NAG Toolbox nag_lapack_zgeqrt (f08ap)

1 Purpose

nag_lapack_zgeqrt (f08ap) recursively computes, with explicit blocking, the $Q R$ factorization of a complex m by n matrix.

2 Syntax

```
[a, t, info] = nag_lapack_zgeqrt(nb, a, 'm', m, 'n', n)
[a, t, info] = f08ap(nb, a, 'm', m, 'n', n)
```


3 Description

nag_lapack_zgeqrt (f08ap) forms the $Q R$ factorization of an arbitrary rectangular complex m by n matrix. No pivoting is performed.

It differs from nag_lapack_zgeqrf (f08as) in that it: requires an explicit block size; stores reflector factors that are upper triangular matrices of the chosen block size (rather than scalars); and recursively computes the $Q R$ factorization based on the algorithm of Elmroth and Gustavson (2000).

If $m \geq n$, the factorization is given by:

$$
A=Q\binom{R}{0}
$$

where R is an n by n upper triangular matrix (with real diagonal elements) and Q is an m by m unitary matrix. It is sometimes more convenient to write the factorization as

$$
A=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}
$$

which reduces to

$$
A=Q_{1} R
$$

where Q_{1} consists of the first n columns of Q, and Q_{2} the remaining $m-n$ columns.
If $m<n, R$ is upper trapezoidal, and the factorization can be written

$$
A=Q\left(\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right)
$$

where R_{1} is upper triangular and R_{2} is rectangular.
The matrix Q is not formed explicitly but is represented as a product of $\min (m, n)$ elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 9).

Note also that for any $k<n$, the information returned represents a $Q R$ factorization of the first k columns of the original matrix A.

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel $Q R$ Factorization Leads to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605-624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: nb - INTEGER
The explicitly chosen block size to be used in computing the $Q R$ factorization. See Section 9 for details.

Constraints:

$$
\mathbf{n b} \geq 1
$$

if $\min (\mathbf{m}, \mathbf{n})>0, \mathbf{n b} \leq \min (\mathbf{m}, \mathbf{n})$.
2: $\quad \mathbf{a}(l d a,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array a must be at least $\max (1, \mathbf{m})$.
The second dimension of the array a must be at least $\max (1, \mathbf{n})$.
The m by n matrix A.

5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the first dimension of the array a.
m, the number of rows of the matrix A.
Constraint: $\mathbf{m} \geq 0$.
2: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array a.
n, the number of columns of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array a will be $\max (1, \mathbf{m})$.
The second dimension of the array \mathbf{a} will be $\max (1, \mathbf{n})$.
If $m \geq n$, the elements below the diagonal store details of the unitary matrix Q and the upper triangle stores the corresponding elements of the n by n upper triangular matrix R.

If $m<n$, the strictly lower triangular part stores details of the unitary matrix Q and the remaining elements store the corresponding elements of the m by n upper trapezoidal matrix R.
The diagonal elements of R are real.
2: $\quad \mathbf{t}(l d t,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array \mathbf{t} will be nb.
The second dimension of the array \mathbf{t} will be $\max (1, \min (\mathbf{m}, \mathbf{n}))$.
Further details of the unitary matrix Q. The number of blocks is $b=\left\lceil\frac{k}{\mathbf{n b}}\right\rceil$, where $k=\min (m, n)$ and each block is of order $\mathbf{n b}$ except for the last block, which is of order $k-(b-1) \times \mathbf{n b}$. For each of the blocks, an upper triangular block reflector factor is computed: $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}, \ldots, \boldsymbol{T}_{b}$. These are stored in the nb by n matrix T as $\boldsymbol{T}=\left[\boldsymbol{T}_{1}\left|\boldsymbol{T}_{2}\right| \ldots \mid \boldsymbol{T}_{b}\right]$.

3: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info <0
If info $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $(A+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2}
$$

and ϵ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately $\frac{8}{3} n^{2}(3 m-n)$ if $m \geq n$ or $\frac{8}{3} m^{2}(3 n-m)$ if $m<n$.
To apply Q to an arbitrary complex rectangular matrix C, nag_lapack_zgeqrt (f08ap) may be followed by a call to nag_lapack_zgemqrt (f08aq). For example,

```
[t, c, info] = f08aq('Left', 'Conjugate Transpose', nb, a, t, c);
```

forms $C=Q^{\mathrm{H}} C$, where C is m by p.
To form the unitary matrix Q explicitly, simply initialize the m by m matrix C to the identity matrix and form $C=Q C$ using nag_lapack_zgemqrt (f08aq) as above.

