NAG Toolbox

nag_lapack_zsyrfs (f07nv)

1 Purpose

nag_lapack_zsyrfs (f07nv) returns error bounds for the solution of a complex symmetric system of linear equations with multiple right-hand sides, AX = B. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Syntax

```
[x, ferr, berr, info] = nag_lapack_zsyrfs(uplo, a, af, ipiv, b, x, 'n', n,
'nrhs_p', nrhs_p)
[x, ferr, berr, info] = f07nv(uplo, a, af, ipiv, b, x, 'n', n, 'nrhs_p', nrhs_p)
```

3 Description

nag_lapack_zsyrfs (f07nv) returns the backward errors and estimated bounds on the forward errors for the solution of a complex symmetric system of linear equations with multiple right-hand sides AX = B. The function handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of nag_lapack_zsyrfs (f07nv) in terms of a single right-hand side b and solution x.

Given a computed solution x, the function computes the *component-wise backward error* β . This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system

$$\begin{aligned} &(A + \delta A)x = b + \delta b \\ &|\delta a_{ij}| \le \beta |a_{ij}| \quad \text{ and } \quad |\delta b_i| \le \beta |b_i|. \end{aligned}$$

Then the function estimates a bound for the *component-wise forward error* in the computed solution, defined by:

$$\max_{i} |x_i - \hat{x}_i| / \max_{i} |x_i|$$

where \hat{x} is the true solution.

For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: **uplo** – CHARACTER(1)

Specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.

$$uplo = 'U'$$

The upper triangular part of A is stored and A is factorized as $PUDU^{T}P^{T}$, where U is upper triangular.

Mark 25 f07nv.1

uplo = 'L'

The lower triangular part of A is stored and A is factorized as $PLDL^{T}P^{T}$, where L is lower triangular.

Constraint: **uplo** = 'U' or 'L'.

2: $\mathbf{a}(lda,:)$ - COMPLEX (KIND=nag wp) array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{n})$.

The second dimension of the array \mathbf{a} must be at least max $(1, \mathbf{n})$.

The n by n original symmetric matrix A as supplied to nag lapack zsytrf (f07nr).

3: $\mathbf{af}(ldaf,:) - \text{COMPLEX} \text{ (KIND=nag wp) array}$

The first dimension of the array **af** must be at least $max(1, \mathbf{n})$.

The second dimension of the array **af** must be at least $max(1, \mathbf{n})$.

Details of the factorization of A, as returned by nag lapack zsytrf (f07nr).

4: **ipiv**(:) – INTEGER array

The dimension of the array **ipiv** must be at least $max(1, \mathbf{n})$

Details of the interchanges and the block structure of D, as returned by nag_lapack_zsytrf (f07nr).

5: $\mathbf{b}(ldb,:)$ - COMPLEX (KIND=nag wp) array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$.

The second dimension of the array **b** must be at least $max(1, nrhs_p)$.

The n by r right-hand side matrix B.

6: $\mathbf{x}(ldx,:)$ - COMPLEX (KIND=nag wp) array

The first dimension of the array \mathbf{x} must be at least $\max(1, \mathbf{n})$.

The second dimension of the array \mathbf{x} must be at least $\max(1, \mathbf{nrhs}_{-\mathbf{p}})$.

The n by r solution matrix X, as returned by nag lapack zsytrs (f07ns).

5.2 Optional Input Parameters

1: **n** – INTEGER

Default: the first dimension of the arrays a, af, b, x and the second dimension of the arrays a, af, ipiv.

n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

2: **nrhs_p** - INTEGER

Default: the second dimension of the arrays \mathbf{b} , \mathbf{x} . (An error is raised if these dimensions are not equal.)

r, the number of right-hand sides.

Constraint: $\mathbf{nrhs}_{-}\mathbf{p} \geq 0$.

f07nv.2 Mark 25

5.3 Output Parameters

1: $\mathbf{x}(ldx,:)$ - COMPLEX (KIND=nag wp) array

The first dimension of the array \mathbf{x} will be $\max(1, \mathbf{n})$.

The second dimension of the array x will be $max(1, nrhs_p)$.

The improved solution matrix X.

