NAG Toolbox

nag_lapack_zgeqpf (f08bs)

1 Purpose

nag_lapack_zgeqpf (f08bs) computes the $Q R$ factorization, with column pivoting, of a complex m by n matrix.

2 Syntax

```
[a, jpvt, tau, info] = nag_lapack_zgeqpf(a, jpvt, 'm', m, 'n', n)
[a, jpvt, tau, info] = f08bs(a, jpvt, 'm', m, 'n', n)
```


3 Description

nag_lapack_zgeqpf (f08bs) forms the $Q R$ factorization, with column pivoting, of an arbitrary rectangular complex m by n matrix.

If $m \geq n$, the factorization is given by:

$$
A P=Q\binom{R}{0}
$$

where R is an n by n upper triangular matrix (with real diagonal elements), Q is an m by m unitary matrix and P is an n by n permutation matrix. It is sometimes more convenient to write the factorization as

$$
A P=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}
$$

which reduces to

$$
A P=Q_{1} R
$$

where Q_{1} consists of the first n columns of Q, and Q_{2} the remaining $m-n$ columns.
If $m<n, R$ is trapezoidal, and the factorization can be written

$$
A P=Q\left(\begin{array}{ll}
R_{1} & R_{2}
\end{array}\right)
$$

where R_{1} is upper triangular and R_{2} is rectangular.
The matrix Q is not formed explicitly but is represented as a product of $\min (m, n)$ elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 9).
Note also that for any $k<n$, the information returned in the first k columns of the array a represents a $Q R$ factorization of the first k columns of the permuted matrix $A P$.
The function allows specified columns of A to be moved to the leading columns of $A P$ at the start of the factorization and fixed there. The remaining columns are free to be interchanged so that at the i th stage the pivot column is chosen to be the column which maximizes the 2 -norm of elements i to m over columns i to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}(l d a,:)-$ COMPLEX (KIND=nag_wp) array
The first dimension of the array a must be at least $\max (1, \mathbf{m})$.
The second dimension of the array a must be at least $\max (1, \mathbf{n})$.
The m by n matrix A.
2: $\quad \mathbf{j p v t}(:)$ - INTEGER array
The dimension of the array jpvt must be at least $\max (1, \mathbf{n})$
If $\mathbf{j p v t}(i) \neq 0$, then the i th column of A is moved to the beginning of $A P$ before the decomposition is computed and is fixed in place during the computation. Otherwise, the i th column of A is a free column (i.e., one which may be interchanged during the computation with any other free column).

5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the first dimension of the array a.
m, the number of rows of the matrix A.
Constraint: $\mathbf{m} \geq 0$.

2: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array a.
n, the number of columns of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)$ - COMPLEX (KIND=nag_wp) array
The first dimension of the array a will be $\max (1, \mathbf{m})$.
The second dimension of the array a will be $\max (1, \mathbf{n})$.
If $m \geq n$, the elements below the diagonal store details of the unitary matrix Q and the upper triangle stores the corresponding elements of the n by n upper triangular matrix R.

If $m<n$, the strictly lower triangular part stores details of the unitary matrix Q and the remaining elements store the corresponding elements of the m by n upper trapezoidal matrix R.
The diagonal elements of R are real.
2: $\quad \mathbf{j p v t}(:)$ - INTEGER array
The dimension of the array $\mathbf{j p v t}$ will be $\max (1, \mathbf{n})$
Details of the permutation matrix P. More precisely, if $\mathbf{j p v t}(i)=k$, then the k th column of A is moved to become the i th column of $A P$; in other words, the columns of $A P$ are the columns of A in the order $\mathbf{j p v t}(1), \mathbf{j p v t}(2), \ldots, \mathbf{j p v t}(n)$.

3: $\quad \boldsymbol{\operatorname { t a u }}(\boldsymbol{\operatorname { m i n }}(\mathbf{m}, \mathbf{n}))$ - COMPLEX (KIND=$=$ nag_wp) array
Further details of the unitary matrix Q.

4: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

$\boldsymbol{\operatorname { i n f }} \mathbf{=}=-i$
If info $=-i$, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: m, 2: n, 3: a, 4: lda, 5: jpvt, 6: tau, 7: work, 8: rwork, 9: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $(A+E)$, where

$$
\|E\|_{2}=O(\epsilon)\|A\|_{2}
$$

and ϵ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately $\frac{8}{3} n^{2}(3 m-n)$ if $m \geq n$ or $\frac{8}{3} m^{2}(3 n-m)$ if $m<n$.
To form the unitary matrix Q nag_lapack_zgeqpf (f08bs) may be followed by a call to nag_lapack_zungqr (f08at):

```
[a, info] = f08at(a(:,1:m), tau);
```

but note that the second dimension of the array a must be at least \mathbf{m}, which may be larger than was required by nag_lapack_zgeqpf (f08bs).
When $m \geq n$, it is often only the first n columns of Q that are required, and they may be formed by the call:

```
[a, info] = f08at(a, tau);
```

