
NAG Toolbox

nag_lapack_dtpqrt (f08bb)

1 Purpose

nag_lapack_dtpqrt (f08bb) computes the QR factorization of a real mþ nð Þ by n triangular-pentagonal
matrix.

2 Syntax

[aa, bb, tt, iinnffoo] = nag_lapack_dtpqrt(ll, nnbb, aa, bb, ’m’, mm, ’n’, nn)

[aa, bb, tt, iinnffoo] = f08bb(ll, nnbb, aa, bb, ’m’, mm, ’n’, nn)

3 Description

nag_lapack_dtpqrt (f08bb) forms the QR factorization of a real mþ nð Þ by n triangular-pentagonal
matrix C,

C ¼ A
B

� �

where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an
m� lð Þ by n rectangular matrix B1 on top of an l by n upper trapezoidal matrix B2:

B ¼ B1
B2

� �
:

The upper trapezoidal matrix B2 consists of the first l rows of an n by n upper triangular matrix, where
0 � l � min m;nð Þ. If l ¼ 0, B is m by n rectangular; if l ¼ n and m ¼ n, B is upper triangular.

A recursive, explicitly blocked, QR factorization (see nag_lapack_dgeqrt (f08ab)) is performed on the
matrix C. The upper triangular matrix R, details of the orthogonal matrix Q, and further details (the
block reflector factors) of Q are returned.

Typically the matrix A or B2 contains the matrix R from the QR factorization of a subproblem and
nag_lapack_dtpqrt (f08bb) performs the QR update operation from the inclusion of matrix B1.

For example, consider the QR factorization of an l by n matrix B̂ with l < n: B̂ ¼ Q̂R̂,
R̂ ¼ R̂1 R̂2

� �
, where R̂1 is l by l upper triangular and R̂2 is n� lð Þ by n rectangular (this can be

performed by nag_lapack_dgeqrt (f08ab)). Given an initial least-squares problem B̂X̂ ¼ Ŷ where X and
Y are l by nrhs matrices, we have R̂X̂ ¼ Q̂TŶ .

Now, adding an additional m� l rows to the original system gives the augmented least squares problem

BX ¼ Y

where B is an m by n matrix formed by adding m� l rows on top of R̂ and Y is an m by nrhs matrix
formed by adding m� l rows on top of Q̂TŶ .

nag_lapack_dtpqrt (f08bb) can then be used to perform the QR factorization of the pentagonal matrix
B; the n by n matrix A will be zero on input and contain R on output.

In the case where B̂ is r by n, r � n, R̂ is n by n upper triangular (forming A) on top of r� n rows of
zeros (forming first r� n rows of B). Augmentation is then performed by adding rows to the bottom of
B with l ¼ 0.

F08 – Least-squares and Eigenvalue Problems (LAPACK) f08bb

Mark 25 f08bb.1

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel QR Factorization Leads
to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605–624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: l – INTEGER

l, the number of rows of the trapezoidal part of B (i.e., B2).

Constraint: 0 � l � min m; nð Þ.

2: nb – INTEGER

The explicitly chosen block-size to be used in the algorithm for computing the QR factorization.
See Section 9 for details.

Constraints:

nb � 1;
if n > 0, nb � n.

3: aðlda; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array a must be at least max 1;nð Þ.
The second dimension of the array a must be at least max 1;nð Þ.
The n by n upper triangular matrix A.

4: bðldb; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array b must be at least max 1;mð Þ.
The second dimension of the array b must be at least max 1; nð Þ.
The m by n pentagonal matrix B composed of an m� lð Þ by n rectangular matrix B1 above an l
by n upper trapezoidal matrix B2.

5.2 Optional Input Parameters

1: m – INTEGER

Default: the first dimension of the array b.

m, the number of rows of the matrix B.

Constraint: m � 0.

2: n – INTEGER

Default: the first dimension of the array a and the second dimension of the arrays a, b. (An error
is raised if these dimensions are not equal.)

n, the number of columns of the matrix B and the order of the upper triangular matrix A.

Constraint: n � 0.

f08bb NAG Toolbox for MATLAB Manual

f08bb.2 Mark 25

5.3 Output Parameters

1: aðlda; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array a will be max 1; nð Þ.
The second dimension of the array a will be max 1; nð Þ.
The upper triangle stores the corresponding elements of the n by n upper triangular matrix R.

2: bðldb; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array b will be max 1;mð Þ.
The second dimension of the array b will be max 1; nð Þ.
Details of the orthogonal matrix Q.

