (f04zc) for Hermitian positive
definite matrices, using nag lapack zpotrf (f07fr) and nag lapack zpotrs (f07fs) for factorization and
solution.

9 Example
This example estimates the condition number ||A||1HA’1H1 of the order 5 matrix
I+ 4 2+ 4 1+2i 0 0
20 345 143 2+ 4 0
A=10 —24+61 547 6: 1— 1
0 0 349 4 43¢
0 0 0 —14+8 10-3¢

where A is a band matrix stored in the packed format required by nag lapack zgbtrf (f07br) and
nag_lapack zgbtrs (f07bs).

Further examples of the technique for condition number estimation in the case of double matrices can

be seen in the example program section of nag_linsys real norm_rcomm (f04yc).

9.1 Program Text

function f04zc_example

fprintf (’'£f04zc example results\n\n’);

a=1[1.0+ 1.0i, 2.0 + 1.0i, 1.0 + 2.0i, 0.0 + 0.0i, 0.0 + 0.01i;
0.0 + 2.0i, 3.0 + 5.0i, 1.0 + 3.0i, 2.0 + 1.0i, 0.0 + 0.01i,
0.0 + 0.0i, -2.0 + 6.0i, 5.0 + 7.0i, 0.0 + 6.0i, 1.0 - 1.0i;

f04zc.4 Mark 25

F04 — Simultaneous Linear Equations

X = complex(zeros(5, 1));
work = complex(zeros(5,1)
anorm = norm(a,l);

icase = nag_int(0);

estnrm = 0;

done = false;
while (~done)
[icase, x,
f04zc(icase,
(icase == 0)
done = true;
elseif (icase == 1)
x = inv(a)*x;
else
x:
end
end
fprintf (’Computed norm of a
fprintf (’Estimated norm of inverse(A)
fprintf(’'Estimated condition number of A

ifail] =
work) ;

estnrm, work,
X, estnrm,
if

conj(transpose(inv(a)))*x;

9.2 Program Results

fO04zc example results

Computed norm of a = 23.49
Estimated norm of inverse(A) = 37.04
Estimated condition number of A = 870.0

0.0 + 4.01,
-1.0 + 8.01,

%$6.4g9\n’,
%6.49\n’,
%6.1f\n’,

4.0 - 3.0

10.0 - 3.0
anorm) ;
estnrm) ;
estnrm*anorm) ;

.

f04zc

Mark 25

f04zc.5 (last)

	nag_linsys_complex_norm_rcomm (f04zc)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Hager (1984)
	Higham (1987)
	Higham (1988)

	5 Parameters
	5.1 Compulsory Input Parameters
	icase
	x
	estnrm
	work

	5.2 Optional Input Parameters
	n

	5.3 Output Parameters
	icase
	x
	estnrm
	work
	ifail

	6 Error Indicators and Warnings
	ifail=1
	ifail=-99
	ifail=-399
	ifail=-999

	7 Accuracy
	8 Further Comments
	8.1 Timing
	8.2 Overflow
	8.3 Use in Conjunction with NAG Library Routines

	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

