NAG Toolbox
 nag_lapack_dtpqrt (f08bb)

1 Purpose

nag_lapack_dtpqrt (f08bb) computes the $Q R$ factorization of a real $(m+n)$ by n triangular-pentagonal matrix.

2 Syntax

```
[a, b, t, info] = nag_lapack_dtpqrt(l, nb, a, b, 'm', m, 'n', n)
[a, b, t, info] = f08bb(l, nb, a, b, 'm', m, 'n', n)
```


3 Description

nag_lapack_dtpqrt (f08bb) forms the $Q R$ factorization of a real $(m+n)$ by n triangular-pentagonal matrix C,

$$
C=\binom{A}{B}
$$

where A is an upper triangular n by n matrix and B is an m by n pentagonal matrix consisting of an $(m-l)$ by n rectangular matrix B_{1} on top of an l by n upper trapezoidal matrix B_{2} :

$$
B=\binom{B_{1}}{B_{2}}
$$

The upper trapezoidal matrix B_{2} consists of the first l rows of an n by n upper triangular matrix, where $0 \leq l \leq \min (m, n)$. If $l=0, B$ is m by n rectangular; if $l=n$ and $m=n, B$ is upper triangular.
A recursive, explicitly blocked, $Q R$ factorization (see nag_lapack_dgeqrt (f08ab)) is performed on the matrix C. The upper triangular matrix R, details of the orthogonal matrix Q, and further details (the block reflector factors) of Q are returned.
Typically the matrix A or B_{2} contains the matrix R from the $Q R$ factorization of a subproblem and nag_lapack_dtpqrt (f08bb) performs the $Q R$ update operation from the inclusion of matrix B_{1}.
For example, consider the $Q R$ factorization of an l by n matrix \hat{B} with $l<n: \hat{B}=\hat{Q} \hat{R}$, $\hat{R}=\left(\begin{array}{ll}\hat{R}_{1} & \hat{R}_{2}\end{array}\right)$, where \hat{R}_{1} is l by l upper triangular and \hat{R}_{2} is $(n-l)$ by n rectangular (this can be performed by nag_lapack_dgeqrt (f08ab)). Given an initial least-squares problem $\hat{B} \hat{X}=\hat{Y}$ where X and Y are l by $n r h s$ matrices, we have $\hat{R} \hat{X}=\hat{Q}^{\mathrm{T}} \hat{Y}$.
Now, adding an additional $m-l$ rows to the original system gives the augmented least squares problem

$$
B X=Y
$$

where B is an m by n matrix formed by adding $m-l$ rows on top of \hat{R} and Y is an m by nrhs matrix formed by adding $m-l$ rows on top of $\hat{Q}^{\mathrm{T}} \hat{Y}$.
nag_lapack_dtpqrt (f08bb) can then be used to perform the $Q R$ factorization of the pentagonal matrix B; the n by n matrix A will be zero on input and contain R on output.

In the case where \hat{B} is r by $n, r \geq n, \hat{R}$ is n by n upper triangular (forming A) on top of $r-n$ rows of zeros (forming first $r-n$ rows of B). Augmentation is then performed by adding rows to the bottom of B with $l=0$.

4 References

Elmroth E and Gustavson F (2000) Applying Recursion to Serial and Parallel $Q R$ Factorization Leads to Better Performance IBM Journal of Research and Development. (Volume 44) 4 605-624

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: I - INTEGER
l, the number of rows of the trapezoidal part of B (i.e., B_{2}).
Constraint: $0 \leq \mathbf{l} \leq \min (\mathbf{m}, \mathbf{n})$.

2: nb - INTEGER
The explicitly chosen block-size to be used in the algorithm for computing the $Q R$ factorization. See Section 9 for details.

