NAG Toolbox
 nag_lapack_zgerqf (f08cv)

1 Purpose

nag_lapack_zgerqf (f08cv) computes an RQ factorization of a complex m by n matrix A.

2 Syntax

```
[a, tau, info] = nag_lapack_zgerqf(a, 'm', m, 'n', n)
[a, tau, info] = f08cv(a, 'm', m, 'n', n)
```


3 Description

nag_lapack_zgerqf (f08cv) forms the $R Q$ factorization of an arbitrary rectangular real m by n matrix. If $m \leq n$, the factorization is given by

$$
A=\left(\begin{array}{ll}
0 & R
\end{array}\right) Q
$$

where R is an m by m lower triangular matrix and Q is an n by n unitary matrix. If $m>n$ the factorization is given by

$$
A=R Q
$$

where R is an m by n upper trapezoidal matrix and Q is again an n by n unitary matrix. In the case where $m<n$ the factorization can be expressed as

$$
A=\left(\begin{array}{ll}
0 & R
\end{array}\right)\binom{Q_{1}}{Q_{2}}=R Q_{2}
$$

where Q_{1} consists of the first $(n-m)$ rows of Q and Q_{2} the remaining m rows.
The matrix Q is not formed explicitly, but is represented as a product of $\min (m, n)$ elementary reflectors (see the F08 Chapter Introduction for details). Functions are provided to work with Q in this representation (see Section 9).

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: $\quad \mathbf{a}(l d a,:)-$ COMPLEX (KIND=nag_wp) array
The first dimension of the array a must be at least $\max (1, \mathbf{m})$.
The second dimension of the array a must be at least $\max (1, \mathbf{n})$.
The m by n matrix A.

5.2 Optional Input Parameters

1: $\quad \mathbf{m}$ - INTEGER
Default: the first dimension of the array a.
m, the number of rows of the matrix A.
Constraint: $\mathbf{m} \geq 0$.

2: $\quad \mathbf{n}$ - INTEGER
Default: the second dimension of the array a.
n, the number of columns of the matrix A.
Constraint: $\mathbf{n} \geq 0$.

5.3 Output Parameters

1: $\quad \mathbf{a}(l d a,:)-$ COMPLEX (KIND=nag_wp) array
The first dimension of the array a will be $\max (1, \mathbf{m})$.
The second dimension of the array a will be $\max (1, \mathbf{n})$.
If $m \leq n$, the upper triangle of the subarray $\mathbf{a}(1: m, n-m+1: n)$ contains the m by m upper triangular matrix R.
If $m \geq n$, the elements on and above the $(m-n)$ th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array tau, represent the unitary matrix Q as a product of $\min (m, n)$ elementary reflectors (see Section 3.2.6 in the F08 Chapter Introduction).

2: $\boldsymbol{t a u}(:)$ - COMPLEX (KIND=nag_wp) array
The dimension of the array tau will be $\max (1, \min (\mathbf{m}, \mathbf{n}))$
The scalar factors of the elementary reflectors.
3: info - INTEGER
info $=0$ unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

$\boldsymbol{\operatorname { i n f }} \mathbf{0}=-i$
If info $=-i$, parameter i had an illegal value on entry. The parameters are numbered as follows:
1: m, 2: n, 3: a, 4: lda, 5: tau, 6: work, 7: lwork, 8: info.
It is possible that info refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix $A+E$, where

$$
\|E\|_{2}=O \epsilon\|A\|_{2}
$$

and ϵ is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately $\frac{2}{3} m^{2}(3 n-m)$ if $m \leq n$, or $\frac{2}{3} n^{2}(3 m-n)$ if $m>n$.

To form the unitary matrix Q nag_lapack_zgerqf (f08cv) may be followed by a call to nag_lapack_zungrq (f08cw):

```
[a, info] = f08cw(a, tau, 'k', min(m,n));
```

but note that the first dimension of the array a must be at least \mathbf{n}, which may be larger than was required by nag_lapack_zgerqf (f 08 cv). When $m \leq n$, it is often only the first m rows of Q that are required and they may be formed by the call:

$$
\text { [a, info] }=\mathrm{f08cw}(a, \text { tau); }
$$

To apply Q to an arbitrary real rectangular matrix C, nag_lapack_zgerqf (f08cv) may be followed by a call to nag_lapack_zunmrq (f08cx). For example:
[a, c, info] = f08cx('Left','c', a, tau, c);
forms $C=Q^{\mathrm{H}} C$, where C is n by p.
The real analogue of this function is nag_lapack_dgerqf (f08ch).

9 Example

This example finds the minimum norm solution to the underdetermined equations

$$
A x=b
$$

where

$$
A=\left(\begin{array}{rrrr}
0.28-0.36 i & 0.50-0.86 i & -0.77-0.48 i & 1.58+0.66 i \\
-0.50-1.10 i & -1.21+0.76 i & -0.32-0.24 i & -0.27-1.15 i \\
0.36-0.51 i & -0.07+1.33 i & -0.75+0.47 i & -0.08+1.01 i
\end{array}\right)
$$

and

$$
b=\left(\begin{array}{r}
-1.35+0.19 i \\
9.41-3.56 i \\
-7.57+6.93 i
\end{array}\right)
$$

The solution is obtained by first obtaining an $R Q$ factorization of the matrix A.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.

9.1 Program Text

```
        function f08cv_example
fprintf('f08cv example results\n\n');
% Minimum norm solution of AX = B, m<n
m = 3;
n = 4;
a = [ 0.28 - 0.36i, 0.50 - 0.86i, -0.77 - 0.48i, 1.58 + 0.66i;
        -0.50 - 1.10i, -1.21 + 0.76i, -0.32 - 0.24i, -0.27 - 1.15i;
        0.36 - 0.51i, -0.07 + 1.33i, -0.75 + 0.47i, -0.08 + 1.01i];
b = [ -1.35 + 0.19i;
    9.41 - 3.56i;
    -7.57 + 6.93i];
% Compute the RQ factorization of A
[rq, tau, info] = f08cv(a);
% RQX = B ==> C = QX = R^-1 B
c = zeros(n, 1);
```

```
il = n - m + 1;
[c(il:n,:), info] = f07ts( ...
    'Upper', 'No transpose','Non-Unit', rq(:,il:n), b);
% QX = C ==> X = Q^H C
[rq, x, info] = f08cx( ...
    'Left', 'Conjugate Transpose', rq, tau, c);
fprintf('Minimum-norm solution\n');
disp(x);
```


9.2 Program Results

f08cv example results
Minimum-norm solution
-2.8501 + 6.4683i
1.6264 - $0.7799 i$
$6.9290+4.6481 i$
$1.4048+3.2400 i$

