NAG Toolbox

nag_lapack_zgelqf (f08av)

1 Purpose

nag_lapack_zgelqf (f08av) computes the $L Q$ factorization of a complex m by n matrix.

2 Syntax

```
[a, tau, info] = nag_lapack_zgelqf(a, 'm', m, 'n', n)
[a, tau, info] = f08av(a, 'm', m, 'n', n)
```


3 Description

nag_lapack_zgelqf (f08av) forms the $L Q$ factorization of an arbitrary rectangular complex m by n matrix. No pivoting is performed.

If $m \leq n$, the factorization is given by:

$$
A=\left(\begin{array}{ll}
L & 0
\end{array}\right) Q
$$

where L is an m by m lower triangular matrix (with real diagonal elements) and Q is an n by n unitary matrix. It is sometimes more convenient to write the factorization as

$$
A=\left(\begin{array}{ll}
L & 0
\end{array}\right)\binom{Q_{1}}{Q_{2}}
$$

which reduces to

$$
A=L Q_{1}
$$

where Q_{1} consists of the first m rows of Q, and Q_{2} the remaining $n-m$ rows.
If $m>n, L$ is trapezoidal, and the factorization can be written

$$
A=\binom{L_{1}}{L_{2}} Q
$$

where L_{1} is lower triangular and L_{2} is rectangular.
The $L Q$ factorization of A is essentially the same as the $Q R$ factorization of A^{H}, since

$$
A=\left(\begin{array}{ll}
L & 0
\end{array}\right) Q \Leftrightarrow A^{\mathrm{H}}=Q^{\mathrm{H}}\binom{L^{\mathrm{H}}}{0} .
$$

The matrix Q is not formed explicitly but is represented as a product of $\min (m, n)$ elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 9).
Note also that for any $k<m$, the information returned in the first k rows of the array a represents an $L Q$ factorization of the first k rows of the original matrix A.

4 References

None.

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}(l d a,:)-$ COMPLEX (KIND=nag_wp) array
The first dimension of the array a must be at least $\max (1, \mathbf{m})$.
The second dimension of the array a must be at least $\max (1, \mathbf{n})$.
The m by n matrix A.

5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the first dimension of the array a.
m, the number of rows of the matrix A.
Constraint: $\mathbf{m} \geq 0$.

2: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array a.
n, the number of columns of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array a will be $\max (1, \mathbf{m})$.
The second dimension of the array a will be $\max (1, \mathbf{n})$.
If $m \leq n$, the elements above the diagonal store details of the unitary matrix Q and the lower triangle stores the corresponding elements of the m by m lower triangular matrix L.

If $m>n$, the strictly upper triangular part stores details of the unitary matrix Q and the remaining elements store the corresponding elements of the m by n lower trapezoidal matrix L.
The diagonal elements of L are real.
2: $\boldsymbol{\operatorname { t a u }}(:)$ - COMPLEX (KIND=$=$ nag_wp) array
The dimension of the array tau will be $\max (1, \min (\mathbf{m}, \mathbf{n}))$
Further details of the unitary matrix Q.
3: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

$\boldsymbol{i n f o}=-i$
If $\operatorname{info}=-i$, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: m, 2: n, 3: a, 4: lda, 5: tau, 6: work, 7: lwork, 8: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $(A+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2}
$$

and ϵ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately $\frac{8}{3} m^{2}(3 n-m)$ if $m \leq n$ or $\frac{8}{3} n^{2}(3 m-n)$ if $m>n$.
To form the unitary matrix Q nag_lapack_zgelqf (f08av) may be followed by a call to nag_lapack_zunglq (f08aw):

```
[a, info] = f08aw(a(1:n,:), tau);
```

but note that the first dimension of the array \mathbf{a}, specified by the argument $l d a$, must be at least \mathbf{n}, which may be larger than was required by nag_lapack_zgelqf (f08av).
When $m \leq n$, it is often only the first m rows of Q that are required, and they may be formed by the call:

```
[a, info] = f08aw(a, tau, 'k', m);
```

To apply Q to an arbitrary complex rectangular matrix C, nag_lapack_zgelqf (f08av) may be followed by a call to nag_lapack_zunmlq (f08ax). For example,

```
[c, info] = f08ax('Left', 'Conjugate Transpose', a(:,1:p), tau, c);
```

forms the matrix product $C=Q^{\mathrm{H}} C$, where C is m by p.
The real analogue of this function is nag_lapack_dgelqf (f08ah).

9 Example

This example finds the minimum norm solutions of the under-determined systems of linear equations

$$
A x_{1}=b_{1} \quad \text { and } \quad A x_{2}=b_{2}
$$

where b_{1} and b_{2} are the columns of the matrix B,

$$
A=\left(\begin{array}{rrrr}
0.28-0.36 i & 0.50-0.86 i & -0.77-0.48 i & 1.58+0.66 i \\
-0.50-1.10 i & -1.21+0.76 i & -0.32-0.24 i & -0.27-1.15 i \\
0.36-0.51 i & -0.07+1.33 i & -0.75+0.47 i & -0.08+1.01 i
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
-1.35+0.19 i & 4.83-2.67 i \\
9.41-3.56 i & -7.28+3.34 i \\
-7.57+6.93 i & 0.62+4.53 i
\end{array}\right)
$$

9.1 Program Text

```
    function f08av_example
fprintf('f08av example results\n\n');
a = [ 0.28 - 0.36i, 0.50 - 0.86i, -0.77 - 0.48i, 1.58 + 0.66i;
    -0.50 - 1.10i, -1.21 + 0.76i, -0.32 - 0.24i, -0.27 - 1.15i;
        0.36 - 0.51i, -0.07 + 1.33i, -0.75 + 0.47i, -0.08 + 1.01i];
b = [-1.35 + 0.19i, 4.83 - 2.67i;
    9.41 - 3.56i, -7.28 + 3.34i;
    -7.57 + 6.93i, 0.62 + 4.53i;
0, 0];
[m,n] = size(a);
```

```
% Compute the LQ factorization of a
[lq, tau, info] = f08av(a);
% Solve l*y = b
l = tril(lq(:, l:m));
y = [inv(l)*b(1:m,:); b(m+1:n,:)];
% Compute minimum-norm solution x = (q^h)*y
[x, info] = f08ax( ...
    'Left', 'Conjugate Transpose', lq, tau, y);
disp('Minimum-norm solution(s)');
disp(x);
```


9.2 Program Results

```
fO8av example results
```

Minimum-norm solution(s)
$-2.8501+6.4683 i-1.1682-1.8886 i$
$1.6264-0.7799 i \quad 2.8377+0.7654 i$
$6.9290+4.6481 i-1.7610-0.7041 i$
$1.4048+3.2400 i \quad 1.0518-1.6365 i$