Constraints:

```
    nb }\geq1
    if n}>0,\mathbf{nb}\leq\mathbf{n}
```

3: $\quad \mathbf{a}(l d a,:)-$ REAL (KIND=nag_wp $)$ array
The first dimension of the array a must be at least $\max (1, \mathbf{n})$.
The second dimension of the array a must be at least $\max (1, \mathbf{n})$.
The n by n upper triangular matrix A.
4: $\quad \mathbf{b}(l d b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array \mathbf{b} must be at least $\max (1, \mathbf{m})$.
The second dimension of the array \mathbf{b} must be at least $\max (1, \mathbf{n})$.
The m by n pentagonal matrix B composed of an $(m-l)$ by n rectangular matrix B_{1} above an l by n upper trapezoidal matrix B_{2}.

5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the first dimension of the array \mathbf{b}.
m, the number of rows of the matrix B.
Constraint: $\mathbf{m} \geq 0$.

2: $\quad \mathbf{n}$ - INTEGER
Default: the first dimension of the array \mathbf{a} and the second dimension of the arrays a, b. (An error is raised if these dimensions are not equal.)
n, the number of columns of the matrix B and the order of the upper triangular matrix A.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array a will be $\max (1, \mathbf{n})$.
The second dimension of the array a will be $\max (1, \mathbf{n})$.
The upper triangle stores the corresponding elements of the n by n upper triangular matrix R.
2: $\quad \mathbf{b}(l d b,:)-$ REAL (KIND=nag_wp) array
The first dimension of the array \mathbf{b} will be $\max (1, \mathbf{m})$.
The second dimension of the array \mathbf{b} will be $\max (1, \mathbf{n})$.
Details of the orthogonal matrix Q.
3: $\quad \mathbf{t}(l d t,:)-$ REAL (KIND $=$ nag_wp $)$ array
The first dimension of the array \mathbf{t} will be nb.
The second dimension of the array \mathbf{t} will be \mathbf{n}.
Further details of the orthogonal matrix Q. The number of blocks is $b=\left\lceil\frac{k}{\mathbf{n b}}\right\rceil$, where $k=\min (m, n)$ and each block is of order nb except for the last block, which is of order $k-(b-1) \times \mathbf{n b}$. For each of the blocks, an upper triangular block reflector factor is computed: $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}, \ldots, \boldsymbol{T}_{b}$. These are stored in the nb by n matrix T as $\boldsymbol{T}=\left[\boldsymbol{T}_{1}\left|\boldsymbol{T}_{2}\right| \ldots \mid \boldsymbol{T}_{b}\right]$.

4: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

$\boldsymbol{i n f o}<0$
If info $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $(A+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2}
$$

and ϵ is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately $\frac{2}{3} n^{2}(3 m-n)$ if $m \geq n$ or $\frac{2}{3} m^{2}(3 n-m)$ if $m<n$.

The block size, nb, used by nag_lapack_dtpqrt (f08bb) is supplied explicitly through the interface. For moderate and large sizes of matrix, the block size can have a marked effect on the efficiency of the algorithm with the optimal value being dependent on problem size and platform. A value of $\mathbf{n b}=64 \ll \min (m, n)$ is likely to achieve good efficiency and it is unlikely that an optimal value would exceed 340.

To apply Q to an arbitrary real rectangular matrix C, nag_lapack_dtpqrt (f08bb) may be followed by a call to nag_lapack_dtpmqrt (f08bc). For example,

$$
[t, c, i n f o]=f 08 b c\left(' L e f t^{\prime}, ' \operatorname{Tr} a n s p o s e^{\prime}, \operatorname{nb}, a(:, 1: m i n(m, n)), t, c\right) ;
$$

forms $C=Q^{\mathrm{T}} C$, where C is $(m+n)$ by p.

To form the orthogonal matrix Q explicitly set $p=m+n$, initialize C to the identity matrix and make a call to nag_lapack_dtpmqrt (f08bc) as above.

