
NAG Toolbox

nag_lapack_zcposv (f07fq)

1 Purpose

nag_lapack_zcposv (f07fq) uses the Cholesky factorization

A ¼ UHU or A ¼ LLH

to compute the solution to a complex system of linear equations

AX ¼ B;

where A is an n by n Hermitian positive definite matrix and X and B are n by r matrices.

2 Syntax

[aa, xx, iitteerr, iinnffoo] = nag_lapack_zcposv(uupplloo, aa, bb, ’n’, nn, ’nrhs_p’, nnrrhhss__pp)

[aa, xx, iitteerr, iinnffoo] = f07fq(uupplloo, aa, bb, ’n’, nn, ’nrhs_p’, nnrrhhss__pp)

3 Description

nag_lapack_zcposv (f07fq) first attempts to factorize the matrix in reduced precision and use this
factorization within an iterative refinement procedure to produce a solution with full precision normwise
backward error quality (see below). If the approach fails the method switches to a full precision
factorization and solve.

The iterative refinement can be more efficient than the corresponding direct full precision algorithm.
Since the strategy implemented by nag_lapack_zcposv (f07fq) must perform iterative refinement on
each right-hand side, any efficiency gains will reduce as the number of right-hand sides increases.
Conversely, as the matrix size increases the cost of these iterative refinements become less significant
relative to the cost of factorization. Thus, any efficiency gains will be greatest for a very small number
of right-hand sides and for large matrix sizes. The cut-off values for the number of right-hand sides and
matrix size, for which the iterative refinement strategy performs better, depends on the relative
performance of the reduced and full precision factorization and back-substitution. nag_lapack_zcposv
(f07fq) always attempts the iterative refinement strategy first; you are advised to compare the
performance of nag_lapack_zcposv (f07fq) with that of its full precision counterpart nag_lapack_zposv
(f07fn) to determine whether this strategy is worthwhile for your particular problem dimensions.

The iterative refinement process is stopped if iter > 30 where iter is the number of iterations carried
out thus far. The process is also stopped if for all right-hand sides we have

residk k <
ffiffiffi
n

p
xk k Ak k�;

where residk k is the 1-norm of the residual, xk k is the 1-norm of the solution, Ak k is the 1-norm of
the matrix A and � is the machine precision returned by nag_machine_precision (x02aj).
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5 Parameters

5.1 Compulsory Input Parameters

1: uplo – CHARACTER(1)

Specifies whether the upper or lower triangular part of A is stored.

uplo ¼ U
The upper triangular part of A is stored.

uplo ¼ L
The lower triangular part of A is stored.

Constraint: uplo ¼ U or L .

2: aðlda; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension of the array a must be at least max 1;nð Þ.
The second dimension of the array a must be at least max 1;nð Þ.
The n by n Hermitian positive definite matrix A.

If uplo ¼ U , the upper triangular part of a must be stored and the elements of the array
below the diagonal are not referenced.

If uplo ¼ L , the lower triangular part of a must be stored and the elements of the array
above the diagonal are not referenced.

3: bðldb; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension of the array b must be at least max 1; nð Þ.
The second dimension of the array b must be at least max 1; nrhs pð Þ.
The right-hand side matrix B.

5.2 Optional Input Parameters

1: n – INTEGER

Default: the first dimension of the array n.

n, the number of linear equations, i.e., the order of the matrix A.

Constraint: n � 0.

2: nrhs p – INTEGER

Default: the second dimension of the array b.

r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: nrhs p � 0.

5.3 Output Parameters

1: aðlda; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension of the array a will be max 1; nð Þ.
The second dimension of the array a will be max 1; nð Þ.
If iterative refinement has been successfully used (info ¼ 0 and iter � 0, see description below),
then a is unchanged. If full precision factorization has been used (info ¼ 0 and iter < 0, see
description below), then the array A contains the factor U or L from the Cholesky factorization
A ¼ UHU or A ¼ LLH.
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2: xðldx; :Þ – COMPLEX (KIND=nag_wp) array

The first dimension of the array x will be max 1; nð Þ.
The second dimension of the array x will be max 1; nrhs pð Þ.
If info ¼ 0, the n by r solution matrix X.

3: iter – INTEGER

Information on the progress of the interative refinement process.

iter < 0
Iterative refinement has failed for one of the reasons given below, full precision
factorization has been performed instead.

�1 The function fell back to full precision for implementation- or machine-specific reasons.

�2 Narrowing the precision induced an overflow, the function fell back to full precision.

�3 An intermediate reduced precision factorization failed.

�31 The maximum permitted number of iterations was exceeded.

iter > 0
Iterative refinement has been sucessfully used. iter returns the number of iterations.

4: info – INTEGER

info ¼ 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info < 0

If info ¼ �i, argument i had an illegal value. An explanatory message is output, and execution of
the program is terminated.

info > 0 and info � n

The leading minor of order valueh i of A is not positive definite, so the factorization could not be
completed, and the solution has not been computed.

7 Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of
equations Aþ Eð Þx ¼ b, where

if uplo ¼ U , Ej j � c nð Þ� UHj j Uj j;
if uplo ¼ L , Ej j � c nð Þ� Lj j LHj j,

c nð Þ is a modest linear function of n, and � is the machine precision. See Section 10.1 of Higham
(2002) for further details.

An approximate error bound for the computed solution is given by

x̂� xk k1
xk k1

� � Að Þ Ek k1
Ak k1

where � Að Þ ¼ A�1
�� ��

1
Ak k1, the condition number of A with respect to the solution of the linear

equations. See Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The real analogue of this function is nag_lapack_dsposv (f07fc).
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9 Example

This example solves the equations

AX ¼ B;

where A is the Hermitian positive definite matrix

A ¼
3:23 1:51� 1:92i 1:90þ 0:84i 0:42þ 2:50i
1:51þ 1:92i 3:58 �0:23þ 1:11i �1:18þ 1:37i
1:90� 0:84i �0:23� 1:11i 4:09 2:33� 0:14i
0:42� 2:50i �1:18� 1:37i 2:33þ 0:14i 4:29

0
B@

1
CA

and

B ¼
3:93� 6:14i
6:17þ 9:42i

�7:17� 21:83i
1:99� 14:38i

0
B@

1
CA:

9.1 Program Text

function f07fq_example

fprintf(’f07fq example results\n\n’);

% Hermitian matrix A
a = [3.23 + 0i, 1.51 - 1.92i, 1.90 + 0.84i, 0.42 + 2.50i;

1.51 + 1.92i, 3.58 + 0i, -0.23 + 1.11i, -1.18 + 1.37i;
1.90 - 0.84i, -0.23 - 1.11i, 4.09 + 0i, 2.33 - 0.14i;
0.42 - 2.50i, -1.18 - 1.37i, 2.33 + 0.14i, 4.29 + 0i];

% Rhs
b = [3.93 - 6.14i;

6.17 + 9.42i;
-7.17 - 21.83i;
1.99 - 14.38i];

% Solve Ax = b for x
[af, x, iter, info] = f07fq( ...

’Upper’, a, b);

fprintf(’Solution:\n’);
disp(x);

9.2 Program Results

f07fq example results

Solution:
1.0000 - 1.0000i

-0.0000 + 3.0000i
-4.0000 - 5.0000i
2.0000 + 1.0000i
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