2: **ferr(nrhs_p)** - REAL (KIND=nag_wp) array

ferr(j) contains an estimated error bound for the jth solution vector, that is, the jth column of X, for j = 1, 2, ..., r.

3: **berr(nrhs_p)** - REAL (KIND=nag_wp) array

berr(j) contains the component-wise backward error bound β for the jth solution vector, that is, the jth column of X, for $j = 1, 2, \dots, r$.

4: **info** – INTEGER

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info < 0

If info = -i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The bounds returned in **ferr** are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of $16n^2$ real floating-point operations. Each step of iterative refinement involves an additional $24n^2$ real operations. At most five steps of iterative refinement are performed, but usually only one or two steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Ax = b; the number is usually 5 and never more than 11. Each solution involves approximately $8n^2$ real operations.

The real analogue of this function is nag_lapack_dsyrfs (f07mh).

9 Example

This example solves the system of equations AX = B using iterative refinement and to compute the forward and backward error bounds, where

$$A = \begin{pmatrix} -0.39 - 0.71i & 5.14 - 0.64i & -7.86 - 2.96i & 3.80 + 0.92i \\ 5.14 - 0.64i & 8.86 + 1.81i & -3.52 + 0.58i & 5.32 - 1.59i \\ -7.86 - 2.96i & -3.52 + 0.58i & -2.83 - 0.03i & -1.54 - 2.86i \\ 3.80 + 0.92i & 5.32 - 1.59i & -1.54 - 2.86i & -0.56 + 0.12i \end{pmatrix}$$

and

Mark 25 f07nv.3

$$B = \begin{pmatrix} -55.64 + 41.22i & -19.09 - 35.97i \\ -48.18 + 66.00i & -12.08 - 27.02i \\ -0.49 - 1.47i & 6.95 + 20.49i \\ -6.43 + 19.24i & -4.59 - 35.53i \end{pmatrix}$$

Here A is symmetric and must first be factorized by nag lapack zsytrf (f07nr).

9.1 Program Text

5.5e-17 7.3e-17

1.2e-14

1.2e-14

Estimated forward error bounds (machine-dependent)

```
function f07nv_example
fprintf('f07nv example results\n\n');
% Complex symmetrix matrix A, lower triangle stored.
uplo = 'L';
 \begin{array}{c} \text{a} = \begin{bmatrix} -0.39 - 0.71 \text{i}, & 0 & + 0 \text{i}, & 0 & + 0 \text{i}, & 0 & + 0 \text{i}; \\ 5.14 - 0.64 \text{i}, & 8.86 + 1.81 \text{i}, & 0 & + 0 \text{i}, & 0 & + 0 \text{i}; \\ -7.86 - 2.96 \text{i}, & -3.52 + 0.58 \text{i}, & -2.83 - 0.03 \text{i}, & 0 & + 0 \text{i}; \\ \end{array} 
        3.80 + 0.92i, 5.32 - 1.59i, -1.54 - 2.86i, -0.56 + 0.12i];
% Factorize A
[af, ipiv, info] = f07nr( ...
                                  uplo, a);
% RHS
b = [-55.64 + 41.22i, -19.09 - 35.97i;
        -48.18 + 66.00i, -12.08 - 27.02i;
         -0.49 - 1.47i, 6.95 + 20.49i;
-6.43 + 19.24i, -4.59 - 35.53i];
% Solve Ax=b
[x, info] = f07ns( ...
                         uplo, af, ipiv, b);
% Refine
[x, ferr, berr, info] = f07nv(...
                                        uplo, a, af, ipiv, b, x);
disp('Solution(s)');
disp(x);
fprintf('Backward errors (machine-dependent)\n
fprintf('%11.1e', berr);
fprintf('\nEstimated forward error bounds (machine-dependent)\n
fprintf('%11.1e', ferr);
fprintf('\n');
9.2
      Program Results
       f07nv example results
Solution(s)
    1.0000 - 1.0000i -2.0000 - 1.0000i
  -2.0000 + 5.0000i 1.0000 - 3.0000i
    3.0000 - 2.0000i
                           3.0000 + 2.0000i
  -4.0000 + 3.0000i -1.0000 + 1.0000i
Backward errors (machine-dependent)
```

f07nv.4 (last) Mark 25