3: tðldt; :Þ – REAL (KIND=nag_wp) array

The first dimension of the array t will be nb.

The second dimension of the array t will be n.

Further details of the orthogonal matrix Q. The number of blocks is b ¼ k
nb

� �
, where

k ¼ min m;nð Þ and each block is of order nb except for the last block, which is of order
k� b� 1ð Þ � nb. For each of the blocks, an upper triangular block reflector factor is computed:
T1;T2; . . . ;Tb. These are stored in the nb by n matrix T as T ¼ T1jT2j . . . jTb½ �.

4: info – INTEGER

info ¼ 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

info < 0

If info ¼ �i, argument i had an illegal value. An explanatory message is output, and execution of
the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately 2
3n

2 3m� nð Þ if m � n or 2
3m

2 3n�mð Þ
if m < n.

The block size, nb, used by nag_lapack_dtpqrt (f08bb) is supplied explicitly through the interface. For
moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the
algorithm with the optimal value being dependent on problem size and platform. A value of
nb ¼ 64 � min m;nð Þ is likely to achieve good efficiency and it is unlikely that an optimal value would
exceed 340.

To apply Q to an arbitrary real rectangular matrix C, nag_lapack_dtpqrt (f08bb) may be followed by a
call to nag_lapack_dtpmqrt (f08bc). For example,

[t, c, info] = f08bc(’Left’,’Transpose’, nb, a(:,1:min(m,n)), t, c);

forms C ¼ QTC, where C is mþ nð Þ by p.

F08 – Least-squares and Eigenvalue Problems (LAPACK) f08bb

Mark 25 f08bb.3

To form the orthogonal matrix Q explicitly set p ¼ mþ n, initialize C to the identity matrix and make
a call to nag_lapack_dtpmqrt (f08bc) as above.

9 Example

This example finds the basic solutions for the linear least squares problems

minimize Axi � bik k2; i ¼ 1; 2

where b1 and b2 are the columns of the matrix B,

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35

�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13

�0:02 1:03 �1:43 0:50

0
BBBBB@

1
CCCCCA

and B ¼

�2:67 0:41
�0:55 �3:10
3:34 �4:01

�0:77 2:76
0:48 �6:17
4:10 0:21

0
BBBBB@

1
CCCCCA
:

A QR factorization is performed on the first 4 rows of A using nag_lapack_dgeqrt (f08ab) after which
the first 4 rows of B are updated by applying QT using nag_lapack_dgemqrt (f08ac). The remaining
row is added by performing a QR update using nag_lapack_dtpqrt (f08bb); B is updated by applying
the new QT using nag_lapack_dtpmqrt (f08bc); the solution is finally obtained by triangular solve using
R from the updated QR.

9.1 Program Text

function f08bb_example

fprintf(’f08bb example results\n\n’);

% Minimize ||Ax - b|| using recursive QR for m-by-n A and m-by-p B

m = nag_int(6);
n = nag_int(4);
p = nag_int(2);
a = [-0.57, -1.28, -0.39, 0.25;

-1.93, 1.08, -0.31, -2.14;
2.30, 0.24, 0.40, -0.35;

-1.93, 0.64, -0.66, 0.08;
0.15, 0.30, 0.15, -2.13;

-0.02, 1.03, -1.43, 0.50];
b = [-2.67, 0.41;

-0.55, -3.10;
3.34, -4.01;

-0.77, 2.76;
0.48, -6.17;
4.10, 0.21];

nb = n;
% Compute the QR Factorisation of first n rows of A
[QRn, Tn, info] = f08ab(...

nb,a(1:n,:));

% Compute C = (C1) = (Q^T)*B
[c1, info] = f08ac(...

’Left’, ’Transpose’, QRn, Tn, b(1:n,:));

% Compute least-squares solutions by backsubstitution in R*X = C1
[x, info] = f07te(...

’Upper’, ’No Transpose’, ’Non-Unit’, QRn, c1);

% Print first n-row solutions
disp(’Solution for n rows’);
disp(x(1:n,:));

% Add the remaining rows and perform QR update
nb2 = m-n;

f08bb NAG Toolbox for MATLAB Manual

f08bb.4 Mark 25

l = nag_int(0);
[R, Q, T, info] = f08bb(...

l, nb2, QRn, a(n+1:m,:));

% Apply orthogonal transformations to C
[c1,c2,info] = f08bc(...

’Left’,’Transpose’, l, Q, T, c1, b(n+1:m,:));

% Compute least-squares solutions for first n rows: R*X = C1
[x, info] = f07te(...

