NAG Toolbox
 nag_lapack_dpbrfs (f07hh)

1 Purpose

nag_lapack_dpbrfs (f07hh) returns error bounds for the solution of a real symmetric positive definite band system of linear equations with multiple right-hand sides, $A X=B$. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Syntax

```
[x, ferr, berr, info] = nag_lapack_dpbrfs(uplo, kd, ab, afb, b, x, 'n', n,
'nrhs_p', nrhs_p)
[x, ferr, berr, info] = f07hh(uplo, kd, ab, afb, b, x, 'n', n, 'nrhs_p', nrhs_p)
```


3 Description

nag_lapack_dpbrfs (f07hh) returns the backward errors and estimated bounds on the forward errors for the solution of a real symmetric positive definite band system of linear equations with multiple righthand sides $A X=B$. The function handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of nag_lapack_dpbrfs (f07hh) in terms of a single righthand side b and solution x.

Given a computed solution x, the function computes the component-wise backward error β. This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system

$$
\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right| \quad \begin{gathered}
(A+\delta A) x=b+\delta b \\
\text { and } \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| .
\end{gathered}
$$

Then the function estimates a bound for the component-wise forward error in the computed solution, defined by:

$$
\max _{i}\left|x_{i}-\hat{x}_{i}\right| / \max _{i}\left|x_{i}\right|
$$

where \hat{x} is the true solution.
For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

uplo - CHARACTER(1)
Specifies whether the upper or lower triangular part of A is stored and how A is to be factorized. uplo $=$ ' U '

The upper triangular part of A is stored and A is factorized as $U^{\mathrm{T}} U$, where U is upper triangular.
uplo $=$ 'L'
The lower triangular part of A is stored and A is factorized as $L L^{\mathrm{T}}$, where L is lower triangular.
Constraint: uplo = 'U' or 'L'.
2: kd - INTEGER
k_{d}, the number of superdiagonals or subdiagonals of the matrix A.
Constraint: $\mathbf{k d} \geq 0$.
$\mathbf{a b}(l d a b,:)$ - REAL (KIND=nag_wp) array
The first dimension of the array ab must be at least $\mathbf{k d}+1$.
The second dimension of the array $\mathbf{a b}$ must be at least $\max (1, \mathbf{n})$.
The n by n original symmetric positive definite band matrix A as supplied to nag_lapack_dpbtrf (f07hd).

4: $\quad \mathbf{a f b}(l d a f b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array afb must be at least $\mathbf{k d}+1$.
The second dimension of the array $\mathbf{a f b}$ must be at least $\max (1, \mathbf{n})$.
The Cholesky factor of A, as returned by nag_lapack_dpbtrf (f07hd).
5: $\quad \mathbf{b}(l d b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array \mathbf{b} must be at least $\max (1, \mathbf{n})$.
The second dimension of the array \mathbf{b} must be at least $\max (1$, nrhs_p).
The n by r right-hand side matrix B.
6: $\quad \mathbf{x}(l d x,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array \mathbf{x} must be at least $\max (1, \mathbf{n})$.
The second dimension of the array \mathbf{x} must be at least $\max (1$, nrhs_p).
The n by r solution matrix X, as returned by nag_lapack_dpbtrs (f07he).

5.2 Optional Input Parameters

1: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array $\mathbf{a b}$.
n, the order of the matrix A.
Constraint: $\mathbf{n} \geq 0$.
nrhs_p - INTEGER
Default: the second dimension of the arrays \mathbf{b}, \mathbf{x}.
r, the number of right-hand sides.
Constraint: $\mathbf{n r h s} \mathbf{p} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{x}(l d x,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array \mathbf{x} will be $\max (1, \mathbf{n})$.

The second dimension of the array \mathbf{x} will be $\max (1, \mathbf{n r h s} \mathbf{p})$.
The improved solution matrix X.

2: $\quad \mathbf{f e r r}(\mathbf{n r h s} \mathbf{p})$ - REAL (KIND=nag_wp) array
$\operatorname{ferr}(j)$ contains an estimated error bound for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots, r$.

3: berr($\mathbf{n r h s} \mathbf{- p}$) - REAL (KIND=nag_wp) array
$\operatorname{berr}(j)$ contains the component-wise backward error bound β for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots, r$.

4: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info <0
If info $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of $8 n k$ floating-point operations. Each step of iterative refinement involves an additional $12 n k$ operations. This assumes $n \gg k$. At most five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution involves approximately $4 n k$ operations.
The complex analogue of this function is nag_lapack_zpbrfs (f07hv).

9 Example

This example solves the system of equations $A X=B$ using iterative refinement and to compute the forward and backward error bounds, where

$$
A=\left(\begin{array}{rrrr}
5.49 & 2.68 & 0.00 & 0.00 \\
2.68 & 5.63 & -2.39 & 0.00 \\
0.00 & -2.39 & 2.60 & -2.22 \\
0.00 & 0.00 & -2.22 & 5.17
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
22.09 & 5.10 \\
9.31 & 30.81 \\
-5.24 & -25.82 \\
11.83 & 22.90
\end{array}\right)
$$

Here A is symmetric and positive definite, and is treated as a band matrix, which must first be factorized by nag_lapack_dpbtrf (f07hd).

9.1 Program Text

```
    function f07hh_example
fprintf('f07hh example results\n\n');
% Symmetric banded matrix A in ab.
uplo = 'L';
kd = nag_int(1);
ab = [5.49, 5.63, 2.6, 5.17;
    2.68, -2.39, -2.22, 0 ];
% Factorize A
[abf, info] = f07hd( ...
        uplo, kd, ab);
% RHS
b = [22.09, 5.10;
    9.31, 30.81;
    -5.24, -25.82;
    11.83, 22.90];
% Solve Ax = B
[x, info] = f07he( ...
                uplo, kd, abf, b);
```

\% Iterative refinement
[x, ferr, berr, info] = f07hh(...
uplo, kd, ab, abf, b, x);
disp('Solution');
disp(x);
fprintf('Forward error bounds = \%10.1e \%10.1e\n',ferr);
fprintf('Backward error bounds $=\% 10.1 \mathrm{e} \% 10.1 \mathrm{e} \backslash \mathrm{n}$ ',berr); ;

9.2 Program Results

fo7hh example re	
Solution	
5.0000	-2.0000
-2.0000	6.0000
-3.0000	-1.0000
1.0000	4.0000

Forward error bounds $=2.1 e-14 \quad 2.8 e-14$
Backward error bounds $=8.6 e-17$ 1.1e-16

