NAG Toolbox

nag lapack dpocon (f07fg)

1 Purpose

nag_lapack_dpocon (f07fg) estimates the condition number of a real symmetric positive definite matrix A, where A has been factorized by nag_lapack_dpotrf (f07fd).

2 Syntax

```
[rcond, info] = nag_lapack_dpocon(uplo, a, anorm, 'n', n)
[rcond, info] = f07fg(uplo, a, anorm, 'n', n)
```

3 Description

nag_lapack_dpocon (f07fg) estimates the condition number (in the 1-norm) of a real symmetric positive definite matrix A:

$$\kappa_1(A) = \|A\|_1 \|A^{-1}\|_1.$$

Since A is symmetric, $\kappa_1(A) = \kappa_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$.

Because $\kappa_1(A)$ is infinite if A is singular, the function actually returns an estimate of the **reciprocal** of $\kappa_1(A)$.

The function should be preceded by a computation of $\|A\|_1$ and a call to nag_lapack_dpotrf (f07fd) to compute the Cholesky factorization of A. The function then uses Higham's implementation of Hager's method (see Higham (1988)) to estimate $\|A^{-1}\|_1$.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381-396

5 Parameters

5.1 Compulsory Input Parameters

1: **uplo** – CHARACTER(1)

Specifies how A has been factorized.

$$uplo = 'U'$$

 $A = U^{T}U$, where U is upper triangular.

uplo = 'L'

 $A = LL^{T}$, where L is lower triangular.

Constraint: uplo = 'U' or 'L'.

2: $\mathbf{a}(lda,:) - \text{REAL (KIND=nag_wp)}$ array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$.

The second dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$.

The Cholesky factor of A, as returned by nag_lapack_dpotrf (f07fd).

Mark 25 f07fg.1

3: **anorm** – REAL (KIND=nag wp)

The 1-norm of the **original** matrix A. **anorm** must be computed either **before** calling nag lapack dpotrf (f07fd) or else from a **copy** of the original matrix A.

Constraint: **anorm** ≥ 0.0 .

5.2 Optional Input Parameters

1: $\mathbf{n} - \text{INTEGER}$

Default: the first dimension of the array a and the second dimension of the array a.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: **rcond** – REAL (KIND=nag wp)

An estimate of the reciprocal of the condition number of A. **rcond** is set to zero if exact singularity is detected or the estimate underflows. If **rcond** is less than **machine precision**, A is singular to working precision.

2: **info** – INTEGER

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info < 0

If info = -i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed estimate **rcond** is never less than the true value ρ , and in practice is nearly always less than 10ρ , although examples can be constructed where **rcond** is much larger.

8 Further Comments

A call to nag_lapack_dpocon (f07fg) involves solving a number of systems of linear equations of the form Ax = b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately $2n^2$ floating-point operations but takes considerably longer than a call to nag_lapack_dpotrs (f07fe) with one right-hand side, because extra care is taken to avoid overflow when A is approximately singular.

The complex analogue of this function is nag lapack zpocon (f07fu).

9 Example

This example estimates the condition number in the 1-norm (or ∞ -norm) of the matrix A, where

$$A = \begin{pmatrix} 4.16 & -3.12 & 0.56 & -0.10 \\ -3.12 & 5.03 & -0.83 & 1.18 \\ 0.56 & -0.83 & 0.76 & 0.34 \\ -0.10 & 1.18 & 0.34 & 1.18 \end{pmatrix}.$$

Here A is symmetric positive definite and must first be factorized by nag_lapack_dpotrf (f07fd). The true condition number in the 1-norm is 97.32.

f07fg.2 Mark 25

9.1 Program Text

9.2 Program Results

```
f07fg example results
Estimate of condition number = 9.73e+01
```

Mark 25 f07fg.3 (last)