’Upper’, ’No transpose’, ’Non-Unit’, R, c1);
% Print least-squares solutions for all m rows
disp(’Least squares solution’);
disp(x(1:n,:));

% Compute and print estimates of the square roots of the residual
% sums of squares
for j=1:p

rnorm(j) = norm(c2(:,j));
end
fprintf(’Square roots of the residual sums of squares\n’);
fprintf(’%12.2e’, rnorm);
fprintf(’\n’);

9.2 Program Results

f08bb example results

Solution for n rows
1.5179 -1.5850
1.8629 0.5531

-1.4608 1.3485
0.0398 2.9619

Least squares solution
1.5339 -1.5753
1.8707 0.5559

-1.5241 1.3119
0.0392 2.9585

Square roots of the residual sums of squares
2.22e-02 1.38e-02

F08 – Least-squares and Eigenvalue Problems (LAPACK) f08bb

Mark 25 f08bb.5 (last)

	nag_lapack_dtpqrt (f08bb)
	1 Purpose
	2 Syntax
	3 Description
	4 References
	Elmroth and Gustavson (2000)
	Golub and Van Loan (2012)

	5 Parameters
	5.1 Compulsory Input Parameters
	l
	nb
	a
	b

	5.2 Optional Input Parameters
	m
	n

	5.3 Output Parameters
	a
	b
	t
	info

	6 Error Indicators and Warnings
	info<0

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Results

	NAG Toolbox for Matlab Manual, Mark 25
	Chapters of the Library
	A00 - library identification
	A00 Chapter Introduction

	A02 - complex arithmetic
	A02 Chapter Introduction

	C02 - zeros of polynomials
	C02 Chapter Introduction

	C05 - roots of one or more transcendental equations
	C05 Chapter Introduction

	C06 - summation of series
	C06 Chapter Introduction

	C09 - wavelet transforms
	C09 Chapter Introduction

	D01 - quadrature
	D01 Chapter Introduction

	D02 - ordinary differential equations
	D02 Chapter Introduction

	D03 - partial differential equations
	D03 Chapter Introduction

	D04 - numerical differentiation
	D04 Chapter Introduction

	D05 - integral equations
	D05 Chapter Introduction

	D06 - mesh generation
	D06 Chapter Introduction

	E01 - interpolation
	E01 Chapter Introduction

	E02 - curve and surface fitting
	E02 Chapter Introduction

	E04 - minimizing or maximizing a function
	E04 Chapter Introduction

	E05 - global optimization of a function
	E05 Chapter Introduction

	F - linear algebra
	F Chapter Introduction

	F01 - matrix operations, including inversion
	F01 Chapter Introduction

	F02 - eigenvalues and eigenvectors
	F02 Chapter Introduction

	F03 - determinants
	F03 Chapter Introduction

	F04 - simultaneous linear equations
	F04 Chapter Introduction

	F05 - orthogonalization
	F05 Chapter Introduction

	F07 - linear equations (lapack)
	F07 Chapter Introduction

	F08 - least squares and eigenvalue problems (lapack)
	F08 Chapter Introduction

	F11 - large scale linear systems
	F11 Chapter Introduction

	F12 - large scale eigenproblems
	F12 Chapter Introduction

	F16 - further linear algebra support routines
	F16 Chapter Introduction

	G01 - simple calculations on statistical data
	G01 Chapter Introduction

	G02 - correlation and regression analysis
	G02 Chapter Introduction

	G03 - multivariate methods
	G03 Chapter Introduction

	G04 - analysis of variance
	G04 Chapter Introduction

	G05 - random number generators
	G05 Chapter Introduction

	G07 - univariate estimation
	G07 Chapter Introduction

	G08 - nonparametric statistics
	G08 Chapter Introduction

	G10 - smoothing in statistics
	G10 Chapter Introduction

	G11 - contingency table analysis
	G11 Chapter Introduction

	G12 - survival analysis
	G12 Chapter Introduction

	G13 - time series analysis
	G13 Chapter Introduction

	H - operations research
	H Chapter Introduction

	M01 - sorting and searching
	M01 Chapter Introduction

	S - approximations of special functions
	S Chapter Introduction

	X01 - mathematical constants
	X01 Chapter Introduction

	X02 - machine constants
	X02 Chapter Introduction

	X03 - inner products
	X03 Chapter Introduction

	X04 - input/output utilities
	X04 Chapter Introduction

	X05 - date and time utilities
	X05 Chapter Introduction

	X06 - Multi-threading Utilities
	X06 Chapter Introduction