The block size, nb, used by nag_lapack_zgeqrt (f08ap) is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of $\mathbf{n b}=64 \ll \min (m, n)$ is likely to achieve good efficiency and it is unlikely that an optimal value would exceed 340.

To compute a $Q R$ factorization with column pivoting, use nag_lapack_ztpqrt (f08bp) or nag_lapack_ zgeqpf (f08bs).
The real analogue of this function is nag_lapack_dgeqrt (f08ab).

9 Example

This example solves the linear least squares problems

$$
\operatorname{minimize}\left\|A x_{i}-b_{i}\right\|_{2}, \quad i=1,2
$$

where b_{1} and b_{2} are the columns of the matrix B,

$$
A=\left(\begin{array}{rrrr}
0.96-0.81 i & -0.03+0.96 i & -0.91+2.06 i & -0.05+0.41 i \\
-0.98+1.98 i & -1.20+0.19 i & -0.66+0.42 i & -0.81+0.56 i \\
0.62-0.46 i & 1.01+0.02 i & 0.63-0.17 i & -1.11+0.60 i \\
-0.37+0.38 i & 0.19-0.54 i & -0.98-0.36 i & 0.22-0.20 i \\
0.83+0.51 i & 0.20+0.01 i & -0.17-0.46 i & 1.47+1.59 i \\
1.08-0.28 i & 0.20-0.12 i & -0.07+1.23 i & 0.26+0.26 i
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
-2.09+1.93 i & 3.26-2.70 i \\
3.34-3.53 i & -6.22+1.16 i \\
-4.94-2.04 i & 7.94-3.13 i \\
0.17+4.23 i & 1.04-4.26 i \\
-5.19+3.63 i & -2.31-2.12 i \\
0.98+2.53 i & -1.39-4.05 i
\end{array}\right) .
$$

9.1 Program Text

```
    function f08ap_example
fprintf('f08ap example results\n\n');
% Minimize ||Ax - b|| using recursive QR for m-by-n A and m-by-p B
m = nag_int(6);
n = nag_int(4);
p = nag_int(2);
a=[ 0.96-0.81i, -0.03 + 0.96i, -0.91 + 2.06i, -0.05 + 0.41i;
    -0.98 + 1.98i, -1.20 + 0.19i, -0.66 + 0.42i, -0.81 + 0.56i;
        0.62 - 0.46i, 1.01 + 0.02i, 0.63-0.17i, -1.11 + 0.60i;
        -0.37 + 0.38i, 0.19-0.54i, -0.98-0.36i, 0.22 - 0.20i;
        0.83 + 0.51i, 0.20 + 0.01i, -0.17 - 0.46i, 1.47 + 1.59i;
        1.08-0.28i, 0.20-0.12i, -0.07 + 1.23i, 0.26 + 0.26i];
b = [-2.09 + 1.93i, 3.26-2.70i;
        3.34 - 3.53i, -6.22+1.16i;
        -4.94 - 2.04i, 7.94-3.13i;
        0.17 + 4.23i, 1.04-4.26i;
        -5.19 + 3.63i, -2.31-2.12i;
        0.98 + 2.53i, -1.39-4.05i];
```

\% Compute the $Q R$ Factorisation of A
$[Q R, T, \operatorname{info}]=$ f08ap (n, a);
\% Compute $\mathrm{C}=(\mathrm{C} 1)=\left(\mathrm{Q}^{\wedge} \mathrm{H}\right) * \mathrm{~B}$
[c1, info] $=$ f08aq(...
'Left', 'Conjugate Transpose', QR, T, b);
\% Compute least-squares solutions by backsubstitution in $R * X=C 1$
[x, info] $=$ f07ts(...
'Upper', 'No Transpose', 'Non-Unit', QR, c1, 'n', n);
\% Print least-squares solutions
disp('Least-squares solutions');
disp(x(1:n,:));
\% Compute and print estimates of the square roots of the residual
\% sums of squares
for $j=1: p$
rnorm(j) $=\operatorname{norm}(x(n+1: m, j)) ;$
end
fprintf('\nSquare roots of the residual sums of squares n^{\prime});
fprintf('\%12.2e', rnorm);
fprintf('\n');

9.2 Program Results

```
    f08ap example results
Least-squares solutions
    -0.5044 - 1.2179i 0.7629 + 1.4529i
    -2.4281 + 2.8574i 5.1570 - 3.6089i
    1.4872 - 2.1955i -2.6518 + 2.1203i
    0.4537 + 2.6904i -2.7606 + 0.3318i
Square roots of the residual sums of squares
        6.88e-02
    1.87e-01
```