To apply Q to an arbitrary complex rectangular matrix C, nag_lapack_zgeqpf (f08bs) may be followed by a call to nag_lapack_zunmqr (f08au). For example,

```
[c, info] = f08au('Left','Conjugate Transpose', a(:,min(m,n)), tau, c);
```

forms $C=Q^{\mathrm{H}} C$, where C is m by p.
To compute a $Q R$ factorization without column pivoting, use nag_lapack_zgeqrf (f08as).
The real analogue of this function is nag_lapack_dgeqpf (f08be).

9 Example

This example solves the linear least squares problems

$$
\operatorname{minimize}\left\|A x_{i}-b_{i}\right\|_{2}, \quad i=1,2
$$

where b_{1} and b_{2} are the columns of the matrix B,

$$
A=\left(\begin{array}{rrrr}
0.47-0.34 i & -0.40+0.54 i & 0.60+0.01 i & 0.80-1.02 i \\
-0.32-0.23 i & -0.05+0.20 i & -0.26-0.44 i & -0.43+0.17 i \\
0.35-0.60 i & -0.52-0.34 i & 0.87-0.11 i & -0.34-0.09 i \\
0.89+0.71 i & -0.45-0.45 i & -0.02-0.57 i & 1.14-0.78 i \\
-0.19+0.06 i & 0.11-0.85 i & 1.44+0.80 i & 0.07+1.14 i
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{rr}
-0.85-1.63 i & 2.49+4.01 i \\
-2.16+3.52 i & -0.14+7.98 i \\
4.57-5.71 i & 8.36-0.28 i \\
6.38-7.40 i & -3.55+1.29 i \\
8.41+9.39 i & -6.72+5.03 i
\end{array}\right) .
$$

Here A is approximately rank-deficient, and hence it is preferable to use nag_lapack_zgeqpf (f08bs) rather than nag_lapack_zgeqrf (f08as).

9.1 Program Text

function f08bs_example

```
fprintf('f08bs example results\n\n');
```

```
a = [ 0.47-0.34i, -0.40 + 0.54i, 0.60 + 0.01i, 0.80 - 1.02i;
    -0.32 - 0.23i, -0.05 + 0.20i, -0.26 - 0.44i, -0.43 + 0.17i;
        0.35 - 0.60i, -0.52 - 0.34i, 0.87-0.11i, -0.34 - 0.09i;
        0.89 + 0.71i, -0.45 - 0.45i, -0.02 - 0.57i, 1.14 - 0.78i;
    -0.19 + 0.06i, 0.11 - 0.85i, 1.44 + 0.80i, 0.07 + 1.14i];
b = [-0.85 - 1.63i, 2.49 + 4.01i;
    -2.16 + 3.52i, -0.14 + 7.98i;
        4.57 - 5.71i, 8.36 - 0.28i;
        6.38 - 7.40i, -3.55 + 1.29i;
        8.41 + 9.39i, -6.72 + 5.03i];
[m,n] = size(a);
jpvt = zeros(n,1,nag_int_name);
```

\% Compute the $Q R$ factorization of a
[a, jpvt, tau, info] = f08bs(...
a, jpvt);
\% Choose tol to reflect the relative accuracy of the input data
tol = 0.01;
\% Determine which columns of R to use
k = find(abs(diag(a)) <= tol*abs(a(1,1)));
if numel(k) $==0$
$\mathrm{k}=$ numel(diag(a));
else
$\mathrm{k}=\mathrm{k}(1)-1$;
end
\% Compute $c=\left(q^{\wedge} H\right) * b$,
[c, info] = f08au(...
'Left', 'Conjugate Transpose', a, tau, b);
\% Compute least-squares solution by backsubstitution in $\mathrm{r} * \mathrm{~b}=\mathrm{c}$
c(1:k, :) = inv(triu(a(1:k,1:k)))*c(1:k,:);
$\mathrm{c}(\mathrm{k}+1: 4,:$) $=0$;
\% Unscramble the least-squares solution stored in c
$\mathrm{x}=$ zeros(4, 2);
for $i=1: 4$
$x(j p v t(i),:)=c(i,:) ;$
end
fprintf('\nLeast-squares solution\n');
disp(x);

9.2 Program Results

f08bs example results
Least-squares solution
$0.0000+0.0000 i$
$2.6925+8.0446 i$
$2.7602+2.0000+0.0263-2.9000 i$
$2.7383+0.5123 i$