9 Example

This example finds the basic solutions for the linear least squares problems

$$
\operatorname{minimize}\left\|A x_{i}-b_{i}\right\|_{2}, \quad i=1,2
$$

where b_{1} and b_{2} are the columns of the matrix B,

$$
A=\left(\begin{array}{rrrr}
-0.57 & -1.28 & -0.39 & 0.25 \\
-1.93 & 1.08 & -0.31 & -2.14 \\
2.30 & 0.24 & 0.40 & -0.35 \\
-1.93 & 0.64 & -0.66 & 0.08 \\
0.15 & 0.30 & 0.15 & -2.13 \\
-0.02 & 1.03 & -1.43 & 0.50
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
-2.67 & 0.41 \\
-0.55 & -3.10 \\
3.34 & -4.01 \\
-0.77 & 2.76 \\
0.48 & -6.17 \\
4.10 & 0.21
\end{array}\right) .
$$

A $Q R$ factorization is performed on the first 4 rows of A using nag_lapack_dgeqrt (f08ab) after which the first 4 rows of B are updated by applying Q^{T} using nag_lapack_dgemqrt (f08ac). The remaining row is added by performing a $Q R$ update using nag_lapack_dtpqrt (f08bb); B is updated by applying the new Q^{T} using nag_lapack_dtpmqrt (f08bc); the solution is finally obtained by triangular solve using R from the updated $Q R$.

9.1 Program Text

function f08bb_example
fprintf('f08bb example results\n\n');
\% Minimize ||Ax - b|| using recursive $Q R$ for m-by-n A and m-by-p B
$m=n a g _i n t(6) ;$
$\mathrm{n}=$ nag_int (4);
$\mathrm{p}=$ nag_int (2);
$a=[-0.57,-1.28,-0.39,0.25$;
$-1.93,1.08,-0.31,-2.14 ;$
$2.30,0.24, \quad 0.40,-0.35$;
$-1.93, \quad 0.64,-0.66,0.08 ;$
$0.15,0.30,0.15,-2.13$;
$-0.02, \quad 1.03,-1.43,0.50]$;
$\mathrm{b}=[-2.67,0.41$;
$-0.55,-3.10$;
3.34, -4.01;
$-0.77,2.76 ;$ $0.48,-6.17$; 4.10, 0.21];
$\mathrm{nb}=\mathrm{n}$;
\% Compute the QR Factorisation of first n rows of A
[QRn, Tn, info] = f08ab(...
nb, a(1:n,:));
\% Compute $C=(C 1)=\left(Q^{\wedge} T\right) * B$
[c1, info] $=$ f08ac (..
'Left', 'Transpose', QRn, Tn, b(1:n,:));

```
% Compute least-squares solutions by backsubstitution in R*X = C1
[x, info] = f07te( ...
    'Upper', 'No Transpose', 'Non-Unit', QRn, cl);
% Print first n-row solutions
disp('Solution for n rows');
disp(x(1:n,:));
% Add the remaining rows and perform QR update
nb2 = m-n;
```

```
l = nag_int(0);
[R, Q, T, info] = f08bb( ...
    l, nb2, QRn, a(n+1:m,:));
% Apply orthogonal transformations to C
[c1,c2,info] = f08bc( ...
    'Left','Transpose', l, Q, T, c1, b(n+1:m,:));
% Compute least-squares solutions for first n rows: R*X = C1
[x, info] = f07te( ...
    'Upper', 'No transpose', 'Non-Unit', R, cl);
% Print least-squares solutions for all m rows
disp('Least squares solution');
disp(x(1:n,:));
% Compute and print estimates of the square roots of the residual
% sums of squares
for j=1:p
    rnorm(j) = norm(c2(:,j));
end
fprintf('Square roots of the residual sums of squares\n');
fprintf('%12.2e', rnorm);
fprintf('\n');
```


9.2 Program Results

	Solution for n rows
	1.5179 -1.5850
	1.86290 .5531
	-1.4608 1.3485
	$0.0398 \quad 2.9619$
	Least squares solution
	$1.5339-1.5753$
	1.87070 .5559
	-1.5241 1.3119
	0.03922 .9585
	Square roots of the residual sums of squares $2.22 \mathrm{e}-02 \quad 1.38 \mathrm{e}-02$

