NAG Toolbox
 nag_lapack_dpocon (f07fg)

1 Purpose

nag_lapack_dpocon (f07fg) estimates the condition number of a real symmetric positive definite matrix A, where A has been factorized by nag_lapack_dpotrf (f07fd).

2 Syntax

```
[rcond, info] = nag_lapack_dpocon(uplo, a, anorm, 'n', n)
[rcond, info] = f07fg(uplo, a, anorm, 'n', n)
```


3 Description

nag_lapack_dpocon (f07fg) estimates the condition number (in the 1-norm) of a real symmetric positive definite matrix A :

$$
\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1} .
$$

Since A is symmetric, $\kappa_{1}(A)=\kappa_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}$.
Because $\kappa_{1}(A)$ is infinite if A is singular, the function actually returns an estimate of the reciprocal of $\kappa_{1}(A)$.

The function should be preceded by a computation of $\|A\|_{1}$ and a call to nag_lapack_dpotrf (f07fd) to compute the Cholesky factorization of A. The function then uses Higham's implementation of Hager's method (see Higham (1988)) to estimate $\left\|A^{-1}\right\|_{1}$.

4 References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381-396

5 Parameters

5.1 Compulsory Input Parameters

1: uplo - CHARACTER(1)
Specifies how A has been factorized.
uplo $=$ ' U '
$A=U^{\mathrm{T}} U$, where U is upper triangular.
uplo $=$ 'L'
$A=L L^{\mathrm{T}}$, where L is lower triangular.
Constraint: uplo $=$ 'U' or 'L'.
2: $\quad \mathbf{a}(l d a,:)$ - REAL (KIND=nag_wp) array
The first dimension of the array a must be at least $\max (1, \mathbf{n})$.
The second dimension of the array a must be at least $\max (1, \mathbf{n})$.
The Cholesky factor of A, as returned by nag_lapack_dpotrf (f07fd).

3: \quad anorm $-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$
The 1-norm of the original matrix A. anorm must be computed either before calling nag_lapack_dpotrf (f07fd) or else from a copy of the original matrix A.
Constraint: anorm ≥ 0.0.

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the first dimension of the array a and the second dimension of the array a. n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: \quad rcond - REAL (KIND=nag_wp)
An estimate of the reciprocal of the condition number of A. rcond is set to zero if exact singularity is detected or the estimate underflows. If rcond is less than machine precision, A is singular to working precision.

2: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

$\boldsymbol{\operatorname { i n f }} \mathbf{< 0}$
If info $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed estimate rcond is never less than the true value ρ, and in practice is nearly always less than 10ρ, although examples can be constructed where rcond is much larger.

8 Further Comments

A call to nag_lapack_dpocon (f07fg) involves solving a number of systems of linear equations of the form $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution involves approximately $2 n^{2}$ floating-point operations but takes considerably longer than a call to nag_lapack_ dpotrs (f07fe) with one right-hand side, because extra care is taken to avoid overflow when A is approximately singular.
The complex analogue of this function is nag_lapack_zpocon (f07fu).

9 Example

This example estimates the condition number in the 1 -norm (or ∞-norm) of the matrix A, where

$$
A=\left(\begin{array}{rrrr}
4.16 & -3.12 & 0.56 & -0.10 \\
-3.12 & 5.03 & -0.83 & 1.18 \\
0.56 & -0.83 & 0.76 & 0.34 \\
-0.10 & 1.18 & 0.34 & 1.18
\end{array}\right)
$$

Here A is symmetric positive definite and must first be factorized by nag_lapack_dpotrf (f07fd). The true condition number in the 1 -norm is 97.32 .

9.1 Program Text

```
    function f07fg_example
fprintf('f07fg example results\n\n');
a = [ 4.16, -3.12, 0.56, -0.10;
    -3.12, 5.03, -0.83, 1.18;
    0.56, -0.83, 0.76, 0.34;
    -0.10, 1.18, 0.34, 1.18];
% Factorize
uplo = 'L';
[af, info] = f07fd(uplo, a);
% Estimate condition number
anorm = norm(a, 1);
[rcond, info] = f07fg( ...
        uplo, af, anorm);
fprintf('Estimate of condition number = %9.2e\n', 1/rcond);
```


9.2 Program Results

f07fg example results
Estimate of condition number $=9.73 \mathrm{e}+01$

