F08 — Least-squares and Eigenvalue Problems (LAPACK) f08ap

NAG Toolbox

nag lapack zgeqrt (f08ap)

1 Purpose

nag lapack zgeqrt (fO08ap) recursively computes, with explicit blocking, the QR factorization of a
complex m by n matrix.

2 Syntax
[a, t, info] = nag_lapack_zgeqrt(nb, a, 'm’, m, 'n’, n)
[a, t, info] = f08ap(nb, a, 'm’, m, 'n’, n)

3 Description

nag_lapack zgeqrt (f08ap) forms the QR factorization of an arbitrary rectangular complex m by n
matrix. No pivoting is performed.

It differs from nag lapack zgeqrf (fO8as) in that it: requires an explicit block size; stores reflector
factors that are upper triangular matrices of the chosen block size (rather than scalars); and recursively
computes the QR factorization based on the algorithm of Elmroth and Gustavson (2000).

)

where R is an n by n upper triangular matrix (with real diagonal elements) and @ is an m by m unitary
matrix. It is sometimes more convenient to write the factorization as

a=(a @)

If m > n, the factorization is given by:

which reduces to
A= Ql Ra
where (), consists of the first n columns of ), and @, the remaining m — n columns.

If m < n, R is upper trapezoidal, and the factorization can be written
A=Q(R, Ry),
where R; is upper triangular and R, is rectangular.

The matrix @ is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the FO8 Chapter Introduction for details). Functions are provided to work with @ in this
representation (see Section 9).

Note also that for any k£ < n, the information returned represents a QR factorization of the first k
columns of the original matrix A.

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads
to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605-624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Mark 25 f08ap.1



f08ap

5.1

5.2

5.3

NAG Toolbox for MATLAB Manual

Parameters

Compulsory Input Parameters
nb — INTEGER

The explicitly chosen block size to be used in computing the QR factorization. See Section 9 for
details.

Constraints:
nb > 1;
if min(m,n) > 0, nb < min(m, n).
a(lda,:) — COMPLEX (KIND=nag_wp) array
The first dimension of the array a must be at least max(1, m).
The second dimension of the array a must be at least max(1,n).

The m by n matrix A.

Optional Input Parameters

m — INTEGER

Default: the first dimension of the array a.
m, the number of rows of the matrix A.

Constraint: m > 0.

n — INTEGER
Default: the second dimension of the array a.
n, the number of columns of the matrix A.

Constraint: n > 0.

Output Parameters

a(lda,:) — COMPLEX (KIND=nag_ wp) array

The first dimension of the array a will be max(1, m).
The second dimension of the array a will be max(1,n).

If m > n, the elements below the diagonal store details of the unitary matrix ¢ and the upper
triangle stores the corresponding elements of the n by n upper triangular matrix R.

If m < n, the strictly lower triangular part stores details of the unitary matrix @) and the
remaining elements store the corresponding elements of the m by n upper trapezoidal matrix R.

The diagonal elements of R are real.

t(ldt,:) — COMPLEX (KIND=nag_wp) array
The first dimension of the array t will be nb.

The second dimension of the array t will be max(l, min(m,n)).

Further details of the unitary matrix (). The number of blocks is b = [ﬁ] , where k = min(m, n)

and each block is of order nb except for the last block, which is of order k — (b — 1) x nb. For
each of the blocks, an upper triangular block reflector factor is computed: 7', T3, ..., T;. These
are stored in the nb by n matrix T as T = [T|T3|...|Ty).

f08ap.2 Mark 25



F08 — Least-squares and Eigenvalue Problems (LAPACK) f08ap

3: info — INTEGER

info = 0 unless the function detects an error (see Section 6).

6  Error Indicators and Warnings

info < 0

If info = —i, argument ¢ had an illegal value. An explanatory message is output, and execution of
the program is terminated.

7  Accuracy

The computed factorization is the exact factorization of a nearby matrix (A + E), where
1E]l, = O(e) [ All,,

and e is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately §n2(3m—n) if m>n or

8m?(3n —m) if m <n.
To apply @ to an arbitrary complex rectangular matrix C, nag lapack zgeqrt (f08ap) may be followed
by a call to nag_lapack zgemqrt (f08aq). For example,

[t, ¢, info] = f08aq(’'Left’, ’Conjugate Transpose’, nb, a, t, c¢);

forms C' = Q"C, where C is m by p.

To form the unitary matrix ) explicitly, simply initialize the m by m matrix C' to the identity matrix
and form C' = QC using nag_lapack zgemgqrt (f08aq) as above.

The block size, nb, used by nag_lapack zgeqrt (f08ap) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
nb = 64 < min(m,n) is likely to achieve good efficiency and it is unlikely that an optimal value would
exceed 340.

To compute a QR factorization with column pivoting, use nag_lapack ztpqrt (fO8bp) or nag lapack
zgeqpf (fO8bs).

The real analogue of this function is nag lapack dgeqrt (fO8ab).

9 Example
This example solves the linear least squares problems

minimize || Az; — bill,, ©=1,2
where by and b, are the columns of the matrix B,

0.96 —0.81¢ —0.0340.96: —0.91+2.060 —0.0540.417
—098+198: —120+0.19¢ —-0.66+4+0.42: —0.81+ 0.56¢
0.62 — 0.46¢ 1.01 +0.02¢ 0.63 —0.172 —1.11 4 0.607
—0.37+0.38¢ 0.19 -0.54: —0.98 —0.367 0.22 —0.20¢
0.83 +0.514 0.20+0.01z —0.17 — 0.461 1.47 4 1.59¢
1.08 —0.28¢ 0.20 - 0.12¢ —0.07 4-1.23% 0.26 + 0.26¢

and

Mark 25 f08ap.3



f08ap NAG Toolbox for MATLAB Manual

—2.09 +1.93¢ 326 -2.70¢
334 -3.53: —6.2241.163
—4.94 —2.04¢ 7.94 —3.13¢
0.17 +4.234 1.04 — 4.26:
—5.1943.637 —2.31—-2.12¢
0.98 +2.53t —1.39 —4.05¢

9.1 Program Text

function f08ap_example

fprintf(’'£f08ap example results\n\n’);

% Minimize ||AX - b|| using recursive QR for m-by-n A and m-by-p B
m = nag_int (6);
n nag_int (4);
p = nag_int(2);

a=1[0.96 - 0.81i, -0.03 + 0.96i, -0.91 + 2.06i, -0.05 + 0.41i;
-0.98 + 1.98i, -1.20 + 0.19i, -0.66 + 0.42i, -0.81 + 0.561;
0.62 - 0.46i, 1.0l + 0.02i, 0.63 - 0.17i, =-1.11 + 0.60i;
-0.37 + 0.38i, 0.19 - 0.54i, -0.98 - 0.36i, 0.22 - 0.20i;
0.83 + 0.51i, 0.20 + 0.01i, -0.17 - 0.46i, 1.47 + 1.59i;
1.08 - 0.28i, 0.20 - 0.12i, =-0.07 + 1.23i, 0.26 + 0.26i];
b = [-2.09 + 1.93i, 3.26-2.70i;
3.34 - 3.53i, -6.22+1.161;
-4.94 - 2.04i,  7.94-3.13i;
0.17 + 4.23i, 1.04-4.26i;
-5.19 + 3.63i, -2.31-2.12i;
0.98 + 2.53i, -1.39-4.05i];

% Compute the QR Factorisation of A
[QR, T, info] = f08ap(n,a);

% Compute C = (Cl) = (Q"H)*B
[cl, info] = f08aqg(...
"Left’, ’'Conjugate Transpose’, QR, T, b);

% Compute least-squares solutions by backsubstitution in R*X = C1
[x, info] = f07ts (...
"Upper’, ’'No Transpose’, ’'Non-Unit’, QR, cl, ’'n’, n);

% Print least-squares solutions
disp(’'Least-squares solutions’);
disp(x(1l:n,:));

% Compute and print estimates of the square roots of the residual

% sums of squares
for j=1:p

rnorm(j) = norm(x(n+l:m,j));
end

fprintf (’\nSquare roots of the residual sums of squares\n’);
fprintf(’%12.2e’, rnorm);
fprintf(’'\n’);

f08ap.4 Mark 25



F08 — Least-squares and Eigenvalue Problems (LAPACK)

9.2 Program Results

f08ap example results

Least-squares solutions

-0.5044 - 1.21791i
-2.4281 + 2.85741
1.4872 - 2.19551
0.4537 + 2.69041

Square roots of the

0.7629
5.1570
-2.6518
-2.7606

residual

6.88e-02 1.87e-01

.45291
.60891
.12031
.33181i

+ o+ 1+
ON W

sums of squares

f08ap

Mark 25

f08ap.5 (last)



	nag_lapack_zgeqrt (f08ap)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Elmroth and Gustavson (2000)
	Golub and Van Loan (2012)

	5 Parameters
	5.1 Compulsory Input Parameters
	nb
	a

	5.2 Optional Input Parameters
	m
	n

	5.3 Output Parameters
	a
	t
	info


	6 Error Indicators and Warnings
	info<0

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results


	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction




